diff --git a/Modelica/Electrical/Analog/Basic/SaturatingInductor.mo b/Modelica/Electrical/Analog/Basic/SaturatingInductor.mo index 40bf685569..549a99eeef 100644 --- a/Modelica/Electrical/Analog/Basic/SaturatingInductor.mo +++ b/Modelica/Electrical/Analog/Basic/SaturatingInductor.mo @@ -76,7 +76,7 @@ This approximation is with good performance and easy to adjust to a given charac

- + @@ -106,7 +106,7 @@ Lnom = Linf + (Lzer - Linf)*atan(Inom/Ipar)/(Inom/Ipar)
Tab. 1: Characteristic parameters of the saturating inductor modelTab. 1: Characteristic parameters of the saturating inductor model
Variable Description
- +
Fig. 1: Actual inductance Lact versus current iFig. 1: Actual inductance Lact versus current i
\"Lact @@ -115,7 +115,7 @@ Lnom = Linf + (Lzer - Linf)*atan(Inom/Ipar)/(Inom/Ipar)
- + - +
Fig. 2: Actual flux linkage Psi versus current iFig. 2: Actual flux linkage Psi versus current i
\"Psi diff --git a/Modelica/Electrical/Analog/Sources/LightningImpulse.mo b/Modelica/Electrical/Analog/Sources/LightningImpulse.mo index a3f9bfb1b9..dcf4dae406 100644 --- a/Modelica/Electrical/Analog/Sources/LightningImpulse.mo +++ b/Modelica/Electrical/Analog/Sources/LightningImpulse.mo @@ -89,7 +89,7 @@ The decay time to half value T2 is defined as the time span between

Note: Due to numerical reasons, for the double-exponential function T1 < 0.2*T2 is required.

- + - +
Fig. 1: Parameters of the lightning currentFig. 1: Parameters of the lightning current
diff --git a/Modelica/Electrical/Machines/SpacePhasors/Blocks/Rotator.mo b/Modelica/Electrical/Machines/SpacePhasors/Blocks/Rotator.mo index 6021a62e09..57b36c0dbf 100644 --- a/Modelica/Electrical/Machines/SpacePhasors/Blocks/Rotator.mo +++ b/Modelica/Electrical/Machines/SpacePhasors/Blocks/Rotator.mo @@ -37,7 +37,7 @@ Rotates a space phasor (voltage or current) input u by the an
Fig. 1: Original and rotated reference frame of a space phasor Fig. 1: Original and rotated reference frame of a space phasor
")); diff --git a/Modelica/Electrical/Machines/SpacePhasors/Functions/Rotator.mo b/Modelica/Electrical/Machines/SpacePhasors/Functions/Rotator.mo index 44f59b6ea9..f9da58f4d9 100644 --- a/Modelica/Electrical/Machines/SpacePhasors/Functions/Rotator.mo +++ b/Modelica/Electrical/Machines/SpacePhasors/Functions/Rotator.mo @@ -18,7 +18,7 @@ Rotates a space phasor (voltage or current) input u by the an
Fig. 1: Original and rotated reference frame of a space phasor Fig. 1: Original and rotated reference frame of a space phasor
")); end Rotator; diff --git a/Modelica/Electrical/Polyphase/UsersGuide/PhaseOrientation.mo b/Modelica/Electrical/Polyphase/UsersGuide/PhaseOrientation.mo index 20d9cd88fd..6e2f8a60bd 100644 --- a/Modelica/Electrical/Polyphase/UsersGuide/PhaseOrientation.mo +++ b/Modelica/Electrical/Polyphase/UsersGuide/PhaseOrientation.mo @@ -21,7 +21,7 @@ In symmetrical polyphase systems odd and even phase numbers have to be distingui For a symmetrical polyphase system with m phases the displacement of the sine waves is 2 π / m.

- + - +
Fig. 1: Symmetrical (a) three-phase and (b) five-phase current systemFig. 1: Symmetrical (a) three-phase and (b) five-phase current system
Base is defined by the number of division For a base system with mBase phases the displacement of the sine waves belonging to that base system is 2 π / mBase.

