Below is a plot of

$$
f(x)=-2 \sin (x+1)+\sin (x+2)+2 \sin (-3 x)+\sin (-x)+2 \cos (-3 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-3 x+1)-2 \sin (-x+1)+2 \sin (-x+2)+2 \sin (3 x+2)+\cos (x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (x+2)-\sin (2 x+1)-\sin (-2 x)+2 \sin (3 x)-2 \cos (-3 x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-3 x)+\sin (3 x)+2 \cos (-3 x+1)+2 \cos (3 x+2)-\cos (3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+2)-2 \sin (x)-\cos (x+2)+\cos (2 x+2)+\cos (3 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-2 x+1)-2 \sin (-x)+\cos (2 x+2)-\cos (-x)+2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (x+1)-\sin (x+2)+\sin (x)-\cos (3 x+1)+\cos (2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-x+2)+2 \sin (x+1)+2 \sin (2 x+2)-\cos (-x+2)-\cos (x+1)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-2 x+1)+\sin (-x+2)+\sin (-x)-\cos (x+1)+2 \cos (2 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+2)+\cos (-2 x+1)-\cos (x+1)+\cos (3 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-3 x+2)+3 \sin (-x+2)+\sin (3 x+1)-2 \sin (-x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (-2 x+2)-2 \sin (x+1)+\sin (x+2)+2 \cos (x+2)+2 \cos (2 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of
$f(x)=-2 \sin (-3 x+2)-\sin (-2 x+2)-2 \sin (x+2)+\sin (3 x+2)+2 \cos (-3 x+1)+1$.
The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x)+\sin (x)+\cos (-x+1)+2 \cos (x+1)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\cos (-3 x+2)+2 \cos (-x+1)+\cos (-x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-2 x+2)+\sin (-x+2)+\sin (-3 x)+\cos (2 x+2)-\cos (-2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (2 x+1)-2 \sin (-x)-2 \cos (2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (x)-\cos (-x+1)-\cos (3 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (2 x+2)+2 \sin (-3 x)-2 \cos (-x+1)-2 \cos (3 x+2)+\cos (-x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-2 x+2)-\sin (3 x+1)+\sin (3 x+2)-\sin (3 x)+\cos (-3 x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-x+2)-2 \cos (-2 x+1)-\cos (-x+2)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-x+2)-\sin (x+2)+\cos (-x+2)-\cos (3 x)+2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (-3 x+2)-\sin (x+1)-2 \sin (3 x+1)-\sin (3 x)-\cos (-x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+1)+2 \sin (x+1)+\sin (x+2)-2 \sin (-x)+2 \cos (x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (3 x+2)-2 \sin (x)-\cos (-x+2)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+1)+2 \sin (-x+2)-\sin (3 x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (3 x+1)-\cos (-3 x+1)-\cos (3 x+2)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (x+1)+\sin (3 x)-\sin (x)+2 \cos (-2 x+2)+\cos (2 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-3 x+1)-2 \cos (3 x+1)+\cos (3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-2 x+1)+\cos (x+1)+\cos (x+2)+\cos (2 x+1)-\cos (-2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-x+2)+2 \sin (x+2)+\sin (x)-2 \cos (-3 x+1)-\cos (3 x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-3 x+2)+2 \sin (-x+2)-\cos (x+1)+4 \cos (x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (x+1)+2 \cos (-2 x+2)+\cos (x+1)+\cos (-x)+\cos (2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-x+2)-\cos (-2 x)+\cos (2 x)+\cos (3 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-3 x)+\cos (-3 x+2)+\cos (x+1)+\cos (x+2)+\cos (3 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-2 x)+3 \cos (x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (2 x+2)-2 \cos (-2 x+2)+\cos (-x+1)+\cos (3 x+1)+\cos (-2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-3 x+1)-\cos (x+1)-\cos (x+2)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (3 x+1)+2 \sin (3 x+2)+2 \sin (3 x)-\cos (-x+2)-2 \cos (x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-x+2)-\cos (-x+2)-\cos (-2 x)+2 \cos (2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-x+2)-\sin (x+2)-\sin (-x)-\cos (-2 x+2)+\cos (2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \cos (-3 x+1)-\cos (-3 x+2)-2 \cos (-3 x)+2 \cos (3 x)-\cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (2 x+1)+2 \cos (-2 x+1)+\cos (2 x+1)+\cos (3 x+1)-\cos (2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+1)-\sin (2 x+1)+\sin (-2 x)+2 \sin (x)+2 \cos (-2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (3 x+2)-2 \sin (-x)+\cos (x+2)-\cos (2 x+2)+\cos (3 x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (x+2)-2 \sin (2 x+1)-\sin (-x)-\cos (-x+2)-2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (x+2)-2 \cos (-3 x+1)+\cos (-x+2)-\cos (x+1)-2 \cos (3 x+2)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (x+2)+2 \cos (-x+2)+\cos (2 x+1)-\cos (-x)+2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-3 x+2)-\sin (3 x+1)-2 \cos (-2 x+1)+\cos (-2 x+2)+\cos (2 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-2 x+2)-2 \sin (-2 x)+2 \cos (2 x+1)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (-x)+2 \sin (x)-\cos (x+2)+\cos (3 x+1)-\cos (-3 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (2 x+1)-2 \sin (x)-2 \cos (x+1)+\cos (-3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-x+2)-\sin (3 x)-\cos (3 x+1)+\cos (-2 