
Despite advances in the understanding  
of disease biology and impressive leaps in 
technology, bringing new drugs to market 
remains a time-​consuming and expensive 
process, largely owing to the substantial 
costs associated with the high proportion 
of failures in clinical trials1,2. Consequently, 
there is a need for fresh thinking, new and 
revised conceptions of the drug discovery 
process, and innovative approaches to 
deliver medicines for more patients at 
a lower cost-​to-market. In this context, 
computer-​assisted small-​molecule drug 
design has long been considered a potential 
opportunity3–6. The field is now in the 
midst of a surge of interest, catalysed by 
advances in data processing power and the 
development of new artificial intelligence (AI) 
tools7,8. The key question is whether such 
approaches can help us design better  
small-​molecule drug candidates faster9,10.

For the past two decades, small-​molecule 
drug discovery has been fuelled by high-​
throughput screening (HTS), with estimated 
hit rates of 0–0.01%, depending on several 
aspects, including the definition of a ‘hit’, the 
nature of the biological target, the assay type 
and readout, and the quality and diversity of 
the screening compound pool11–13. Selection 
of the most appropriate experimentally 

entities (NCEs) with the desired properties 
from scratch (de novo), without the need for 
the often prohibitively costly full-​deck HTS.

To be successful in the long run, drug 
design with AI (Fig. 1) has to provide 
solutions to several questions, which can 
be encompassed in five ‘grand challenges’: 
obtaining appropriate datasets, generating 
new hypotheses, optimizing in a multi-​
objective manner, reducing cycle times, and 
changing the research culture and creating 
an appropriate mindset. This Perspective is 
based on discussions around each of these 
five grand challenges among a group of 
diverse international experts at a meeting in 
2018 on rethinking drug design with AI and 
presents the main conclusions drawn as well 
as a discussion on advances since then.

Obtaining appropriate datasets
Appropriate input data are crucial for 
building useful predictive models  
for decision-​making and generation of 
NCEs15,16. Without an appropriate dataset 
and an understanding of the scope and 
limitations of those data, even a seemingly 
sophisticated model will not be able to 
produce useful results17,18.

One of the most important factors when 
evaluating data for predictive modelling 
is whether those data were collected with 
the ultimate end point in mind and, if not, 
what might go wrong. For instance, many 
groups have built models to predict whether 
molecules will be toxic19. This problem is 
important, as a reliable toxicology model 
may be able to reduce the time and cost 
of drug discovery as well as the need for 
animal testing20,21. However, limited in vivo 
toxicology data are available, and therefore 
many toxicology models are built based on 
surrogate in vitro outcomes22 and, in most 
cases, the relationship between these in vitro 
outcomes and the ultimate in vivo toxicology 
response has not been clearly established23.

This issue is not specific to toxicology 
models. Animal models typically used 
in drug discovery may have a limited 
relationship with the outcome that will 
ultimately be seen in patients24. The 
relevance of data can also be a factor 
with in vitro experiments. The protein 
constructs used in biochemical assays may 
poorly reflect the native protein found in 
cells. In many cases, predictive models 

validated HTS hits for follow-​up is critical 
to the success of a drug discovery project14. 
Many parameters need to be considered in 
hit selection and subsequent optimization, 
including potency and selectivity at 
the desired pharmacological targets 
and potential off-​targets as well as the 
physicochemical characteristics that could 
be important in drug pharmacokinetics and 
safety. Consequently, medicinal chemists 
typically face challenging multi-​objective 
optimization (MOO) problems, with far 
more potential choices than are possible to 
explore systematically as well as increasingly 
large and complex datasets to analyse when 
making their choices.

Part of the appeal of applying AI in drug 
design thus lies in the potential to develop 
data-​driven, implicit model-​building 
processes to navigate vast datasets arising 
from HTS and to prioritize alternatives. 
This represents at least a partial transfer 
of decision power to machine intelligence 
and could be viewed as synergistic with 
human intelligence, that is, a domain-​
specific implicit AI that would augment the 
capabilities of medicinal chemists in drug 
design and selection. More ambitiously, the 
ultimate challenge for drug design with AI 
is to autonomously generate new chemical 
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are constructed based on the results of 
previously designed high-​throughput 
experiments. This approach may offer 
advantages owing to the larger dataset 
size — an important factor in modelling of 
complex phenomena. On the other hand, 
relying on existing large-​scale data can be 
problematic because of compromises in 
design decisions made in the development 
of high-​throughput assays. Adjustments 
made to increase assay throughput may 
diminish the relationship between the high-​
throughput assay and its more accurate, 
lower-​throughput counterpart. For example, 
genome-​wide off-​target screening has 
much lower sensitivity than analysis of a 
pre-​defined off-​target area25,26. In order for 
data to be most useful, the context of the 
experiment used to capture the data and 
its relevance to the final outcome must be 
clearly understood27.

Different levels of uncertainty exist 
between and within datasets. AI can 
be applied to address some of these 
uncertainties and generate higher-​quality 
datasets. Related to the concept of dataset 
relevance, mentioned above, it is important 
to understand the provenance of the data, 
so that, if questions arise, the appropriate 
meta-​data can be found28,29. This requires 
appropriate annotation, possibly by humans, 

which is a tedious process and, as such, 
is frequently not done or is ignored30. 
Although automated annotations exist to 
a certain extent (for example, machines 
generating and analysing data typically add 
metadata such as time and date), AI may 
be able to ease this burden by inferring 
context, providing a starting point for a 
human annotator and auto-​detecting likely 
erroneous annotations from inconsistencies.

Another challenge to annotation is 
the rapidly changing and inconsistently 
described landscape of biology, that 
is, the lack of a coherent ontology31,32. 
AI techniques for language translation 
may be able to provide a mapping 
between terms in a rapidly evolving 
nomenclature, and AI techniques based 
on probabilistic latent variable models are 
already helping to extract meaning from 
multi-​origin datasets in a clinical setting 
without shared institutional ontologies33. 
Additionally, scientific data stewardship 
and management should aim for Findable, 
Accessible, Interoperable, Reusable 
(FAIR) data34. Data should also follow the 
simple ALCOA (Attributable, Legible, 
Contemporaneous, Original and Accurate) 
principles defined by US FDA guidance35,36. 
Such guidelines should be updated  
as appropriate.

A critical factor in building predictive 
models is an understanding of the 
technical error and biological variability 
associated with the underlying data. In 
order to accurately leverage our data, we 
must have a clear understanding of both 
the accuracy and the precision of our 
measurements37,38 (Box 1).