- + - +
Fig. 2: Symmetrical (a) six and (b) ten phase current systemFig. 2: Symmetrical (a) six and (b) ten phase current system
Base - 1)/2 alternatives exist (refer to Fig. 3).

- + - +
Fig. 3: Line-to-neutral voltages and line-to-line voltages for different systemsFig. 3: Line-to-neutral voltages and line-to-line voltages for different systems
\"Polygon2phase.png\" diff --git a/Modelica/Electrical/PowerConverters/DCDC/Control/SignalPWM.mo b/Modelica/Electrical/PowerConverters/DCDC/Control/SignalPWM.mo index 2e1d3eff30..19467bc0b0 100644 --- a/Modelica/Electrical/PowerConverters/DCDC/Control/SignalPWM.mo +++ b/Modelica/Electrical/PowerConverters/DCDC/Control/SignalPWM.mo @@ -107,7 +107,7 @@ to the switching period. The output firing signal is strictly determined by the

- + - +
Fig. 1: Firing (fire) and inverse firing (notFire) signal of PWM control; d = duty cycle; f = switching frequency Fig. 1: Firing (fire) and inverse firing (notFire) signal of PWM control; d = duty cycle; f = switching frequency
diff --git a/Modelica/Electrical/PowerConverters/DCDC/HBridge.mo b/Modelica/Electrical/PowerConverters/DCDC/HBridge.mo index f283f744d2..cd9e7e9136 100644 --- a/Modelica/Electrical/PowerConverters/DCDC/HBridge.mo +++ b/Modelica/Electrical/PowerConverters/DCDC/HBridge.mo @@ -122,7 +122,7 @@ equation The H bridge is a four quadrant DC/DC converter. It consists of two single-phase DC/AC converters which are controlled differently; see Fig. 1.

- + - +
Fig. 1: H bridgeFig. 1: H bridge
diff --git a/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/ACCircuit.mo b/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/ACCircuit.mo index f71319546c..3c8e5013c8 100644 --- a/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/ACCircuit.mo +++ b/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/ACCircuit.mo @@ -18,7 +18,7 @@ the voltage drops across the resistor, the inductor and the capacitor should be alt=\"resonance_circuit.png\">
Fig. 1: Series AC circuit of a resistor and an inductor at variable frequencyFig. 1: Series AC circuit of a resistor and an inductor at variable frequency

@@ -80,7 +80,7 @@ as illustrated in the phasor diagram of Fig. 2. alt=\"phasor_diagram.png\">

Fig. 2: Phasor diagram of a resistor and inductance series connectionFig. 2: Phasor diagram of a resistor and inductance series connection

Due to the series connection of the resistor, inductor and capacitor, the three currents are all equal:

diff --git a/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Introduction.mo b/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Introduction.mo index 4695f19767..b916c6e0e9 100644 --- a/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Introduction.mo +++ b/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Introduction.mo @@ -49,7 +49,7 @@ This equation is also illustrated in Fig. 1. alt=\"phasor_voltage.png\">
Fig. 1: Relationship between voltage phasor and time domain voltageFig. 1: Relationship between voltage phasor and time domain voltage

diff --git a/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Power.mo b/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Power.mo index 317641eb39..a8e21765cc 100644 --- a/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Power.mo +++ b/Modelica/Electrical/QuasiStatic/UsersGuide/Overview/Power.mo @@ -46,7 +46,7 @@ Therefore, the instantaneous power is alt=\"power_resistor.png\">

Fig. 1: Instantaneous voltage, current of power of a resistorFig. 1: Instantaneous voltage, current of power of a resistor

Real power of the resistor is the average of instantaneous power:

@@ -84,7 +84,7 @@ Therefore, the instantaneous power is alt=\"power_inductor.png\">
Fig. 2: Instantaneous voltage, current of power of an inductorFig. 2: Instantaneous voltage, current of power of an inductor