x)+2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\cos (-3 x+1)-2 \cos (-x+1)-\cos (x+1)-\cos (x+2)-\cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (x)-\cos (-2 x+1)-\cos (2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-2 x+2)+2 \sin (-x+1)-\cos (x+1)+\cos (-3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+1)+\sin (x+1)+2 \sin (2 x+1)-\cos (-2 x+1)+\cos (2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (x+2)+\sin (2 x+1)-\cos (-3 x+2)-\cos (2 x+1)-\cos (3 x+2)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+1)-\sin (x+2)+\sin (2 x+1)+2 \cos (x+2)-\cos (-2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+2)-2 \sin (x+1)+\sin (x)+\cos (-3 x+2)+\cos (-2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (3 x+1)+2 \sin (2 x)-\cos (-2 x+2)+\cos (-x+2)-\cos (3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-3 x+1)+\cos (x+2)+\cos (3 x+1)+2 \cos (-x)-2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-2 x+2)-\sin (-x+1)-\sin (3 x+1)-2 \sin (2 x)+\cos (-2 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-2 x+1)+\sin (2 x+1)-\sin (x)-\cos (-2 x+1)+2 \cos (-2 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-3 x+2)+2 \sin (-x+1)-2 \sin (-x+2)-\sin (x+1)+2 \sin (-x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-2 x+1)+\sin (-x+2)-\cos (-2 x+2)-2 \cos (-2 x)+\cos (2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-x)-\cos (-3 x+1)-\cos (x+1)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (3 x+1)+\sin (-x)+\sin (2 x)+\sin (3 x)-\cos (x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (x+1)-2 \sin (x)-\cos (-x+1)-\cos (x+1)+2 \cos (2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-3 x+1)-\cos (-3 x+1)+\cos (x+2)+\cos (-2 x)-2 \cos (2 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (x+1)+\sin (-x)+2 \sin (x)+\cos (-x+1)+\cos (2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (2 x+1)-\sin (-2 x)+\cos (-3 x+1)-\cos (x+1)+2 \cos (3 x+2)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of
$f(x)=-2 \sin (-2 x+2)-2 \sin (-x+2)+\sin (2 x+1)+2 \sin (2 x+2)+\cos (-2 x+2)+1$.
The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (x+1)+\sin (3 x+2)+\cos (-x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-x+2)+2 \sin (3 x)-2 \cos (-3 x+1)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (2 x+2)-2 \sin (x)+\cos (-x+2)+\cos (3 x+2)-2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-x+2)-2 \sin (x+2)+\cos (-2 x+1)+2 \cos (-x+1)-2 \cos (-x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (-x+2)-\sin (-2 x)-\sin (3 x)+\cos (-2 x)+2 \cos (-x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-2 x+1)+\sin (2 x)-\cos (-x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+1)-\cos (-2 x+1)-\cos (-x+1)-\cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-2 x+2)+\cos (-2 x+2)+\cos (3 x+1)-\cos (-2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (-2 x+1)-\sin (2 x+2)-2 \cos (-x+1)+\cos (-3 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (3 x+2)+\sin (-2 x)+2 \sin (x)-\cos (-3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (-x+2)+2 \sin (x+1)+\sin (3 x+2)+2 \cos (x+1)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-x+1)+\sin (2 x+1)+\sin (-3 x)+2 \cos (-3 x+2)-2 \cos (x+1)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (3 x+2)-2 \sin (-3 x)-2 \cos (-3 x+2)-\cos (-x+2)+\cos (-x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-3 x+2)-\sin (x)-2 \cos (-3 x)-\cos (-2 x)+2 \cos (3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (-3 x+1)-\sin (-2 x)+\cos (2 x+1)-2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (x+1)-\sin (x+2)-2 \cos (2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of
$f(x)=-2 \sin (-x+1)+2 \sin (x+2)+2 \sin (3 x+2)+2 \cos (-3 x+2)-2 \cos (-x+2)+1$.
The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=\sin (x+1)-\cos (-3 x+1)-\cos (-x+2)+2 \cos (-3 x)-\cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-3 x+2)+\sin (-x+1)-\cos (x+2)-\cos (-3 x)-\cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (x+1)+\sin (2 x+1)+2 \sin (x)+2 \cos (2 x+2)-2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-x+1)+2 \sin (x+2)+\sin (3 x+1)+\sin (3 x)+\sin (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (x)-\cos (-x+2)-\cos (x+1)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-2 \sin (x+1)+\sin (x)+2 \cos (-x+1)+\cos (-2 x)+\cos (-x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=-\sin (-2 x+2)+2 \cos (-2 x+1)-\cos (-2 x+2)-\cos (-3 x)-\cos (-2 x)+1
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (x+2)+\sin (-2 x)-\sin (2 x)+2 \cos (-2 x+1)-2 \cos (x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

Below is a plot of

$$
f(x)=2 \sin (-2 x+1)+\cos (-2 x+2)+\cos (-x+2)-\cos (3 x+1)+\cos (3 x)+1 .
$$

The derivative of $f(x)$ is the function whose value at x is the slope of the graph of f at x. Plot the derivative of $f(x)$ by sketching the tangent line to the graph at maybe 10 points, and at each point, plot the slope of that line, then connect your points (it's a good idea to include all points at which the derivative is 0). There is enough space vertically to fit the derivative. After you finish carefully plotting the derivative, enter $f(x)$ into Sage, and plot f.derivative() to check your work.