Another source of difficulty and 
uncertainty when using experimental data 
to build predictive models is the accidental 
misreporting of data. Misreporting can take 
the form of simple typos in reported values, 
gene identifiers, units or other parameters 
that are reported in the scientific literature 
and stored in databases. Even one or two 
misreported data points have the potential 
to skew the results of a predictive model. 
Data curation and the identification of 
potential mistakes in data reporting is 
another area where AI might be relevant to 
drug discovery. AI techniques used for fraud 
detection are capable of spotting patterns 
that lie outside the commonly observed 
norm. It may be possible to apply some of 
these same ideas to identify data that may 
have been incorrectly reported. Of course, 
not all outliers are mistakes; they may 
instead highlight an alternative mechanism 
of action that could provide new insights. 
The way in which we search for outliers or 
potential errors may depend on the scale  
on which a model is being built39.

Drug discovery is inherently an 
optimization problem. In order to generate 
a drug, a team must identify a compound 
which, among a plethora of criteria, is active 
against a biological target of interest, has  
an appropriate pharmacokinetic profile  
and does not produce adverse outcomes 
when dosed in vivo. As a result, drug 
discovery datasets often contain data for 
dozens of assays. However, this compound/
assay matrix typically has missing values 
owing to time and money constraints. 
Because only compounds that perform well 
in higher-​throughput in vitro or cellular 
assays are tested in more expensive in vivo 
experiments, data are also not missing 
completely at random40 and, consequently, 
special care must be taken with such data. 
Even when datasets are complete, they  
are often imbalanced with either large  
numbers of inactive compounds and  
small numbers of active compounds, 
or vice versa. This imbalance can be 
particularly acute when taking data from  
the scientific literature, where the reporting 
of negative results is rare.

Increasingly, data modalities are 
generating richer representations — from 
dose–response curves to MRI images over 

Fig. 1 | Integrating mind and machine in drug discovery. Artificial intelligence and laboratory auto-
mation could augment human decision-​making, chemical synthesis and biological testing in design–
make–test–analyse cycles involved in drug discovery. It is anticipated that this collaborative 
intelligence emerging from the combination of ‘mind and machine’ will enable better decision-​
making. Definitions of selected terms related to artificial intelligence are provided in the glossary. 
Some of the definitions are adapted from ref.161. Image courtesy of Jack Burgess, Jack Burgess Studios.
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time — that are not immediately amenable 
to the current methods of analysis originally 
developed for simpler data. For example, 
most genetic studies to date focus on finding 
associations to a scalar (single-​number) trait. 
With high-​throughput imaging, one must 
consider whether it is possible or desirable 
to find lower-​dimensional representations 
with which to do the associations, rather 
than with millions of pixels simultaneously, 
which is likely to yield under-​powered tests. 
In brain imaging scans, for example, manual 
extraction of features, such as brain volume, 
is the norm. However, AI methods are 
working towards automating this process41.

The domains with the most success 
to date with AI are imaging and 
natural language processing (NLP)42. These 
data differ substantially from those typically 
found in drug discovery, since the accurate 
labelling of whether ‘a user followed a 
hyperlink’ or ‘there is a stop sign in an 
image’ tends to be easier. The questions of 
whether a compound is ‘active against a 
target’ or ‘toxic’ are much more complex and 
labelled with much greater difficulty 
and nuances43–45. The given drug discovery 
project provides context for the data and 
enables the project members to draw 
conclusions from data analysis. However, 
if such data are pooled across multiple 
discovery projects or laboratories, the 
relevant context is often lost. Moreover,  
the domains of imaging processing and NLP 
have access to millions of data points for 
training, which is the reason why the first 
big successes of deep learning46 have been 
in these areas. Indeed, many of the current 
and successful applications of AI, such as 
image classification, have required large 
training datasets, often in combination with 
data augmentation and model pre-​training 
with weakly labelled data, to capture the 
diversity of the input and obtain a model 
that generalizes well47,48. Labelled datasets 
of this size do not exist in drug discovery 
owing to the more difficult process of 
obtaining the data, and the number and 
nature of molecules required to build a 
predictive model for drug design is still 
undetermined49,50.

Another challenge related to the 
availability of data for model building is 
the fact that, in many cases, experiments 
do not generate data that can be easily 
translated to a single number like a 
biochemical dissociation constant (Kd) or 
a cellular effective concentration for half-​
maximum response (EC50) value51. AI is 
now being used to develop representations 
of such experiments in ways that enable 
categorization of data that can ultimately 

be used to build predictive models. For 
instance, artificial neural networks are being 
employed to classify complex cellular 
phenotypes and build predictive models  
that are used for drug repurposing52,53.

Over the past two decades, we have 
seen the appearance of a number of public 
databases containing millions of biological 
assay results, such as ChEMBL54 and 
PubChem55, which can provide input for 
machine learning models predicting a variety 
of biological activities or physical properties 
for drug-​like molecules (see Click2Drug for 
a list). Although these databases are useful, 
the data contained in them only represent 
a small fraction of what has been measured 
because many of the larger datasets are 
proprietary to pharmaceutical companies 
or publishers and are not publicly and freely 
available. Most companies view their data 
as a competitive advantage and guard it 
closely; additionally, data sharing can be a 
complex undertaking. However, there are 
approaches, typically based on cryptography, 
that may enable the community to share 
specific parameters without disclosing 
proprietary information56. One way would 
be to collect metadata on many predictive 
models, ensuring that it does not de-​identify 

inappropriate information. Such information 
might include the number of molecules 
used to build the model, some objective 
measure of molecular diversity, data range, 
data balance and so forth. An example is the 
SALT Knowledge Share Consortium, which 
examined the impact of particular chemical 
changes to molecules on a variety of in vitro 
outcomes. Rather than sharing the chemical 
structures of proprietary molecules, the 
companies shared the chemical differences 
between pairs of molecules (for example, 
phenyl to pyridyl) and the differences in 
activity (for example, threefold reduction in 
hERG activity). Other examples include the 
EU Innovative Medicines Initiative’s projects 
for privacy-​preserving federated machine 
learning and the ATOM Consortium’s 
projects to provide a means for compound 
testing while maintaining confidentiality.

