

Azure Storage

Erick Torres

Erick Torres

- **SRE** L3
- FLOSS member
- Fullstack Developer
- Mechatronics engineer (IoT specialist)

Important Notes

Identify yourself in Zoom, using your name and last name

Mute your microphone along the course

Use the chat for questions during the Q&A sections

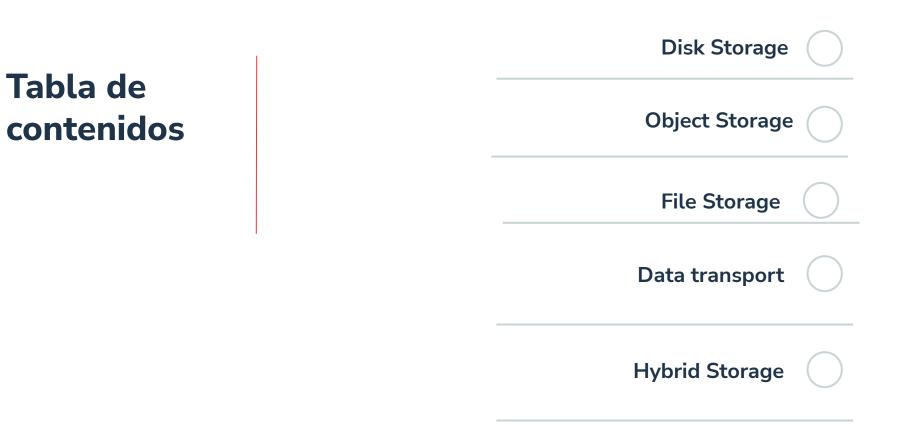
Focus your questions on the presented topic

Turn off your camera in case of connection issues

Academy Code of Conduct

Be respectful, there are no bad questions or ideas.

Be welcoming and patient


Be careful in the words that you choose

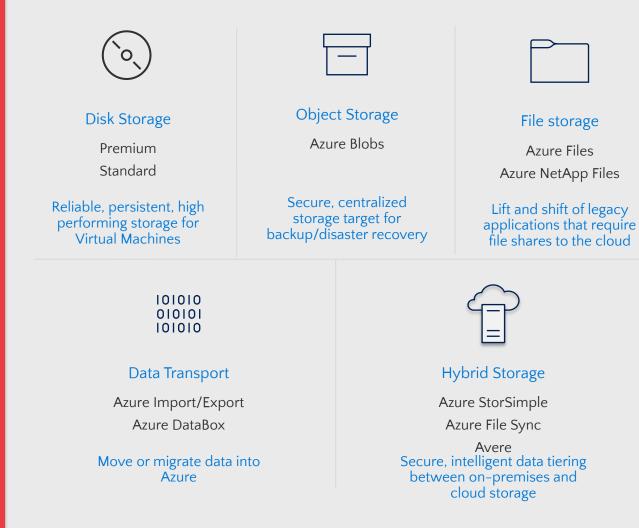
Session objectives

At the end of the session you will be able to understand:

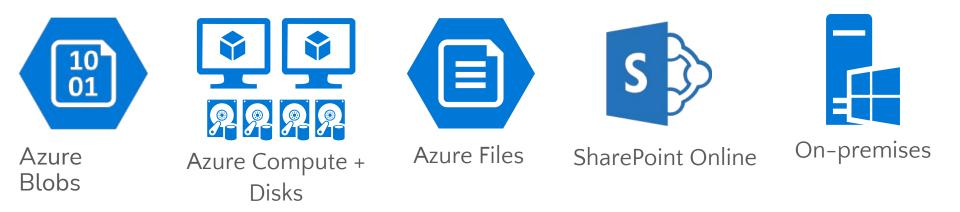
- Disk Storage
- Object Storage
- File Storage
- Data transport
- Hybrid storage

