Methods
-(static) defineConfig(inputDataCols, tree) → {number}
+defineConfig(inputDataCols, tree) → {number}
@@ -697,7 +697,7 @@Returns:
-(static) evaluate(rowObject) → {boolean}
+evaluate(rowObject) → {boolean}
@@ -858,7 +858,7 @@Returns:
-(static) exportJSON() → {json}
+exportJSON() → {json}
@@ -970,7 +970,7 @@Returns:
-(static) importJSON(rulesTree) → {boolean}
+importJSON(rulesTree) → {boolean}
@@ -1217,7 +1217,7 @@Returns:
-(static) ingest(row) → {boolean}
+ingest(row) → {boolean}
@@ -1416,7 +1416,7 @@Returns:
-(static) learn() → {number}
+learn() → {number}
@@ -1559,7 +1559,7 @@Returns:
-(static) metrics() → {object}
+metrics() → {object}
@@ -1672,7 +1672,7 @@Returns:
-(static) predict(input, modifieropt) → {number}
+predict(input, modifieropt) → {number}
@@ -1952,7 +1952,7 @@Returns:
-(static) reset() → {undefined}
+reset() → {undefined}
@@ -2065,7 +2065,7 @@Returns:
-(static) summary() → {object}
+summary() → {object}
@@ -2204,7 +2204,7 @@Returns:
diff --git a/docs/global.html b/docs/global.html index 7b7409e..17b1056 100644 --- a/docs/global.html +++ b/docs/global.html @@ -26,7 +26,7 @@
regress
- Creates an instance of RegressionTree.
+ Creates an instance of a RegressionTree.
@@ -251,7 +251,7 @@ Returns:
diff --git a/docs/index.html b/docs/index.html
index 55d707e..970bbb2 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -26,7 +26,7 @@
@@ -171,7 +171,7 @@ Copyright & License
wink-regression-tree is copy
diff --git a/docs/wink-regression-tree.js.html b/docs/wink-regression-tree.js.html
index 7ecea35..f42df87 100644
--- a/docs/wink-regression-tree.js.html
+++ b/docs/wink-regression-tree.js.html
@@ -26,7 +26,7 @@
@@ -72,7 +72,7 @@ wink-regression-tree.js
// ### regressionTree
/**
*
- * Creates an instance of {@link RegressionTree}.
+ * Creates an instance of a {@link RegressionTree}.
*
* @return {RegressionTree} object conatining set of API methods for tasks like configuration,
* data ingestion, learning, and prediction etc.
@@ -623,7 +623,7 @@ wink-regression-tree.js
* Defines the configuration required to read the input data and to generates
* the regression tree.
*
- * @method RegressionTree.defineConfig
+ * @method RegressionTree#defineConfig
* @param {object[]} inputDataCols each object in this array defines a column of input
* data in the same sequence in which data will be supplied to `ingest().` It is
* defined in terms of the following details:
@@ -692,7 +692,7 @@ wink-regression-tree.js
* data in an asynchronus manner, where this may be used as a call back function
* on every row read event.
*
- * @method RegressionTree.ingest
+ * @method RegressionTree#ingest
* @param {array} row one row of the data to be ingested; column values
* should be in the same sequence in which they are defined in data configuration
* via `defineConfig()`.
@@ -723,7 +723,7 @@ wink-regression-tree.js
* `predict()` the value of target variable from the input. It requires at least
* 60 data rows to initiate meaningful learning.
*
- * @method RegressionTree.learn
+ * @method RegressionTree#learn
* @return {number} number of rules learned from the input data.
* @throws {error} if number of rows in the ingested data are <60.
* @example
@@ -897,7 +897,7 @@ wink-regression-tree.js
* `fn` is defined then no error is thrown, instead the name of missing column is passed
* to this function; and the function is expected to handle the same.
*
- * @method RegressionTree.predict
+ * @method RegressionTree#predict
* @param {object} input data containing column name/value pairs; the column
* names must the same as defined via `defineConfig()`.
* @param {function} [modifier=undefined] is called once
@@ -995,7 +995,7 @@ wink-regression-tree.js
* deviations (SD).</li>
* <li>The minumum standard deviation (SD) discovered during the learning.</li></ol>
*
- * @method RegressionTree.summary
+ * @method RegressionTree#summary
* @return {object} containing the following:<ol>
* <li><code>table</code> — array of objects, where each object defines <code>level</code>, <code>columnHierarchy</code>,
* <code>nodesSplit</code>, <code>minVR</code> and <code>maxVR</code>. A lower value of <code>level</code>
@@ -1061,7 +1061,7 @@ wink-regression-tree.js
*
* Incrementally evalutes variance reduction for one data row at a time.