Generating new hypotheses
Only a tiny fraction of the drug-​like 
chemical universe has been sampled in  
our search for new therapeutic agents, 
despite the advances in HTS technologies 
and the inventiveness of medicinal and 
synthetic chemists. A typical HTS deck 
(106–107 compounds)57,58, even with the  

Box 1 | The impact of experimental error on predictive model performance

In drug discovery, machine learning models are used to predict the physical properties, or 
biological activity, of molecules proposed for synthesis. These models are often used to rank order 
and ultimately prioritize ideas. The model generation process typically begins by calculating a set 
of characteristics, known as descriptors, for a set of molecules and developing a classification or 
regression model that relates the descriptors to some experimental observable such as a physical 
property or biological activity. For instance, a drug discovery team might use the aqueous solubility 
of a set of molecules to train a predictive model that is used to evaluate a set of ideas for new 
molecules and select the most promising candidates for improving solubility.

One critical factor, which is often overlooked in this process, is the impact of experimental  
error on the performance of the model. In a regression model, which predicts the value of the 
experimental observable, model performance is often assessed using a correlation coefficient such 
as Pearson’s ρ, Spearman’s ρ or Kendall’s τ. These values, which range between –1 and 1, provide a 
quantitative measure of the relationship between the predicted and experimental values. Typically, 
models with correlation coefficients <0.5 are considered to have limited predictive value.

In a 2009 paper, Brown, Muchmore and Hajduk162 described a method that uses simulation to 
estimate the maximum correlation that can be achieved with a regression model. This error is 
estimated by adding normally distributed variance to each experimental datapoint and calculating 
the correlation between the experimental data and the experimental data with the added 
variance. This simulation is then repeated several thousand times to obtain an estimate of the 
maximum observable correlation. As an example, we can consider the DLS100 dataset, a set of 
100 aqueous solubility values determined using dynamic light scattering163. This data spans a range 
from 1.6 nM to 1.7 M, with a mean of 0.9 mM and standard deviation of 1.7 log units. If we carry out 
1,000 cycles of the simulation above and assume a twofold experimental error (that is, the estimate 
of the range of values within which the true value of the quantity is likely to lie), the maximum 
achievable value for the Pearson correlation coefficient r is 0.98. If the error increases to fivefold, 
the maximum possible value of r decreases to 0.96. If the experimental error is tenfold, the best 
correlation that can be achieved decreases to r = 0.86.

One can see that experimental error can have a significant impact on correlation, even in the 
case of ‘perfect’ models such as those illustrated above. In an actual case, experimental error can 
make a difference between a useful model and one with limited practical value. Inflations of 
correlation are often due to overfitting of the datasets. These factors show that a proper treatment 
of experimental error and selection of datasets is critical when building a machine learning model.
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advent of DNA-​encoded libraries that  
can typically test 107–1010 compounds59,60,  
is still sampling a small percentage of  
total chemical space. In 2015, the purchasable  
chemical space contained approximately  
125 million compounds, and is still growing61. 
Automated ‘ultra-​large’ chemical library 
docking has recently been performed for 
170 million virtual compounds assembled 
from 130 chemical reactions — the largest in 
silico ligand–receptor docking run to date62. 
Still, this number is dwarfed by the estimated 
cardinality of drug-​like chemical space in the 
order of 1018–10200 molecules63,64, depending 
on the constraints set65.

The size of drug-​like chemical space thus 
renders exhaustive enumeration impossible, 
and so drug design essentially boils down 
to the central question ‘what to make next’. 
Medicinal chemists draw inspiration from 
their experience, from synthetic guidelines 
such as the non-​mathematical Topliss 
Batchwise Scheme66, which designates a 
special series of aromatic ring substituents 
intended to systematically explore design 
opportunities by optimizing substitution 
patterns, as well as from human creativity 
and loosely defined ‘chemical intuition’. 
Given the complexity of human disease and 
the challenges that medicinal chemists  
and drug designers need to overcome, 
a more thorough approach for hypothesis 
generation in drug design may be 
beneficial67,68.

Chemical design can be considered 
pattern matching69–71 and, indeed, computer- 
​based de novo design methods have 
been explored as idea generators to 
support drug design since the 1990s72,73. 
Today, however, generative AI offers a 
fresh approach to de novo drug design 
by providing a statistical framework for 
decision-​making74. In contrast to earlier 
molecular design engines that employed 
a set of explicit chemical transformations 
(for example, virtual reaction schemes 
based on reaction SMILES) and assembly 
rules (for example, fragment growing and 
linking), these generative models represent 
chemical knowledge implicitly in terms 
of the statistical probabilities of data 
distributions. In other words, the language 
used by these two different concepts is no 
longer textbook chemistry (as we know it) 
but a new language learned from the training 
data (Box 2).

This type of approach deserves further 
discussion as it directly relates to the 
interpretability problem of AI systems 
in chemistry. Nevertheless, pioneering 
prospective applications have shown 
that generative de novo design produces 

synthetically accessible molecules with 
desired properties and activities75,76. The 
main advantages of these models over 
previous de novo methods are: the speed 
of execution (NCEs can be generated on-​
the-fly to allow for interactive modelling); 
rapid re-​training or fine-​tuning on the 
project at hand; scalability by providing 
access to a virtually infinite chemical space 
without the need for explicit compound 
library enumeration; software availability; 
and synthetic accessibility of the designs, 
which has troubled many of the earlier 
de novo approaches.

Drug design will be confronted with 
increasingly more complex data and target 
hypotheses77,78. A key limitation in the drug 
discovery process is the lack of fundamental 
knowledge about human biology. While 
this Perspective focuses on drug design, 
the former point implies the need for 
adaptability during the optimization and 
design processes as the biological assays 
often rapidly change with the evolution 
of knowledge through the lifetime of the 
system being studied. AI therefore needs to 
provide answers flexibly, as drug discovery 
knowledge develops.

On the other hand, ‘mechanistic’ models 
are able to address both challenges by 
capturing behaviours at different levels of 
abstraction (for example, genetic, molecular 
and cellular) and providing explanations 
for how these behaviours evolve and 
interact79–81. In silico mechanistic models are 
complementary to AI-​based approaches as 
they can add the interpretation (mechanistic 
explanation) for the associations found by 
machine learning models. Hence, with such 
models to provide new hypotheses and 
machine learning models to provide further 
data to test these hypotheses and improve 
the models, a virtual cycle is formed that 
creates a complete learning system.

Multi-​objective optimization
NCE discovery requires the balancing of 
several criteria during the design process, 
including target potency, selectivity, 
clearance and permeability. However, 
optimizing for one of these properties 
may be to the detriment of others. Such a 
problem of potentially conflicting goals can 
be cast in the computational framework of 
MOO (also referred to variously as multi-​
parameter optimization, multi-​objective 
programming, vector optimization, 
multicriteria optimization, multi-​attribute 
optimization or Pareto optimization)82–84. 
The field of drug discovery and development 
is already well on its way to leveraging 
these computational techniques, which 

currently overlap with machine learning as a 
sub-branch of AI85–88.