Reactive power of the inductor is:

@@ -122,7 +122,7 @@ Therefore, the instantaneous power is alt=\"power_capacitor.png\"> - Fig. 3: Instantaneous voltage, current of power of a capacitor + Fig. 3: Instantaneous voltage, current of power of a capacitor

Reactive power of the capacitor is:

diff --git a/Modelica/Fluid/Vessels.mo b/Modelica/Fluid/Vessels.mo index 012f8d2ec1..85e28244e0 100644 --- a/Modelica/Fluid/Vessels.mo +++ b/Modelica/Fluid/Vessels.mo @@ -556,7 +556,7 @@ If a straight pipe with constant cross section is mounted into a vessel

- + @@ -585,7 +585,7 @@ If a straight pipe with a circular bellmouth inlet (collector) without b

Pressure loss coefficients for outlets, entrance at a distance from wallPressure loss coefficients for outlets, entrance at a distance from wall
b / D_hyd
- + @@ -602,7 +602,7 @@ If a straight pipe with a circular bellmouth inlet (collector) without b

Pressure loss coefficients for outlets, bellmouth flush with wallPressure loss coefficients for outlets, bellmouth flush with wall
r / D_hyd
- + @@ -621,7 +621,7 @@ If a straight pipe with constant circular cross section is mounted flush

Pressure loss coefficients for outlets, bellmouth at a distance of wallPressure loss coefficients for outlets, bellmouth at a distance of wall
r / D_hyd
- + @@ -638,7 +638,7 @@ For larger port diameters, relative to the area of the vessel, the inlet pressur

Pressure loss coefficients for inlets, circular tube flush with wallPressure loss coefficients for inlets, circular tube flush with wall
m
- + diff --git a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer1PhaseWithHysteresis.mo b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer1PhaseWithHysteresis.mo index 8c981c26e4..5121f9443c 100644 --- a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer1PhaseWithHysteresis.mo +++ b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer1PhaseWithHysteresis.mo @@ -225,7 +225,7 @@ Simple model of a single-phase transformer with a primary and a secondary windin

Pressure loss coefficients for inlets, circular tube flush with wallPressure loss coefficients for inlets, circular tube flush with wall
A_port / A_vessel
- +
Fig. 1: Sketch of the modelled transformer with magnetic core, primary and secondary windingFig. 1: Sketch of the modelled transformer with magnetic core, primary and secondary winding
diff --git a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer3PhaseYyWithHysteresis.mo b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer3PhaseYyWithHysteresis.mo index 55d4f2b28b..4d6fe9f534 100644 --- a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer3PhaseYyWithHysteresis.mo +++ b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/Components/Transformer3PhaseYyWithHysteresis.mo @@ -419,7 +419,7 @@ Simple model of a three-phase transformer with primary and a secondary windings

- +
Fig. 1: Sketch of the modelled transformer with magnetic core, primary and secondary windingFig. 1: Sketch of the modelled transformer with magnetic core, primary and secondary winding
diff --git a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/HysteresisModelComparison.mo b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/HysteresisModelComparison.mo index b9fdf7c420..ff9dc22f6f 100644 --- a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/HysteresisModelComparison.mo +++ b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/HysteresisModelComparison.mo @@ -118,7 +118,7 @@ Compared to the complex Preisach hysteresis model the Tellinen model is very sim

- +
Fig. 1: Simulated magnetic flux densities B of different hysteresis models (b) due to an applied magnetic field strength shown in (a). Corresponding B(H) loops of the hysteresis models GenericHystTellinenSoft (c), GenericHystTellinenTable (d) and GenericHystPreisachEverett (e).Fig. 1: Simulated magnetic flux densities B of different hysteresis models (b) due to an applied magnetic field strength shown in (a). Corresponding B(H) loops of the hysteresis models GenericHystTellinenSoft (c), GenericHystTellinenTable (d) and GenericHystPreisachEverett (e).
diff --git a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/InductorWithHysteresis.mo b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/InductorWithHysteresis.mo index bbfc7a2064..f1881f829e 100644 --- a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/InductorWithHysteresis.mo +++ b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/InductorWithHysteresis.mo @@ -39,7 +39,7 @@ equation This is a simple model of an inductor with a ferromagnetic core. The used GenericHystTellinenEverett model considers the ferromagnetic hysteresis, eddy currents and remanence of the core material. For example you can simulate the model for 0.02s and plot Core.B vs. Core.H to visualize the resulting hysteresis loops.