Prerequirements

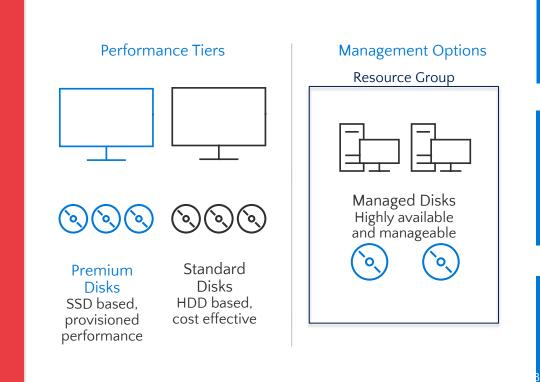
PC with internet connection


Azure Free tier

Azure Storage Services


laaS ♥ Virtu Storage machi	Jal	PaaS	Web and mobile 🎬 Microse	ervices 🖗 Serverless Compute
Disks Persistent disks for Azure IaaS VMs Premium Storage Disks option: SSD based, high IOPS, Iow latency	Files Fully Managed File Shares in the Cloud SMB and REST access "Lift and shift" legacy apps	Blobs Highly scalable, REST based cloud object store Block Blobs: Sequential file I/O Cool Tier Available Page Blobs: Random-write pattern data Append Blobs	Tables Massive auto-scalingNoSQL storeDynamic scaling based onloadScale to PBs of table dataFast key/value lookups	Queues Reliable queues at scale for cloud services Decouple and scale components Message visibility timeout and update message to protect against unreliable dequeuers

Built on a unified Distributed Storage System Durability, Encryption at Rest, Strongly Consistent Replication, Fault Tolerance, Auto Load-Balancing


Azure Storage

Helping customers choose the right storage

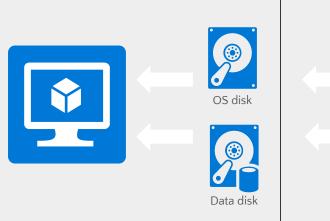
Azure Disks

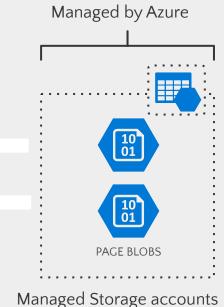
Industry leading ZERO % Annual Failure Rate