*
- * @method RegressionTree.evaluate
+ * @method RegressionTree#evaluate
* @param {object} rowObject contains column name/value pairs including the target column
* name/value pair as well, which is used in evaluating the variance reduction.
* @return {boolean} always `true`.
@@ -1084,7 +1084,7 @@ wink-regression-tree.js
* Computes the variance reduction observed in the validation data passed to
* `evaluate()`.
*
- * @method RegressionTree.metrics
+ * @method RegressionTree#metrics
* @return {object} containing the `varianceReduction` in percentage and data `size`.
* @example
* myRT.metrics();
@@ -1105,7 +1105,7 @@ wink-regression-tree.js
* Exports the JSON of the rule tree generated by `learn()`, which may be
* saved in a file for later predictions.
*
- * @method RegressionTree.exportJSON
+ * @method RegressionTree#exportJSON
* @return {json} of the rule tree.
* @example
* var rules = myRT.exportJSON();
@@ -1121,7 +1121,7 @@ wink-regression-tree.js
* Note after a successful import, this can be used ONLY for prediction purpose
* and not for further ingestion and/or learning.
*
- * @method RegressionTree.importJSON
+ * @method RegressionTree#importJSON
* @param {json} rulesTree containg an earlier exported rule tree in JSON format.
* @return {boolean} always `true`.
* @throws {error} if `rulesTree` is `null`.
@@ -1154,7 +1154,7 @@ wink-regression-tree.js
* related variables, except it's configuration. It is useful during
* cross fold-validation.
*
- * @method RegressionTree.reset
+ * @method RegressionTree#reset
* @return {undefined} nothing!
* @example
* var myRT.reset();
@@ -1225,7 +1225,7 @@ wink-regression-tree.js
diff --git a/src/wink-regression-tree.js b/src/wink-regression-tree.js
index d5c1410..274fe02 100644
--- a/src/wink-regression-tree.js
+++ b/src/wink-regression-tree.js
@@ -580,7 +580,7 @@ var regressionTree = function () {
* Defines the configuration required to read the input data and to generates
* the regression tree.
*
- * @method RegressionTree.defineConfig
+ * @method RegressionTree#defineConfig
* @param {object[]} inputDataCols each object in this array defines a column of input
* data in the same sequence in which data will be supplied to `ingest().` It is
* defined in terms of the following details:
@@ -649,7 +649,7 @@ var regressionTree = function () {
* data in an asynchronus manner, where this may be used as a call back function
* on every row read event.
*
- * @method RegressionTree.ingest
+ * @method RegressionTree#ingest
* @param {array} row one row of the data to be ingested; column values
* should be in the same sequence in which they are defined in data configuration
* via `defineConfig()`.
@@ -680,7 +680,7 @@ var regressionTree = function () {
* `predict()` the value of target variable from the input. It requires at least
* 60 data rows to initiate meaningful learning.
*
- * @method RegressionTree.learn
+ * @method RegressionTree#learn
* @return {number} number of rules learned from the input data.
* @throws {error} if number of rows in the ingested data are <60.
* @example
@@ -854,7 +854,7 @@ var regressionTree = function () {
* `fn` is defined then no error is thrown, instead the name of missing column is passed
* to this function; and the function is expected to handle the same.
*
- * @method RegressionTree.predict
+ * @method RegressionTree#predict
* @param {object} input data containing column name/value pairs; the column
* names must the same as defined via `defineConfig()`.
* @param {function} [modifier=undefined] is called once
@@ -952,7 +952,7 @@ var regressionTree = function () {
* deviations (SD).
* The minumum standard deviation (SD) discovered during the learning.
*
- * @method RegressionTree.summary
+ * @method RegressionTree#summary
* @return {object} containing the following:
* table
— array of objects, where each object defines level
, columnHierarchy
,
* nodesSplit
, minVR
and maxVR
. A lower value of level
@@ -1018,7 +1018,7 @@ var regressionTree = function () {
*
* Incrementally evalutes variance reduction for one data row at a time.
*
- * @method RegressionTree.evaluate
+ * @method RegressionTree#evaluate
* @param {object} rowObject contains column name/value pairs including the target column
* name/value pair as well, which is used in evaluating the variance reduction.
* @return {boolean} always `true`.
@@ -1041,7 +1041,7 @@ var regressionTree = function () {
* Computes the variance reduction observed in the validation data passed to
* `evaluate()`.