In the in silico MOO setting, one 
requires access to a set of computational 
predictive models for each desired property, 
and can then apply one of many existing 
MOO algorithms to attempt to solve the 
underlying optimization problem, that is, 
to find a molecule or set of molecules that 
balance the desired properties (Box 3). As 
these properties are frequently in conflict, 
the goal is to generate a set of possible 
solution leads, each of which makes a trade-​
off in a different way, but where no member 
of the solution set could be improved in one 
property without giving something away 
in a different property. In this latter sense, 
each solution is therefore optimal. The set 
of solutions can be thought to trace out a 
frontier of optimality, where moving along 
the frontier yields a set of optimal solutions, 
each with its own way of trading off the 
properties.

Inherent to the goal of tracing out such 
a frontier is the fact that we are performing 
an optimization in the face of missing 
information. In particular, if we knew 
precisely how we were willing to trade-​
off various drug design criteria, which 
sometimes is the case at the start of a project, 
one could instead use more conventional 
computational optimization approaches to 
find a molecule that optimized the precisely 
known trade-​off function. However, in 
drug discovery, as in many domains, the 
development process is iterative rather 
than analytical, with a substantial ‘human-​
in-the-​loop’ component that is unlikely to 
disappear in the near future. This human 
component, for example, a medicinal 
chemist, imparts expert knowledge and 
decision-​making that is not yet amenable 
to being encoded by statistical and machine 
learning models, either because of a paucity 
of relevant data or because the problem is 
just inherently difficult. Thus, the goal of 
MOO is to generate a set of different but 
practically optimal solutions to a particular 
molecular design challenge; subsequently, 
those solutions are handed over to human 
experts to sift through with deep, implicit 
knowledge and intuition — at least for the 
time being.

The goal of predictive modelling in the 
context of MOO for drug design is to reduce 
and even replace a laboratory measurement 
for a property of interest (or proxy to it), 
which may be categorial (classification) or 
continuous (regression), with a predictive 
model. For example, quantitative structure–
activity relationship (QSAR) modelling 
seeks to model the mapping from predictive 
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features, such as physicochemical properties 
or other molecular representations, to a 
response variable such as biological activity 
in the form of pKd or log(EC50) values. In 
the context of MOO, these models will help 
inform whether a particular molecule is on 
the optimality frontier or not.

The challenge of MOO is to take these 
models and, in a sense, back-​engineer 
them to find the predictive features that 
correspond to optimal response variable 
settings (‘inverse QSAR’)89,90. Similar to 
the de novo design task discussed above 
in the generating new hypotheses section, 

certain generative AI models seem to 
be well-​suited to properly address this 
problem91. As in standard machine learning, 
the basis for building such predictive 
models is to acquire a set of known feature–​
response pairs (‘labelled data’), and then to 
‘train’ a posited class of machine learning 

Box 2 | Chemical hypothesis generation with constructive machine learning

Constructive machine learning aims to create examples from its learned 
domain that are likely to exhibit desired properties. Generative deep 
neural networks belong to this class of algorithms and can be an important 
component in ‘designing’ new molecules from scratch or optimizing 
existing molecules. In contrast to rule-​based artificial intelligence (AI) 
models for de novo drug design, these generative methods do not  
learn explicit chemical transformations (for example, forward and/or 
retrosynthetic reaction schemes)164 to construct new molecules but 
instead model the distribution of chemical features of the training  
data and thereby implicitly capture important aspects of chemical 
‘synthesizability’. AI systems for explicit retrosynthetic analysis or synthesis 
planning can be used in concert with de novo design models144–146,165.

Examples of models used to generate de novo structures are shown in 
the figure. These include deep ‘back-​transformation’ (that is, inversion)  
of supervised feedforward networks166 (part a), supervised and semi-​
supervised variational autoencoders (part b), recurrent neural 
networks167,168 (part c) and generative adversarial networks (part d).

Models based on reinforcement methods often play a large role in 
computational design algorithms169. All of these neural network models 
transform a numerical input x to a function f(x) as the output. Generative 
models can be used for back-​transformation of f(x) to x. When x is a 
suitable molecular representation, and the approach allows for some 
degree of ambiguity, then these systems generate new molecular 
structures.

Feedforward nets (part a) are universal function approximators, in which 
each layer of computational steps (circles) performs feature extraction 

from the training data. A deep network has several such data processing 
layers. Depending on the type of layers, whether the data have corresponding 
labels, and whether there are cycles of information allowed in the network 
architecture, one obtains various network types such as autoencoders 
(part b). Recurrent networks (for example, long short-​term memory (LSTM) 
models; part c) perform pattern recognition by sequence analysis. Here, 
the input (for example, a SMILES string representing the atom connectivity 
of a molecular graph) is analysed in a step-​wise token-​based fashion, 
thereby enabling the detection of complex patterns in strings of text or 
other sequential data representations. In a generative adversarial network 
(part d), one network generates candidate molecules and the other 
evaluates them, for example, by comparing the virtual chemical structures 
with real examples for reinforcement learning.

The first successful syntheses of de novo-​generated compounds  
(1–4; shown in part e) corroborate the practical applicability of generative 
molecular design to drug discovery. Pioneering prospective designs for the 
RXRγ agonists 1 (effective concentration for half-​maximum response 
(EC50) = 0.06 ± 0.02 µM) and 2 (EC50 = 19.1 ± 0.1 µM) were generated with a 
deep LSTM network75. This model was pre-​trained with SMILES strings of 
bioactive compounds from ChEMBL28 and fine-​tuned on nuclear hormone 
receptor targets using transfer learning. The VEGFR2 kinase inhibitor 3 
was constructed with a related SMILES-​based approach, in which the 
bioactivity of the computer-​generated molecules was estimated using 
ligand–receptor docking161. The partial 5-HT2B antagonist 4 resulted from 
de novo structure generation with a neural network for virtual forward 
synthesis167.

a  Feedforward net

b  Variational autoencoder

c  Recurrent LSTM network e  Examples of generated compounds

d  Generative adversarial network
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models, such as a particular neural network 
architecture, to fit the observed data while 
ignoring the ‘noise’ in the system, so that 
only relevant information, which could 
be applied to new, unseen data, is stored. 
The ability to also model uncertainty in the 
predictions will be of critical importance.