- +
Fig. 1: Results Core.B(t) and Core.B(H) of the magnetic Core.Fig. 1: Results Core.B(t) and Core.B(H) of the magnetic Core.
diff --git a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/ThreePhaseTransformerWithRectifier.mo b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/ThreePhaseTransformerWithRectifier.mo index 135be231fa..ba3800d5a8 100644 --- a/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/ThreePhaseTransformerWithRectifier.mo +++ b/Modelica/Magnetic/FluxTubes/Examples/Hysteresis/ThreePhaseTransformerWithRectifier.mo @@ -162,7 +162,7 @@ An example simulation shows the transformer inrush currents due to an initially

- +
Fig. 1: Transformer inrush currents due to initial magnetization of the magnetic core; (a) transformer primary currents; (b) transformer secondary currents; (c) flux densities of the transformer legs; (d) B(H) hysteresis loops of transformer leg one.; (e) instantaneous static hysteresis, eddy current and copper losses of the transformer; (f) approximated average static hysteresis, eddy current and copper losses of the transformerFig. 1: Transformer inrush currents due to initial magnetization of the magnetic core; (a) transformer primary currents; (b) transformer secondary currents; (c) flux densities of the transformer legs; (d) B(H) hysteresis loops of transformer leg one.; (e) instantaneous static hysteresis, eddy current and copper losses of the transformer; (f) approximated average static hysteresis, eddy current and copper losses of the transformer
diff --git a/Modelica/Magnetic/FluxTubes/Material/HysteresisTableData/package.mo b/Modelica/Magnetic/FluxTubes/Material/HysteresisTableData/package.mo index bd23c3eab7..c920767b5d 100644 --- a/Modelica/Magnetic/FluxTubes/Material/HysteresisTableData/package.mo +++ b/Modelica/Magnetic/FluxTubes/Material/HysteresisTableData/package.mo @@ -12,7 +12,7 @@ Fig. 1 and Fig. 2 show library entries based on own measurements of several stee

- +
Fig. 1: Static hysteresis envelope curves of several steel sheetsFig. 1: Static hysteresis envelope curves of several steel sheets
@@ -21,7 +21,7 @@ Fig. 1 and Fig. 2 show library entries based on own measurements of several stee
- +
Fig. 2: Static hysteresis envelope curves of several steel sheetsFig. 2: Static hysteresis envelope curves of several steel sheets
@@ -34,7 +34,7 @@ Fig. 3 shows the static hysteresis loop library entries for soft magnetic cobalt

- +
Fig. 3: Soft magnetic cobalt iron library entries [Va01]Fig. 3: Soft magnetic cobalt iron library entries [Va01]
diff --git a/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo b/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo index dd849a7604..3cd6ed8fa7 100644 --- a/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo +++ b/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo @@ -62,7 +62,7 @@ equation

- +
Fig. 1: Hyperbolic tangent functions define the shape of the ferromagnetic (static) hysteresisFig. 1: Hyperbolic tangent functions define the shape of the ferromagnetic (static) hysteresis
diff --git a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/DynamicHysteresis.mo b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/DynamicHysteresis.mo index 8552892fb7..3af82d202a 100644 --- a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/DynamicHysteresis.mo +++ b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/DynamicHysteresis.mo @@ -34,7 +34,7 @@ Where σ is the electrical conductivity and d the