> Enterprise grade durability with 3 replicas

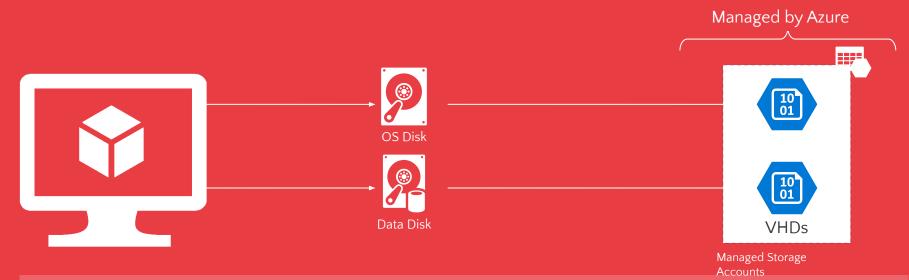
< 1ms latency for cached operations

Blob Cache technology Up to 160,000 IOPS

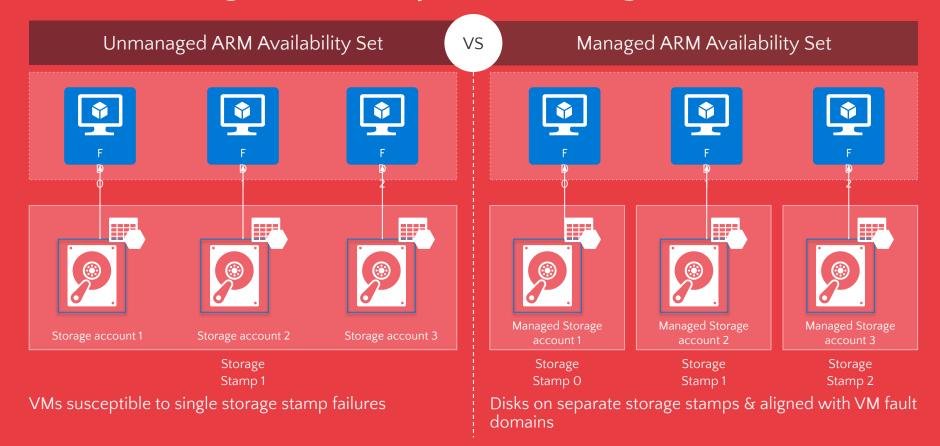

Best in class High IOPS/BW


30,000 IOPS & 2,000 MB/s Disk throughput per VM Simple - Abstracts storage accounts from customers

Granular access control – Top level ARM resource, apply Azure RBAC

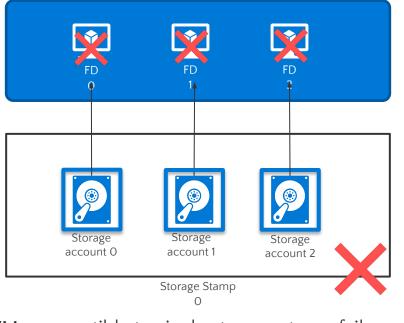

Better performance - Storage account limits do not apply

Big scale - Up to 10,000 disks per region per subscription

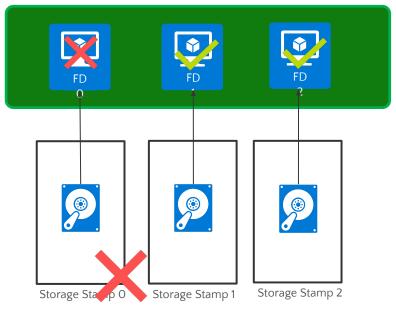


What are Managed Disks

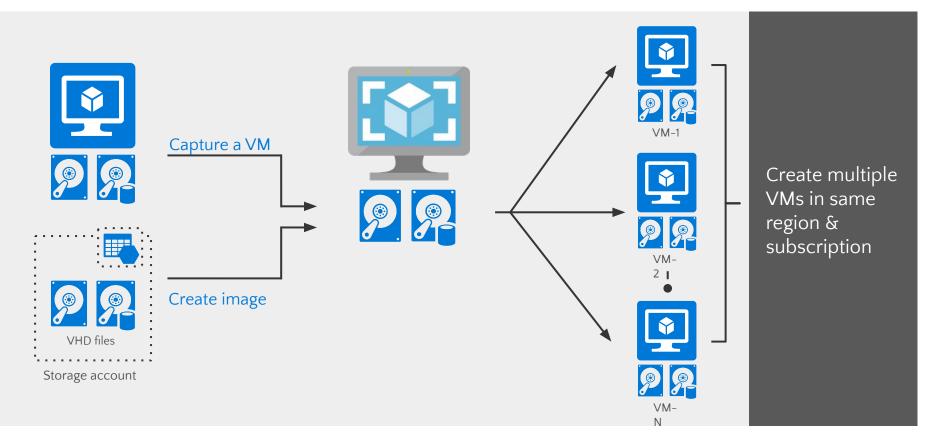
- Simple Abstracts storage accounts from customers
- Granular access control Top level ARM resource, apply Azure RBAC
- Storage account limits do not apply No throttling due to storage account IOPS limits
- Big scale 20,000 disks per region per subscription
- Better Storage Resiliency Prevents single points of failure