Neural networks, a popular class of 
predictive models at present, have far 

surpassed decade-​old benchmarks on tasks 
in vision and audio. However, despite their 
popularity, their use thus far has not reliably 
resulted in a substantial improvement 
in other fields. The reasons for this are 
not yet known, though there are several 
possibilities. First, in vision and audio, one 
can readily acquire massive amounts of 
labelled data that are vital for success with 

current deep neural networks, whereas 
the fields of biology and chemistry are not 
typically yet sufficiently data-​rich to make 
use of these neural networks, at least not 
above and beyond many other classes of 
models. However, the field of machine 
learning is actively pursuing how to do 
better with less data, sometimes referred 
to as ‘few shot’ learning92–94. Another 
potential reason is that the development of 
deep neural networks in recent years has 
been tailored to characteristics of data in 
the fields of audio and vision such as the 
highly specific structure of images based on 
pixels. Many advances in so-​called general 
machine learning, such as convolutional 
filters, are leveraging such a vision task-​
specific structure but are then immediately 
applied in other domains, often without 
much thought as to the appropriateness. 
Deducing analogous structure in chemistry 
and biology or ways to encode it are in their 
infancy, and they are fundamentally more 
challenging endeavours than the analysis of 
vision and audio data. Both supervised and 
unsupervised graph-​based neural networks 
are emerging as plausible approaches to 
tackling chemistry, although much work 
remains, including how to make these 
computationally scalable and well-​suited to 
the domain (for example, by generating only 
synthetically accessible molecules)95–97.

Several troubling phenomena have 
emerged from state-​of-the-​art deep neural 
network models in fields such as image 
processing. First, one can ‘fool’ a neural 
network to classify something that looks 
entirely like a cat, as, say, a dog or anything 
one wishes, by making tiny, imperceptible 
changes to the input image — these are 
known as adversarial examples98. While 
drug design is unlikely to face deliberate 
adversaries, the existence of these adversarial 
examples highlights the fact that deep neural 
network models have pitfalls that we may 
be blind to and can only mitigate once we 
become aware of them. Second, deep neural 
networks are notoriously over-​confident in 
themselves99; that is, when a neural network 
says it thinks an image is 95% likely to be 
a cat, in reality, it is typically a much lower 
probability such as 20%. Especially in 
conjunction with drug design and MOO, 
it is important to understand and address 
these issues of uncertainty calibration100,101. 
Finally, MOO fundamentally relies on these 
models being reasonably accurate. However, 
it is thought by many that predictive 
models in general, and possibly more so 
deep neural networks, are extremely poor 
at extrapolation. During the course of 
MOO, these models will tend to veer away 

Box 3 | Multi-​objective lead optimization using machine learning

Multi-​objective optimization of a chemical series aims to identify compounds that simultaneously 
meet all the desirable characteristics of a potential preclinical drug candidate. Ideally, this artificial 
intelligence (AI)-driven or AI-​guided process takes the form of simultaneous optimization of a 
molecule’s affinity for the desired biological target or targets, of selectivity against anti-​targets and 
of various drug-​like property measures. Examples of absorption, distribution, metabolism, 
excretion and toxicology (ADMET) properties that are generally indicative of drug-​like properties 
include the following: aqueous solubility, metabolic stability, cellular permeability, action by 
cellular transporters (such as P-​glycoprotein), drug–drug interactions, blood–brain barrier 
penetration and cardiotoxicity (such as hERG channel binding).

Recently, scientists at IKTOS and Servier described the use of deep learning for ligand-​based 
optimization of compounds in a late-​stage lead optimization context for an undisclosed target170. 
With a clear definition of metrics for 11 objectives (phenotypic activity, selectivity against 5-HT2A, 
5-HT2B, α1 and D1 receptors, NaV 1.2 and hERG ion channels, liver microsomal stability in rat and 
human, and Caco-2 Fabs and Efflux), no molecule within an initial dataset of 880 molecules 
satisfied all 11 objectives; furthermore, only 48 of the molecules had completed data with respect 
to all these objectives. Quantitative structure–activity relationship (QSAR) models were developed 
from the project dataset and used to score new virtual structures generated by a proprietary 
SMILES-​based molecular generator built on deep learning long short-​term memory (LSTM) 
generative models. The molecular generator used QSAR scoring on the generated structures to 
converge iteratively to structures that maximized QSAR scores for all 11 objectives. Finally,  
150 virtual structures meeting all objectives were proposed, all of which had rare or absent 
substructures within the initial dataset. Of these, 20 compounds were selected for synthesis, and 
11 were successfully synthesized. Upon assay, 3 compounds fulfilled all 11 objectified criteria. 
Compound 1 in the figure, which satisfied 9 of the 11 objectives, was part of the QSAR training set 
that led to the design, synthesis and assay of compound 2, which satisfied all 11 objectives. The 
[1,2,3]triazolo[1,5-a]pyridine moiety appeared only six times in the initial dataset of 880 structures.

In an earlier study171, researchers from ETH Zurich and Novartis used an adaptive algorithm for 
molecular construction (Molecular Ant Algorithm, known as MAntA)172 to automatically generate 
small, synthetically accessible de novo designs that are selective antagonists of the 5-HT2B receptor 
without binding to other 5-HT receptor subtypes or to a panel of 18 other protein targets, 
including the hERG potassium channel. QSAR predictions were based on multidimensional 
Gaussian regression models. The software suggested compound 3, which exhibited the desired 
selectivity (5-HT2B Ki = 251 ± 2 nM), and was synthesized in flow from commercially available starting 
materials in one reductive amination step, in agreement with the synthetic route suggested by the 
MAntA molecular design method.

These selected examples of AI-​guided multi-​objective optimization show that there are several 
ways that machine intelligence can support the discovery of novel lead structures with multiple 
desired properties.
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from ‘comfort’ zones, all the while being 
unaware of it and thereby possibly leading 
the design cycle dramatically astray. One 
can mitigate such problems by implicitly 
encoding prior information about what 
‘reasonable’ molecules/proteins may look 
like and incorporating this into the MOO 
process102. We emphasize that we are not 
suggesting that one should avoid using 
deep neural networks: rather, that one 
must remain vigilant about their possible 
pitfalls and differences in their application 
between fields.