- +
Fig. 1: Static and dynamic portion of the hysteresis B(H)Fig. 1: Static and dynamic portion of the hysteresis B(H)
@@ -47,7 +47,7 @@ The following two figures show a comparison between measured and simulated dynam

- +
Fig. 2: Dynamic hysteresis measurements with an 25 cm Epstein frame according to DIN EN 60404-2 (Material: M330-50A, 4 Sheets)Fig. 2: Dynamic hysteresis measurements with an 25 cm Epstein frame according to DIN EN 60404-2 (Material: M330-50A, 4 Sheets)
@@ -56,7 +56,7 @@ The following two figures show a comparison between measured and simulated dynam
- +
Fig. 3: Simulation results of a 25 cm Epstein frame model according to the measurement setup of Fig. 1Fig. 3: Simulation results of a 25 cm Epstein frame model according to the measurement setup of Fig. 1
diff --git a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/HysteresisLosses.mo b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/HysteresisLosses.mo index d6fbfa8f61..9ff27c25a3 100644 --- a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/HysteresisLosses.mo +++ b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/HysteresisLosses.mo @@ -38,7 +38,7 @@ Where σcl is the classical eddy current factor (se

- +
Fig. 1: Diagram of a simple transformer with ferromagnetic core (model available at Examples.Hysteresis.SinglePhaseTransformerWithHysteresis1)Fig. 1: Diagram of a simple transformer with ferromagnetic core (model available at Examples.Hysteresis.SinglePhaseTransformerWithHysteresis1)
@@ -47,7 +47,7 @@ Where σcl is the classical eddy current factor (se
- +
Fig. 2: Simulated total dynamic hysteresis loop with its static and eddy current fractionsFig. 2: Simulated total dynamic hysteresis loop with its static and eddy current fractions
@@ -56,7 +56,7 @@ Where σcl is the classical eddy current factor (se
- +
Fig. 3: Simulated outputs of the Core component of Fig. 1Fig. 3: Simulated outputs of the Core component of Fig. 1
diff --git a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/StaticHysteresis/Preisach.mo b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/StaticHysteresis/Preisach.mo index d478cfdfd0..6a2501f2d3 100644 --- a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/StaticHysteresis/Preisach.mo +++ b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/StaticHysteresis/Preisach.mo @@ -10,7 +10,7 @@ This section gives an very brief overview of the Preisach hysteresis model, whic

- +
Fig. 1: Characteristics of an elementary hysteresis operator.Fig. 1: Characteristics of an elementary hysteresis operator.
@@ -23,7 +23,7 @@ Due to α≥β, the switching limits α and β span a right t

- +
Fig. 2: Preisach Plane (a) and exemplary plot of the Preisach distribution function P(α,β) (b)Fig. 2: Preisach Plane (a) and exemplary plot of the Preisach distribution function P(α,β) (b)
@@ -62,7 +62,7 @@ The Everett function returns the change in magnetization which results when all

- +
Fig. 3: Preisach plane and region R over which P(α,β) is integrated to obtain E(H1,H2)Fig. 3: Preisach plane and region R over which P(α,β) is integrated to obtain E(H1,H2)
diff --git a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/package.mo b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/package.mo index 380db498f1..8df13e2dc6 100644 --- a/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/package.mo +++ b/Modelica/Magnetic/FluxTubes/UsersGuide/Hysteresis/package.mo @@ -11,7 +11,7 @@ The elements provided in the package Shapes.HysteresisAndMagnets allow for consi