Better Storage Resiliency with Managed Disks

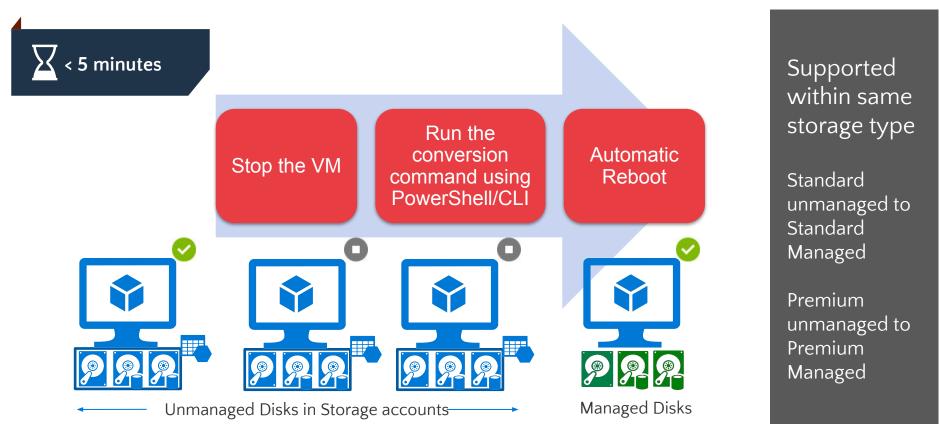
Managed Disks: Improve availability


VS

Unmanaged ARM Availability Set


VMs susceptible to single storage stamp failures

Managed ARM Availability Set



Disks on separate storage stamps & aligned with VM fault domains

Managed Disks: Reusable custom images

Single ARM VM conversion to Managed Disks

Disks - Best Practices

- Always* use Premium Disks for Production workloads
- Managed Disks only for new workloads
 - Upgrade legacy unmanaged to managed when possible
- RAID for redundancy is **not** necessary
 - RAID for performance as needed
 - Durability doesn't remove the need for backups
- Performance
 - Local ssd is **definitely** temporary, use if you can tolerate loss
 - Enable read caching where appropriate for better perf
 - Understand VM limits vs Disk limits for perf

Azure Files

What is Azure Files?

Easily managed

Secure

Data encrypted at rest and in transit

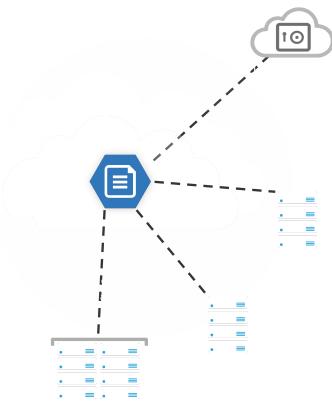
Cross-platform

Mount on Windows, Linux, and macOS

Built for a hybrid world Access data where you want to, how you want to

Smart

Make the most of limited networks with intelligent caching



Harmonious

Migrate applications to the cloud without the headaches

Use Case 1: General Purpose Files as-a-service

- <u>Centralize</u> General Purpose File Services (GPFS)
- <u>Multi-site sync</u> for distributed access
- <u>Cache</u> for fast, local performance
- Utilize cloud-based backup and fast DR

Use Case 2: Migrate applications to the

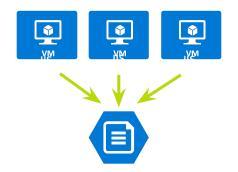
Migrate on-premises file or share based apps often with no code changes

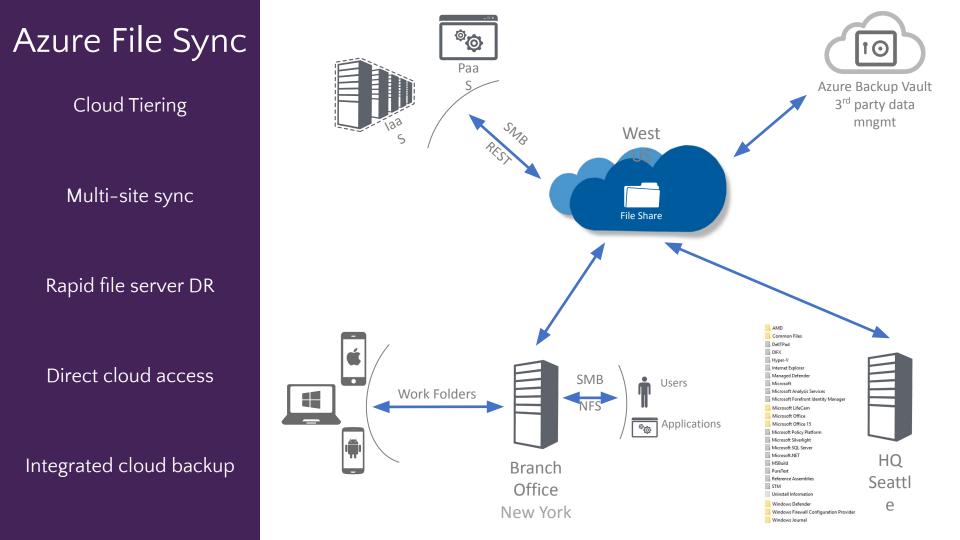
- Test migration in stages first move data, then move application
- Interact with app data from on-prem securely
- Reuse ISVs existing file based data access layers in your cloud apps