*
- * @method RegressionTree.metrics
+ * @method RegressionTree#metrics
* @return {object} containing the `varianceReduction` in percentage and data `size`.
* @example
* myRT.metrics();
@@ -1062,7 +1062,7 @@ var regressionTree = function () {
* Exports the JSON of the rule tree generated by `learn()`, which may be
* saved in a file for later predictions.
*
- * @method RegressionTree.exportJSON
+ * @method RegressionTree#exportJSON
* @return {json} of the rule tree.
* @example
* var rules = myRT.exportJSON();
@@ -1078,7 +1078,7 @@ var regressionTree = function () {
* Note after a successful import, this can be used ONLY for prediction purpose
* and not for further ingestion and/or learning.
*
- * @method RegressionTree.importJSON
+ * @method RegressionTree#importJSON
* @param {json} rulesTree containg an earlier exported rule tree in JSON format.
* @return {boolean} always `true`.
* @throws {error} if `rulesTree` is `null`.
@@ -1111,7 +1111,7 @@ var regressionTree = function () {
* related variables, except it's configuration. It is useful during
* cross fold-validation.
*
- * @method RegressionTree.reset
+ * @method RegressionTree#reset
* @return {undefined} nothing!
* @example
* var myRT.reset();
Creates an instance of RegressionTree.
+Creates an instance of a RegressionTree.
Copyright & License
wink-regression-tree is copy
diff --git a/docs/wink-regression-tree.js.html b/docs/wink-regression-tree.js.html
index 7ecea35..f42df87 100644
--- a/docs/wink-regression-tree.js.html
+++ b/docs/wink-regression-tree.js.html
@@ -26,7 +26,7 @@
wink-regression-tree.js
// ### regressionTree /** * - * Creates an instance of {@link RegressionTree}. + * Creates an instance of a {@link RegressionTree}. * * @return {RegressionTree} object conatining set of API methods for tasks like configuration, * data ingestion, learning, and prediction etc. @@ -623,7 +623,7 @@wink-regression-tree.js
* Defines the configuration required to read the input data and to generates * the regression tree. * - * @method RegressionTree.defineConfig + * @method RegressionTree#defineConfig * @param {object[]} inputDataCols each object in this array defines a column of input * data in the same sequence in which data will be supplied to `ingest().` It is * defined in terms of the following details: @@ -692,7 +692,7 @@wink-regression-tree.js
* data in an asynchronus manner, where this may be used as a call back function * on every row read event. * - * @method RegressionTree.ingest + * @method RegressionTree#ingest * @param {array} row one row of the data to be ingested; column values * should be in the same sequence in which they are defined in data configuration * via `defineConfig()`. @@ -723,7 +723,7 @@wink-regression-tree.js
* `predict()` the value of target variable from the input. It requires at least * 60 data rows to initiate meaningful learning. * - * @method RegressionTree.learn + * @method RegressionTree#learn * @return {number} number of rules learned from the input data. * @throws {error} if number of rows in the ingested data are <60. * @example @@ -897,7 +897,7 @@wink-regression-tree.js
* `fn` is defined then no error is thrown, instead the name of missing column is passed * to this function; and the function is expected to handle the same. * - * @method RegressionTree.predict + * @method RegressionTree#predict * @param {object} input data containing column name/value pairs; the column * names must the same as defined via `defineConfig()`. * @param {function} [modifier=undefined] is called once @@ -995,7 +995,7 @@wink-regression-tree.js
* deviations (SD).</li> * <li>The minumum standard deviation (SD) discovered during the learning.</li></ol> * - * @method RegressionTree.summary + * @method RegressionTree#summary * @return {object} containing the following:<ol> * <li><code>table</code> — array of objects, where each object defines <code>level</code>, <code>columnHierarchy</code>, * <code>nodesSplit</code>, <code>minVR</code> and <code>maxVR</code>. A lower value of <code>level</code> @@ -1061,7 +1061,7 @@wink-regression-tree.js
* * Incrementally evalutes variance reduction for one data row at a time. * - * @method RegressionTree.evaluate + * @method RegressionTree#evaluate * @param {object} rowObject contains column name/value pairs including the target column * name/value pair as well, which is used in evaluating the variance reduction. * @return {boolean} always `true`. @@ -1084,7 +1084,7 @@wink-regression-tree.js
* Computes the variance reduction observed in the validation data passed to * `evaluate()`. * - * @method RegressionTree.metrics + * @method RegressionTree#metrics * @return {object} containing the `varianceReduction` in percentage and data `size`. * @example * myRT.metrics(); @@ -1105,7 +1105,7 @@wink-regression-tree.js