- +
Fig. 1: Inductor with ferromagnetic core and hysteresis effects; (a) diagram of the network model; (b) simulated hysteresis characteristics of the core for different excitation frequencies of 0, 10 and 100 Hz (the example model can be found at: Examples.Hysteresis.InductorWithHysteresis)Fig. 1: Inductor with ferromagnetic core and hysteresis effects; (a) diagram of the network model; (b) simulated hysteresis characteristics of the core for different excitation frequencies of 0, 10 and 100 Hz (the example model can be found at: Examples.Hysteresis.InductorWithHysteresis)
diff --git a/Modelica/Magnetic/FundamentalWave/BasicMachines/Components/RotorSaliencyAirGap.mo b/Modelica/Magnetic/FundamentalWave/BasicMachines/Components/RotorSaliencyAirGap.mo index 2a4f4df6df..5d3fabb9a8 100644 --- a/Modelica/Magnetic/FundamentalWave/BasicMachines/Components/RotorSaliencyAirGap.mo +++ b/Modelica/Magnetic/FundamentalWave/BasicMachines/Components/RotorSaliencyAirGap.mo @@ -103,7 +103,7 @@ The air gap model has two magnetic stator and two magnetic rotor according to the following figure.

- +
Fig: Magnetic equivalent circuit of the air gap modelFig: Magnetic equivalent circuit of the air gap model
diff --git a/Modelica/Magnetic/FundamentalWave/Components/EddyCurrent.mo b/Modelica/Magnetic/FundamentalWave/Components/EddyCurrent.mo index 9ed4821648..fbe0553ae6 100644 --- a/Modelica/Magnetic/FundamentalWave/Components/EddyCurrent.mo +++ b/Modelica/Magnetic/FundamentalWave/Components/EddyCurrent.mo @@ -42,7 +42,7 @@ The eddy current loss model with respect to fundamental wave effects is designed - +
Fig. 1: equivalent models of eddy current lossesFig. 1: equivalent models of eddy current losses
for and is also illustrated by the following figure:

- +
Fig: Orientation of winding and location of complex magnetic fluxFig: Orientation of winding and location of complex magnetic flux
diff --git a/Modelica/Magnetic/FundamentalWave/UsersGuide/Concept.mo b/Modelica/Magnetic/FundamentalWave/UsersGuide/Concept.mo index 470c09c413..7108860f08 100644 --- a/Modelica/Magnetic/FundamentalWave/UsersGuide/Concept.mo +++ b/Modelica/Magnetic/FundamentalWave/UsersGuide/Concept.mo @@ -10,7 +10,7 @@ The exact magnetic field in the air gap of an electric machine is usually determ

- +
Fig. 1: Field lines of a four pole induction machineFig. 1: Field lines of a four pole induction machine
@@ -22,7 +22,7 @@ The exact magnetic field in the air gap of an electric machine is usually determ In the fundamental wave theory only a pure sinusoidal distribution of magnetic quantities is assumed. It is thus assumed that all other harmonic wave effects are not taken into account.

- +
Fig. 2: Magnetic potential difference of a four pole machine, where is the angle of the spatial domain with respect to one pole pairFig. 2: Magnetic potential difference of a four pole machine, where is the angle of the spatial domain with respect to one pole pair
@@ -41,7 +41,7 @@ The waveforms of the magnetic field quantities, e.g., the magnetic potential dif

It is important to note that the magnetic potential used in this library always refers to an equivalent two pole machine.

- +
Fig. 3: Spatial distribution of the magnetic potential difference (red shade = positive sine wave, blue shade = negative sine wave) including complex phasor representing this spatial distributionFig. 3: Spatial distribution of the magnetic potential difference (red shade = positive sine wave, blue shade = negative sine wave) including complex phasor representing this spatial distribution
diff --git a/Modelica/Magnetic/FundamentalWave/UsersGuide/Polyphase.mo b/Modelica/Magnetic/FundamentalWave/UsersGuide/Polyphase.mo index eaca036b1b..48ce26d162 100644 --- a/Modelica/Magnetic/FundamentalWave/UsersGuide/Polyphase.mo +++ b/Modelica/Magnetic/FundamentalWave/UsersGuide/Polyphase.mo @@ -36,7 +36,7 @@ spatial domain which also applies to polyphase systems.