Use Case 3: Integrate modern applications

REST APIs enable integration with modern cloud applications

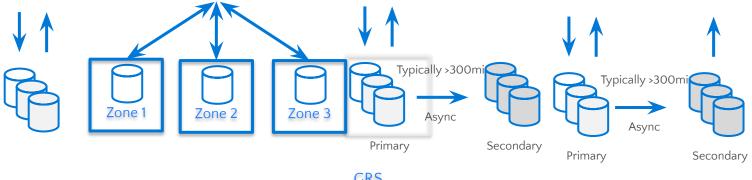
- Integrate modern cloud applications with legacy applications
- Develop new file system based applications using REST APIs REST APIs support
 - Shared access signature (SAS) token support for delegated authorization
 - Cross origin resource sharing (CORS) for direct access from browser clients
 - Storage Client Library Support in .NET, Java, Node and Python





Use Case 4: Simplify hosting HA workload data

- SMB2.1 well suited for client / server scenarios
- Server applications such as SQL and IIS require greater reliability during network failures
- Using SMB 3.0 persistent handles supports continuous availability
- Applications include
 - Hosting IIS/FTP sites using shared storage
 - SQL Server Failover Cluster Instance



Archive Regional Availability @ GA

Blob-Level tiering will be available in all regions 6 more regions in Q4 CY18: Australia, Asia SE, Asia E, UK, Japan, US Gov

Azure Storage Durability

LRS

ZRS V2

3 replicas, 1 region 3 replicas across 3 Zones

Protect against disk, Protect against disk, node, rack and node, rack failures zone failures

Write is ack'd when asynchronous writes to all 3 zones replicas are committed. Private preview now

Superior to dual-parityA - 3/30 in 6 regions RAID

GRS

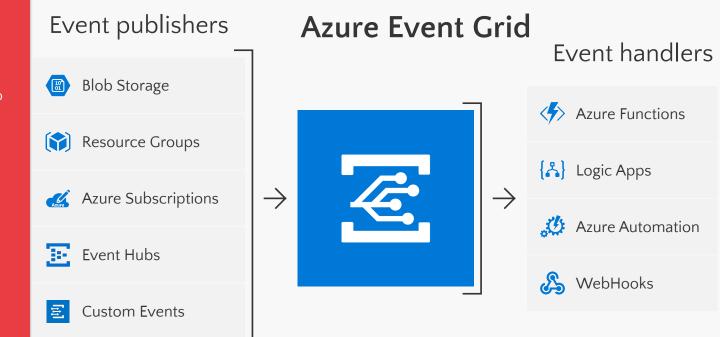
6 replicas, 2 regions (3/region)

