Markus is a Python library for generating metrics
Python
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
docs
markus
tests
.gitignore
.travis.yml
CONTRIBUTING.rst
CONTRIBUTORS
HISTORY.rst
LICENSE
MANIFEST.in
README.rst
readthedocs.yml
requirements-dev.txt
setup.cfg
setup.py
tox.ini

README.rst

Markus

Markus is a Python library for generating metrics.

Code:https://github.com/willkg/markus
Issues:https://github.com/willkg/markus/issues
License:MPL v2
Documentation:http://markus.readthedocs.io/en/latest/

Goals

Markus makes it easier to generate metrics in your program by:

  • providing multiple backends (Datadog statsd, statsd, logging, logging rollup, and so on) for sending data to different places
  • sending metrics to multiple backends at the same time
  • providing a testing framework for easy testing
  • providing a decoupled architecture making it easier to write code to generate metrics without having to worry about making sure creating and configuring a metrics client has been done--similar to the Python logging Python logging module in this way

I use it at Mozilla in the collector of our crash ingestion pipeline. Peter used it to build our symbols lookup server, too.

Install

To install Markus, run:

$ pip install markus

(Optional) To install the requirements for the markus.backends.datadog.DatadogMetrics backend:

$ pip install markus[datadog]

Quick start

Similar to using the logging library, every Python module can create a MetricsInterface (loosely equivalent to a Python logging logger) at any time including at module import time and use that to generate metrics.

For example:

import markus

metrics = markus.get_metrics(__name__)

Creating a MetricsImplementation using __name__ will cause it to generate all stats keys with a prefix determined from __name__ which is a dotted Python path to that module.

Then you can use the MetricsImplementation anywhere in that module:

@metrics.timer_decorator('chopping_vegetables')
def some_long_function(vegetable):
    for veg in vegetable:
        chop_vegetable()
        metrics.incr('vegetable', 1)

At application startup, configure Markus with the backends you want to use to publish metrics and any options they require.

For example, lets configure metrics to publish to logs and Datadog:

import markus

markus.configure(
    backends=[
        {
            # Log metrics to the logs
            'class': 'markus.backends.logging.LoggingMetrics',
        },
        {
            # Log metrics to Datadog
            'class': 'markus.backends.datadog.DatadogMetrics',
            'options': {
                'statsd_host': 'example.com',
                'statsd_port': 8125,
                'statsd_namespace': ''
            }
        }
    ]
)

When you're writing your tests, use the MetricsMock to make testing easier:

import markus
from markus.testing import MetricsMock


def test_something():
    with MetricsMock() as mm:
        # ... Do things that might publish metrics

        # This helps you debug and write your test
        mm.print_records()

        # Make assertions on metrics published
        assert mm.has_metric(markus.INCR, 'some.key', value=1)