- +
Fig. 1: Symmetrical (a) three-phase and (b) five-phase current systemFig. 1: Symmetrical (a) three-phase and (b) five-phase current system
- +
Fig. 2: Symmetrical (a) three-phase and (b) five-phase windingFig. 2: Symmetrical (a) three-phase and (b) five-phase winding
- +
Fig. 3: Symmetrical (a) six and (b) ten phase current systemFig. 3: Symmetrical (a) six and (b) ten phase current system
- +
Fig. 4: Symmetrical (a) six and (b) ten phase windingFig. 4: Symmetrical (a) six and (b) ten phase winding
- +
Fig. 1: Symmetric polyphase windingFig. 1: Symmetric polyphase winding
- +
Fig. 1: equivalent models of eddy current lossesFig. 1: equivalent models of eddy current losses
diff --git a/Modelica/Magnetic/QuasiStatic/FundamentalWave/UsersGuide/Concept.mo b/Modelica/Magnetic/QuasiStatic/FundamentalWave/UsersGuide/Concept.mo index 8a949d5283..2e004a9665 100644 --- a/Modelica/Magnetic/QuasiStatic/FundamentalWave/UsersGuide/Concept.mo +++ b/Modelica/Magnetic/QuasiStatic/FundamentalWave/UsersGuide/Concept.mo @@ -39,7 +39,7 @@ respectively, by means of: This is a strict consequence of the electromagnetic coupling between the quasi-static electric and the quasi-static magnetic domain.

- +
Fig. 1: Reference frames of the quasi-static fundamental wave libraryFig. 1: Reference frames of the quasi-static fundamental wave library
diff --git a/Modelica/Magnetic/QuasiStatic/FundamentalWave/Utilities/VfController.mo b/Modelica/Magnetic/QuasiStatic/FundamentalWave/Utilities/VfController.mo index 53b3aed878..9207b58d97 100644 --- a/Modelica/Magnetic/QuasiStatic/FundamentalWave/Utilities/VfController.mo +++ b/Modelica/Magnetic/QuasiStatic/FundamentalWave/Utilities/VfController.mo @@ -60,7 +60,7 @@ The output voltages may serve as inputs for complex voltage sources with phase i

- +
Fig. 1: Voltage vs. frequency of voltage frequency controllerFig. 1: Voltage vs. frequency of voltage frequency controller
diff --git a/Modelica/Mechanics/Rotational/UsersGuide/UserDefinedComponents.mo b/Modelica/Mechanics/Rotational/UsersGuide/UserDefinedComponents.mo index a50820744e..2e655540f8 100644 --- a/Modelica/Mechanics/Rotational/UsersGuide/UserDefinedComponents.mo +++ b/Modelica/Mechanics/Rotational/UsersGuide/UserDefinedComponents.mo @@ -14,7 +14,7 @@ which are defined in sublibrary Interfaces:

- +
List of common base classes for 1-dimensional rotational componentsList of common base classes for 1-dimensional rotational components
NameDescription
PartialCompliant diff --git a/Modelica/Mechanics/Translational/UsersGuide/UserDefinedComponents.mo b/Modelica/Mechanics/Translational/UsersGuide/UserDefinedComponents.mo index 48ed01dcfc..218d9f3425 100644 --- a/Modelica/Mechanics/Translational/UsersGuide/UserDefinedComponents.mo +++ b/Modelica/Mechanics/Translational/UsersGuide/UserDefinedComponents.mo @@ -14,7 +14,7 @@ which are defined in sublibrary

- +
List of common base classes for 1-dimensional translational componentsList of common base classes for 1-dimensional translational components
NameDescription
PartialCompliant diff --git a/Modelica/Media/Water/IF97_Utilities.mo b/Modelica/Media/Water/IF97_Utilities.mo index 541c8a5437..2fa6a7fbc5 100644 --- a/Modelica/Media/Water/IF97_Utilities.mo +++ b/Modelica/Media/Water/IF97_Utilities.mo @@ -6003,7 +6003,7 @@ region 5 is also covered by a g( p,T< equations.

- +
Figure 1: Regions and equations of IAPWS-IF97Figure 1: Regions and equations of IAPWS-IF97
\"Regions