Protects against major regional disasters

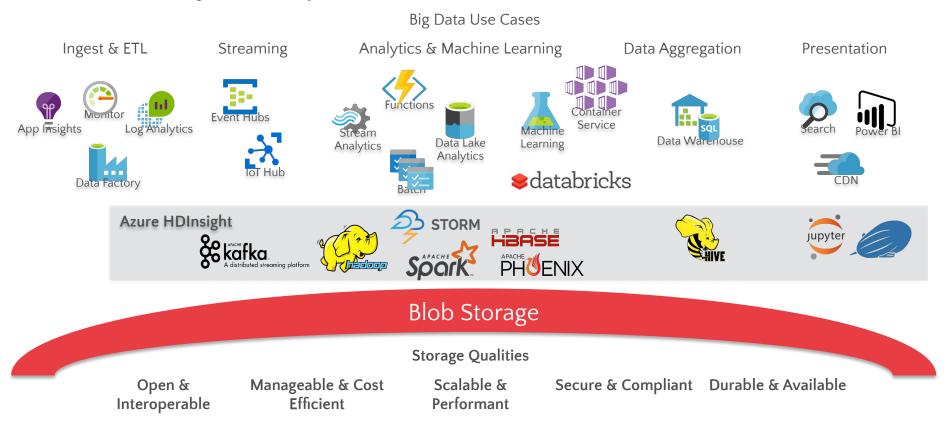
Asynchronous to secondary

RA-GRS

GRS + Read access to secondary Separate secondary


endpoint

RPO delay to secondary can be queried


Blob Storage Serverless Compute

Publish data change event notifications PutBlob, PutBlockList, DeleteBlob

Future – Change Feed

Contemporary Cloud Data Lake

Azure Files vs. Disks

	Azure Files	Azure Disks	
Scenario	Life & Shift applications which leverage native file system	Persistent disks to Azure Virtual Machines	
Protocol	SMB 2.1/3.0, REST	VHD, REST	
Accessibility	SMB – Worldwide (requires Port 445) REST – Worldwide	VHD – Azure Data Center REST (Page Blob) – Worldwide	
Durability	LRS, GRS	LRS, GRS, RA-GRS (for Page Blob)	
Object Size	Up to 1 TB file	Up to 4 TB Disks (Can stripe up to 64 disks on G VM)	
Max IOPS (8K)	1000	5000 (Premium) 500 (Standard)	
Throughput	Up to 60 MB/s per share	Up to 250 MB/s per disks (Premium) Up to 60 MB/s per disk (Standard)	

Azure Table Storage Overview

Tables

NOSQL storage Access via REST

KeyValue Store

S	Files	Tables
istent for Azure √Ms"	"SMB Access to Azure Storage"	"Massive auto-scaling NoSQL store"

Tables

Disk

"Pers disks IaaS \

"Massive auto-scaling NoSQL store"

- User, device and service metadata, structured data
- Schema-less entities with strong consistency
- No limits on number of table rows or table size
- Dynamic load balancing of table regions
- Best for Key/value lookups on partition key and row key
- Entity group transactions for atomic batching
- Endpoint <u>http://mystorageaccount.table.core.windows.net</u>

Azure Queues Overview

I CI SISterit
disks for Azure
laaS VMs"

Oueues

Reliable Messaging Access via REST

Scheduling a sync tasks

isks	Files	Tables	Queues
ersistent sks for Azure aS VMs"	"SMB Access to Azure Storage"	"Massive auto-scaling NoSQL store"	"Reliable messaging at scale for cloud

services

Oueues

"Reliable messaging system at scale for cloud services"

- Decouple components and scale them independently
- Scheduling of asynchronous tasks
- Building processes/work flows
- No limits on number of queues or messages
- Message visibility timeout to protect from component issues
- UpdateMessage to checkpoint progress part way through
- Endpoint <u>http://mystorageaccount.gueue.core.windows.net</u>