Assuming that one has access to 
reasonable predictive models to conduct 
a MOO, the question remains of how 
to attempt to solve the MOO problem. 
Historically, algorithms for MOO were 
dominated by ‘genetic algorithms’, 
which use an analogy to mutation and 
crossover diversification operations as 
well as a concept of fitness, to perform 
optimization103. These methods have 
been largely substituted by those in which 
the diversification operations have been 
replaced by sampling from statistical 
models within a more coherent statistical 
framework104. These latter approaches, 
typically in the class of estimation of 
distribution algorithms (EDA)105, such as 
Covariance Matrix Adaptation Evolutionary 
Strategies106, now overlap and are synergistic 
with machine learning methodology such 
as Information Geometric Optimization107 
and the Expectation-​Maximization 
algorithm108. Moreover, these methods in 
turn have connections to machine learning 
for robotics, namely reinforcement 
learning109,110. Thus, cross-​pollination 
between these areas of optimization 
and machine learning may lead to more 
rapid progress.

One fundamental ingredient to modern 
day MOO algorithms, such as EDA, is a 
generative model that takes the place of 
mutations and crossover operations in 
genetic algorithms. Perhaps the simplest 
possible generative model one can think 
of (for continuous data) would be a 
normal distribution with a mean and 
a variance parameter. As one changes 
these parameters, the samples from the 
normal correspondingly change in nature. 
Effectively, the way EDAs work is to have a 
sufficiently ‘rich’ generative model (that is, 
one that can generate a broad set of objects 
in the design class such as molecules) and 
then, using a particular statistical formalism, 
to tune the parameters such that only 
desired molecules can be sampled from 
it. Therefore, the ingredients of MOO are 
not only the predictive models used, and 

the MOO algorithm, but also the class of 
generative models. Modern day machine 
learning has seen a convergence of two 
technical fields — that of graphical models 
and neural networks — each with pros and 
cons, to achieve particularly rich classes of 
probabilistic generative models such as the 
variational autoencoders111. Drug design-​
based MOO stands to gain from making use 
of such advances and those in the future.

A related note is that of how to represent 
molecules and proteins in a way that is 
most amenable to leveraging the full power 
of current machine learning tasks such 
as predictive modelling and generative 
models. The problem of representation is 
in turn connected to the generative models 
just mentioned — these also generally 
provide representations of the inputs as 
a useful side effect or even desideratum. 
In the field of NLP, converting sentences, 
inherently composed of discrete symbols, 
into real-​value vectors has been shown to 
provide benefit in downstream tasks112. 
Similar arguments and efforts were made 
in molecular design in the 1990s7,113–115 
and have recently been rediscovered in the 
context of deep learning116,117. Again, this 
area is one that could benefit from advances 
in related application domains but it is 
likely to benefit by adaptation rather than 
direct application. In starting this section, 
we described MOO as being used with a 
‘human-​in-the-​loop’ to help decide between 
different optimal solutions; an area where AI 
and machine learning could be valuable is 
in enabling better encoding of the decisions 
being made by the human, such that these 
can be fed into the automated part of 
the system.

Reducing cycle times
Timelines and investments required for lead 
identification and optimization of NCEs 
are substantial and the risk of failure at all 
stages of the drug discovery process is high. 
To address this, the pharmaceutical industry 
has continuously invested in its compound 
profiling capabilities. The resulting growth 
in the number of generated data points is 
desirable but creates a number of challenges. 
Increasingly, the information processing 
capacity of the human brain becomes a 
limiting factor. In their efforts to keep up 
with the size, complexity and dimensionality 
of drug discovery projects (and to translate 
their findings into designs for new 
compounds), scientists often resort to simple 
heuristics and efficiency metrics118–120. While 
these methods have their merits (but also 
their controversy)121, they have not led to 
significant reductions in the number of 

learning cycles or overall timelines needed to 
generate NCEs.

The central process in drug discovery 
to improve the profiles of lead molecules 
towards the required profile for a candidate 
drug is known as the design–make–test–
analyse (DMTA) cycle122. This classical 
hypothesis-​based method first uses available 
data to develop hypotheses and design 
molecules (or select existing molecules from 
libraries). The designed compounds are 
subsequently synthesized (or taken from 
libraries) and tested in the appropriate assays 
to investigate whether the design hypothesis 
was correct and improves understanding. 
This knowledge is then analysed and 
translated into the development of the 
design hypothesis for the next cycle (Fig. 1).

A number of groups have reported 
methods to improve the effectiveness 
of the DMTA cycle (Box 4), for example, 
with the greater use of predicted data123, 
improved data analysis tools124 and increased 
effectiveness in compound synthesis125,126, 
thereby shortening the timelines for the 
delivery of the critical data to address a 
hypothesis127–130. Certain aspects of AI 
potentially offer an alternative to HTS. 
Instead of compiling and relying on a large 
screening compound library, small numbers 
(<1,000) of de novo-​generated compounds 
can be synthesized in each iteration of 
the DMTA cycle and only in the amount 
needed for testing, or sourced by in-​house 
compound repositories or on-​demand 
synthesis facilities that have cherry-​picking 
capability, until a desired assay readout is 
obtained. However, this ‘active learning’ 
approach to hit and lead identification, 
despite its conceptual appeal, has its own 
issues, for example, the type of chemistry 
is limited to reactions that are amenable to 
automated microfluidics-​assisted synthesis 
and analytics.

Even with these improvements, the 
cycle time of a DMTA iteration is still slow 
and can often take more than 4–8 weeks to 
complete. As a result, the required number 
of cycles to deliver a clinical candidate will 
require substantial time. Whilst the ‘design’ 
and ‘analysis’ phases can be fast and the ‘test’ 
phase (in particular in vitro data generation, 
including potency, selectivity and ADMET 
(absorption, distribution, metabolism, 
excretion and toxicology) profiling) can be 
optimized and streamlined to be fast and 
predictable, the ‘make’ phase is often slow, 
taking weeks to complete the synthesis of 
novel and complex molecules. Therefore, 
shortening this phase could substantially 
reduce the iteration time of a DMTA 
cycle. Laboratory automation, such as fast 
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compound synthesis using robust reactions 
in batch or flow with automated analytics 
and purification, has and will continue to 
play a decisive role in this context131–134.  
The choice of reactions for automation 
should primarily focus on the ones frequently 
employed by medicinal chemists135,136, so 
the chemist is free to perform the more 
challenging synthetic steps and conceive  
new chemical reactions137,138.