* Exports the JSON of the rule tree generated by `learn()`, which may be * saved in a file for later predictions. * - * @method RegressionTree.exportJSON + * @method RegressionTree#exportJSON * @return {json} of the rule tree. * @example * var rules = myRT.exportJSON(); @@ -1121,7 +1121,7 @@wink-regression-tree.js
* Note after a successful import, this can be used ONLY for prediction purpose * and not for further ingestion and/or learning. * - * @method RegressionTree.importJSON + * @method RegressionTree#importJSON * @param {json} rulesTree containg an earlier exported rule tree in JSON format. * @return {boolean} always `true`. * @throws {error} if `rulesTree` is `null`. @@ -1154,7 +1154,7 @@wink-regression-tree.js
* related variables, except it's configuration. It is useful during * cross fold-validation. * - * @method RegressionTree.reset + * @method RegressionTree#reset * @return {undefined} nothing! * @example * var myRT.reset(); @@ -1225,7 +1225,7 @@wink-regression-tree.js
diff --git a/src/wink-regression-tree.js b/src/wink-regression-tree.js index d5c1410..274fe02 100644 --- a/src/wink-regression-tree.js +++ b/src/wink-regression-tree.js @@ -580,7 +580,7 @@ var regressionTree = function () { * Defines the configuration required to read the input data and to generates * the regression tree. * - * @method RegressionTree.defineConfig + * @method RegressionTree#defineConfig * @param {object[]} inputDataCols each object in this array defines a column of input * data in the same sequence in which data will be supplied to `ingest().` It is * defined in terms of the following details: @@ -649,7 +649,7 @@ var regressionTree = function () { * data in an asynchronus manner, where this may be used as a call back function * on every row read event. * - * @method RegressionTree.ingest + * @method RegressionTree#ingest * @param {array} row one row of the data to be ingested; column values * should be in the same sequence in which they are defined in data configuration * via `defineConfig()`. @@ -680,7 +680,7 @@ var regressionTree = function () { * `predict()` the value of target variable from the input. It requires at least * 60 data rows to initiate meaningful learning. * - * @method RegressionTree.learn + * @method RegressionTree#learn * @return {number} number of rules learned from the input data. * @throws {error} if number of rows in the ingested data are <60. * @example @@ -854,7 +854,7 @@ var regressionTree = function () { * `fn` is defined then no error is thrown, instead the name of missing column is passed * to this function; and the function is expected to handle the same. * - * @method RegressionTree.predict + * @method RegressionTree#predict * @param {object} input data containing column name/value pairs; the column * names must the same as defined via `defineConfig()`. * @param {function} [modifier=undefined] is called once @@ -952,7 +952,7 @@ var regressionTree = function () { * deviations (SD). *
-
*
table
— array of objects, where each object defineslevel
,columnHierarchy
, *nodesSplit
,minVR
andmaxVR
. A lower value oflevel
@@ -1018,7 +1018,7 @@ var regressionTree = function () { * * Incrementally evalutes variance reduction for one data row at a time. * - * @method RegressionTree.evaluate + * @method RegressionTree#evaluate * @param {object} rowObject contains column name/value pairs including the target column * name/value pair as well, which is used in evaluating the variance reduction. * @return {boolean} always `true`. @@ -1041,7 +1041,7 @@ var regressionTree = function () { * Computes the variance reduction observed in the validation data passed to * `evaluate()`. * - * @method RegressionTree.metrics + * @method RegressionTree#metrics * @return {object} containing the `varianceReduction` in percentage and data `size`. * @example * myRT.metrics(); @@ -1062,7 +1062,7 @@ var regressionTree = function () { * Exports the JSON of the rule tree generated by `learn()`, which may be * saved in a file for later predictions. * - * @method RegressionTree.exportJSON + * @method RegressionTree#exportJSON * @return {json} of the rule tree. * @example * var rules = myRT.exportJSON(); @@ -1078,7 +1078,7 @@ var regressionTree = function () { * Note after a successful import, this can be used ONLY for prediction purpose * and not for further ingestion and/or learning. * - * @method RegressionTree.importJSON + * @method RegressionTree#importJSON * @param {json} rulesTree containg an earlier exported rule tree in JSON format. * @return {boolean} always `true`. * @throws {error} if `rulesTree` is `null`. @@ -1111,7 +1111,7 @@ var regressionTree = function () { * related variables, except it's configuration. It is useful during * cross fold-validation. * - * @method RegressionTree.reset + * @method RegressionTree#reset * @return {undefined} nothing! * @example * var myRT.reset();