Azure Blob Storage Overview

10 01	

Blobs

Object storage Access via REST

Streaming & random object access scenarios

Disks	Files	Tables	Queues	Blobs
"Persistent disks for Azure IaaS VMs"	"SMB Access to Azure Storage"	"Massive auto-scaling NoSQL store"	"Reliable messaging at scale for cloud	"Highly scalable, REST based cloud object store"

services

Blobs

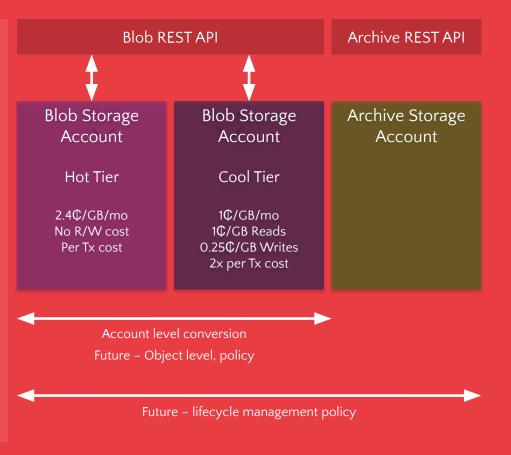
"Highly scalable, REST based cloud object store"

- Data sharing, Big Data, Backups
- Block Blobs: Read and write data in blocks. Optimized for sequential IO. Most cost effective Storage. Ideal for files, documents & media
- Page Blobs: Optimized for random access and can be up to 8 TB in size. IaaS VM OS & data disks are of this type.
- Append Blobs: Similar to block blobs and optimized for append operations. Ideal for logging scenarios and total size can be upto 195GB
- Endpoint <u>http://mystorageaccount.blob.core.windows.net/mycontainer/myblob.</u>

Blob Tiered Storage

Two Tiers

- Hot for commonly used data
- Cool for rarely used data
- Archive Cannot be read, copied, overwritten, or modified or snapshotted.
- Rehydration first (change tier to hot or cool) that take up to 15 hours to complete for blobs less than 50 GB.


API is 100% identical; similar throughput and latency Durability options: LRS, GRS, RA-GRS Availability: Cool – 99%, Hot – 99.9%. Higher for RA – GRS reads

Pricing to match your workload

- Hot: Lower access prices for frequent use
- Cool: Lower storage prices for high volume

Switch account tiers as needed

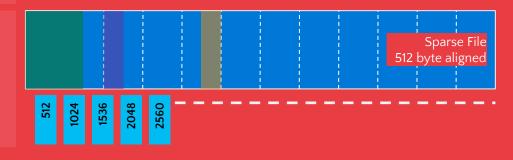
- No charge for Hot to Cool switch
- Future Object level switch with automatic policy based management

Types of Blobs

Block Blobs

- Most object storage scenarios
- Documents, images, video, etc.

Image.jpg Block 1 Block 2 Block 3 Block 4


Append Blobs

- Multi-writer append only scenarios
- Logging, Big Data Analytics output

Block 1	Block 2	Block 3	Block 4

Page Blobs

- Page aligned random reads and writes
- IaaS Disks, Event Hub, Block level backup

Azure Storage Offerings

Tables

NoSOL data store"

Oueues "Reliable messaging at scale for cloud services"

Blobs "Massive auto-scaling

"Highly scalable, REST based cloud object store" Disks "Persistent disks for Azure laaS VMs"

Files "File share like access to Azure storage"

Code against (REST API)

Use on Windows & Linux VMs

- Foundational building block of the Azure Cloud Cloud Azure Data Lake, Azure SQL Data Warehouse, Azure HDInsight, OneDrive, Skype, Xbox,...
- All storage types are encompassed under the **Storage Account** service offering.
 - General Purpose Storage (Magnetic Tape)
 - Premium Storage (SSD/Low Latency/High IOPS/ Better performance)
- Hyper Scale: >60 trillion objects, >7 million transactions per second
- REST based API, multi-platform, open sourced client libraries for many languages (e.g. Java, Python, Node.js, PHP, Ruby, Android, etc.)
- Strong hybrid story Azure Stack support and integration with StorSimple, Azure Backup and 3rd party storage vendors

Thank you

Please answer the survey form of this session:

https://docs.google.com/forms/d/e/1FAIpQLS f8tahLh_1_DA7B4rv10X0RGHLCrvOUEpnh 04f9Trnk0LeWKg/viewform