Owing to the variety of design 
hypotheses and the different times necessary 
to synthesize molecules and profile them 
in various assays, multiple design cycles 
are often run in parallel. Design cycles are 
often left incomplete as the next round of 
chemical synthesis is initiated before all 
of the data have arrived to allow effective 
answering of design hypotheses and true 
MOO139. Furthermore, all learnings from 

the previous cycle(s) cannot be factored 
into the design process. Often, the DMTA 
cycle becomes a ‘workflow’ more than an 
information generation cycle. The ever-​
increasing amounts of data that need to be 
captured and analysed in molecular design 
make it difficult for medicinal chemists and 
scientists to consistently incorporate a full 
understanding of thousands of data points 
and trends as well as to spot all lessons 
that the data can provide. In their efforts 
to keep up with the size, complexity and 
dimensionality of modern drug discovery 
project datasets (and to translate their 
findings into new compounds), scientists 
often have to resort to simple heuristics 
such as rules of thumb, efficiency metrics140, 
model systems like logP or logD, or matched 
molecular pairs141. Searching for patterns, 
trends and insights (and translating them 

into new hypotheses and designs) is 
intellectually challenging and poses the risks 
of becoming overwhelming and missing 
important conclusions. AI has the potential 
to support scientists and enable better use 
of data in greater volumes for decision-​
making and, thus, lead to more productive 
discovery teams142.

AI provides a range of opportunities 
to increase the effectiveness of the DMTA 
cycle, including integrating and analysing all 
available experimental and predicted data 
to support the chemists and design teams 
with insights and data analysis as well as the 
de novo design of molecules143. By providing 
improved synthesis routes and optimized 
reaction conditions, AI models could enable 
the chemist to follow the most effective route 
and ideally be ‘right first time’, ultimately 
shortening the ‘make’ phase144–147.

Researchers would greatly benefit from 
receiving pre-​digested and tailored pieces 
of information or recommendations in the 
right moment, format and context148. This 
would reduce their need to plough through 
raw data so they could instead focus on the 
assessment of the presented information 
using their chemical intuition and extensive 
background knowledge. To be successful, 
this scenario will require sufficient 
information on the data provenance, 
standardized data ontologies and the 
possibility to drill-​down to the original  
raw data when necessary.

In a recent example focused on inhibitors 
of the kinase discoidin domain receptor 1  
(DDR1)149, deep learning was used to 
virtually generate a set of molecules and 
prioritize a small set of compounds for rapid 
synthesis and testing. A comprehensive 
machine learning model was built using a 
broad range of datasets and subsequently 
trained on data including the known DDR1 
inhibitor and common kinase inhibitor 
datasets. Using reinforcement learning, the 
design stage was applied to provide 30,000 
virtual molecules, which were filtered by 
applying various commonly employed 
criteria and chemical diversity sorting. 
Further prioritization using a range of 
conventional computational methods, 
including pharmacophore models, as 
well as selection by the team, eventually 
led to six compounds being synthesized 
and experimentally validated. Two of 
the compounds displayed half-​maximal 
inhibitory concentration (IC50) values of 
<20 nM in a DDR1 inhibition assay. One 
aspect of this study, not highlighted in the 
paper, is the fact that the most prominent 
molecule only differs from known DDR1 
inhibitors, including the marketed drug 

Box 4 | Reducing cycle times by automation

The potential value of automated design–make–test–analyse (DMTA) cycles in drug discovery is 
substantial122,173. Benefits of automation include131:

•	Diminished measurement errors and reduced material consumption

•	Fast feedback loops for artificial intelligence (AI)-based hypothesis generation and optimization

•	Opportunities to expand the medicinal chemistry synthetic toolbox (for example, 
microfluidic-assisted synthesis reactions, reactions under extreme conditions)134

•	Rigorous compound prioritization by applying sophisticated cell-​based assays (for example, 
cells/organs-​on-chips)174–176 in an effort to more effectively recapitulate disease biology and 
thereby improve the likelihood of identifying compounds that show efficacy in humans

•	Molecular optimization towards multiple relevant biochemical and biological endpoints without 
personal bias

Implementations of integrated DMTA platforms have already proved their efficiency and 
applicability to drug design and optimization177. For example, researchers at AbbVie have 
developed an integrated robotic platform for the automated parallel synthesis of small focused 
compound libraries, built mainly from commercially available components178. Their system is able 
to perform liquid handling and evaporation for inline analytics, purification and activity testing. 
Short turnaround times were reported, which allows the project teams involved to obtain results 
from hypothesis testing within a day or two179.

Despite the advances of machine learning, chemical reactor and assay technology, so far, there 
are few published examples of fully integrated, automated, AI-​driven discovery platforms. One 
such example is the automated closed-​loop multiparameter design of selective hepsin inhibitors180. 
In progressing from the known hepsin inhibitor compound (1 in the figure) to the designed 
compound (2) in automated DMTA cycles, the half-​maximal inhibitory concentration (IC50) value 
against hepsin was improved from ∼1 μM to 33 nM, and the selectivity over urokinase-​type 
plasminogen activator was increased from 30-fold to 100-fold. In each cycle, which took 
approximately 1.5 hours, a machine-​learning model for activity prediction guided the selection 
of molecular building blocks for synthesis.

Nanoscale synthesis without the need for time-​consuming purification in combination with rapid 
affinity ranking might further reduce DMTA cycle times. In a pioneering study, the coupling of high-​
throughput nanomole-​scale synthesis with a label-​free affinity-​selection mass spectrometry 
bioassay facilitated simultaneous optimization of reaction conditions and building blocks as well as 
protein affinity181.
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ponatinib (IC50 = 9 nM)150, by a simple 
isosteric replacement (isoxazole for amide 
carbonyl). Furthermore, the reported 
timelines of 46 days to complete this DMTA 
cycle are not those required to deliver a drug 
candidate; the optimization steps that would 
typically be required would take long and 
incur larger costs. Hence, whilst this study is 
one of the rare examples in which machine 
learning has been applied prospectively in 
medicinal chemistry, it is still some way 
from demonstrating cycle time and cost 
reductions in the generation of a novel  
drug candidate.

The selection of a well-​known biological 
target with an associated high degree  
of background knowledge, including a  
range of active chemical scaffolds and  
X-​ray structural information, is clearly 
an advantage and a valid starting point to 
showcase deep learning technology. The 
applicability of AI for drug design from 
scratch in low-​data situations is yet to be 
shown. In this context, the established 
concept of transfer learning151 can provide 
‘few shot’ methods for generative molecular 
design152, and pioneering examples have 
demonstrated its practical applicability78,79,153. 
However, assessing the impact on hit and 
lead generation requires further validation 
of transfer learning methodology in different 
low-​data situations and projects. An 
additional challenge will arise when working 
with biological targets with less associated 
knowledge.

In the near future, with more accurate 
predictive models across multiple 
parameters, the whole DMTA cycle could 
become virtual, with more intermittent 
synthesis of molecules to ensure that 
progress remains on track. With more 
integrated analyses, hypothesis generation 
would become faster and the proposed 
molecules would better address MOO 
challenges; molecules could even come with 
proposed synthesis routes. Ultimately, this 
could help decrease the time required for 
DMTA cycles and the clinical candidate 
delivery timeline. Moreover, if the AI 
component is useful for some projects, this 
would allow more resources to be focused  
on projects less amenable to AI methods.

Research culture and mindset
Aside from technical questions, possibly 
the greatest challenge to the success of 
applications of AI in drug discovery and 
development overall lies in nurturing 
the appropriate mindset and ‘culture’ of 
stakeholders, such that they are willing 
to apply these computational models and 
use their results. In the context of drug 

design, stakeholders include researchers 
from multiple disciplines as well as 
businesspeople, and it will be critical 
to facilitate mutual appreciation and 
discourse. This could be achieved by first 
recognizing and acknowledging the different 
experiences of the various stakeholders, 
and then adapting and developing common 
terminologies and exemplars to establish a 
clear role for each (and their interactions) 
in an AI-​assisted drug design process. One 
important way to foster such a development 
already at the university level is to educate 
and guide students in critical thinking 
— in stepping back and becoming self-​
reflective and aware of other mindsets, and 
in becoming ‘response-​able’ in the sense 
of being able to explain one’s actions to 
colleagues (including those from other fields 
of research) and to a wider audience154,155.

A key opportunity to encourage the 
uptake of AI approaches is to identify areas 
in which AI can augment and support 
(rather than replace) chemists and drug 
designers to make their processes more 
productive, while concomitantly increasing 

the quality of the data and the acceptance of 
AI. For example, one limit of AI is having 
well-​curated data to build appropriate 
training sets, but the process to annotate and 
curate the data is one that many chemists 
find onerous. If electronic laboratory 
notebooks could leverage AI to facilitate 
the process of capturing, annotating and 
curating the data, chemists would be able 
to focus more time on the innovation and 
the human insight necessary to develop 
effective drugs. In turn, there would be 
better training sets to improve the output of 
the AI components. Furthermore, if AI tools 
could be leveraged to sift through past years 
of data from other medicinal chemistry 
programmes and connect the data to the 
current programme, additional directions 
in drug design space might be highlighted 
for further analysis by project teams156. 
However, to make such loops useful, drug 
discovery scientists must accept the value of 
the AI output and leverage it along with their 
own experience.

AI systems will also have to be able to 
interact and cooperate with human experts 

Glossary

Adaptive algorithm
An adaptive algorithm implements a problem-​solving 
heuristic that changes its behaviour at the time it is run, 
based on information available and a reward 
mechanism.

Artificial intelligence
(AI). The various definitions and interpretations of this 
term agree on three essential capabilities of an AI (most 
often referring to a computer or machine): (i) problem 
solving, (ii) learning from experience (memory and 
adaptation) and (iii) coping with new challenges 
(generalization).

Deep learning
A set of machine learning techniques that utilize multi-​
layer neural networks to derive relationships from data, 
specifically the use of neural networks (see below) with 
many layers. Neural networks with many layers are 
called ‘deep neural networks’, which corresponds to 
having many layers of function compositions. Typically, 
the deeper the layer, the more abstract the semantics of 
its ‘feature space’ (that is, the implicit representation 
created by the neural network at that layer).

Hypothesis
A supposition or proposed explanation made on the 
basis of limited evidence as a starting point for further 
investigation, without any assumption of its truth. In the 
context of drug design, a molecular structure can serve 
as a hypothesis.

Machine learning
The science (and art) of programming computers so that 
they can learn from data; also a branch of artificial 
intelligence focused on one of several tasks, typically all 
function approximators. The most common task is the 
construction and training of classifier models, followed 
by regression models — both forms of ‘supervised 
learning’, wherein pairs of ‘inputs’ and ‘labels’ are used 
to train the model to then make label predictions for 

cases where only the inputs are observed. Also common 
in machine learning is ‘unsupervised learning’, wherein 
only ‘inputs’ are used (for example, a list of molecules 
numerically encoded such as by way of SMILES strings) 
and general properties of these are learned by the 
model, which can then tell you how likely a new input is 
to have belonged to this set of objects, or can be used to 
generate ‘new’ such objects. More nuanced mixing and 
matching of tasks is also possible, yielding ‘semi-​
supervised learning’.

Natural language processing
(NLP). NLP is concerned with the interactions between 
computers and human (natural) languages, in particular 
how to process and analyse large amounts of natural 
language data, for example, scientific literature. Deep 
statistical machine learning models achieve state-​of- 
the-art results in many natural language tasks, for 
example, in language modelling and parsing. NLP can 
also be used for chemical language analysis and 
de novo design.

Neural networks
A particular type of function approximators wherein 
functions that predict discrete classes (classifiers) or real-​
values (regression models) do so by composing a series 
of (typically nonlinear) functions, each one converting 
the previous layer’s outputs into a new ‘space’. These 
models have been around for decades but came to 
prominence in the 1990s when the combination of 
access to large datasets, along with the ability to train 
‘deep’ models (see Deep learning) and more powerful 
computers, enabled them to break benchmarks in 
computational audio and vision tasks.

Research culture
A community sharing certain practices or using 
a common method or exemplar, that is, speaking a 
common language (including formalisms and algorithms) 
or sharing typical instances, illustrations or 
exemplifications (including molecular structures).
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to conduct complex and only partially 
defined tasks. It will be essential to design 
such systems in a way that allows them to 
observe and learn from human behaviour 
in feedback cycles that are deemed 
beneficial for both sides. In addition, the 
uptake of AI-​based systems will benefit 
if a comprehensible rationale is delivered 
alongside the recommendation or prediction 
itself. Considering the AI a collaborative 
partner rather than a competitor might 
be advisable157,158. This view would also 
positively contribute to the current debate on 
the patentability of AI-​generated drugs159,160.

Outlook
Pharmaceutical companies have started to 
adopt instances of AI-​related technology, 
specifically various machine learning 
methods, through partnerships and 
collaboration, but there is an understandable 
reluctance to place all bets on AI-​based drug 
discovery. A curious but cautious approach 
is advisable, given the highly complex and 
regulated nature of drug development. 
A long-​term vision is needed when 
developing AI applications in drug design 
that could increase efficiency in the various 
processes involved and reduce barriers 
between the multiple research cultures  
in the ecosystem to create new medicines.
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