
Proving the Principal Principle∗
Wolfgang Schwarz
28 May 2014

Abstract. Any credible interpretation of objective chance should make sense
of the connection between objective chance and rational degree of belief.
Ideally, an account that identifies chance with some objective quantity X
should be accompanied by a story that explains, from independently plausible
assumptions, why X guides rational credence in the way captured by the
Principal Principle. I provide this story for various Humean accounts of
chance, including frequentist and best-systems accounts. Along the way, I
also suggest a generalization of the Principal Principle that allows for dyadic
and “indefinite” chances.

1 The Challenge

A noteworthy feature of physical probability, or chance, is its connection to rational
belief. If you know that the coin you’re about to toss has a 50% chance of landing
heads, then you should give equal degree of belief to heads and tails. More generally,
physical probability satisfies the following Coordination condition, where Ch(A)=x is
the proposition that the chance of A equals x.

Coordination (first pass)
Normally, if P is a rational prior credence function, A a proposition, and
P (Ch(A)=x) > 0, then P (A/Ch(A)=x) ≈ x.

This fact about prior credence often carries over to posterior credence because infor-
mation about chance tends to screen off other information relevant to the outcome of a
chance process. For example, the information that the previous toss of your coin came
up heads should not affect your credence in the next outcome, if you also know that the
chance of heads is 1/2. In general, objective chance satisfies the following Resiliency
condition (compare [Skyrms 1980]).

Resiliency (first pass)
Normally, if P is a rational prior credence function, A a proposition, and
P (Ch(A)=x) > 0, then there is a substantial range of propositions B such
that P (A/Ch(A)=x ∧B) ≈ P (A/Ch(A)=x).

∗ Thanks to John Barker, Kenny Easwaran, Alan Hájek, Marcus Hutter, Michael Smithson and Alastair
Wilson for helpful comments and discussion.
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Combining Coordination and Resiliency, we get a form of the Principal Principle
(compare [Lewis 1980]).

Principal Principle (first pass)
Normally, if P is a rational prior credence function, A a proposition, and
P (Ch(A)=x) > 0, then there is a substantial range of propositions B such
that P (A/Ch(A)=x ∧B) ≈ x.

Lewis’s formulation in [Lewis 1980] isn’t restricted to normal cases, and states a strict
rather than approximate equality. On Humean accounts of chance, this strict Principle is
arguably false for certain “undermining” propositions A. Lewis’s answer was to move to
a more complicated “New Principle” (see [Lewis 1994]). For reasons that will become
clear, I prefer to stay with a softened version of the old Principle.
Lewis also suggests that (i) chance should be indexed to a time t and world w, and

that (ii) resiliency holds for all propositions B about the history of w up to t. (These
propositions Lewis calls admissible.) I agree that chance should be indexed, although not
necessarily to a time and a world. This requires some adjustments to the three principles
above, which will be made in section 3. I do not follow Lewis in specifying a fixed domain
of resiliency, mostly because I want my principles to cover not only forward-looking
dynamical probabilities in fundamental physics, but also probabilities found in genetics,
population dynamics or statistical mechanics. As [Skyrms 1980: 10–19] points out, every
statistical theory comes with its own domain of resiliency, so there is little more we can
say in full generality except that the domain includes a substantial range of propositions,
including many propositions that one can easily come to know and that would otherwise
be relevant to the proposition A under discussion.

I do not want to take side in the debate over whether probabilities in genetics, population
dynamics or statistical mechanics deserve the name ‘chance’. Whatever we call them,
these probabilities display essentially the same connection to rational belief as dynamical
probabilities in fundamental physics.

This connection puts a tight constraint on the interpretation of the relevant probabilities.
After all, most probability functions do not satisfy Coordination and Resiliency. Lewis
[1994] argued that any proposal to identify chance with some objective measure X
must explain why X satisfies the Principal Principle. He conjectured that only Humean
interpretations like his “best-systems” account can live up to this challenge. However, he
never showed that best-systems probabilities satisfy the Principle. Every now and then,
someone tries to do better. [Mellor 1971] and [Howson and Urbach 1993] try to derive
the Principle for hypothetical frequentism, [Loewer 2004] and [Hoefer 2007] for versions
of the best-systems analysis, [Deutsch 1999] and [Wallace 2012] for branch amplitudes
in Everettian quantum mechanics. But many remain unconvinced by these attempts.
Indeed, there is a growing consensus that the task is impossible – that no account of
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chance, Humean or non-Humean, can explain the Principal Principle (see e.g. [Black
1998], [Strevens 1999], [Hall 2004]). In this note, I want to make another attempt at
showing that Humean chances satisfy the Principal Principle.
Let me be clear about the goal. The point is not to justify the Principal Principle.

The Principle may well be an analytic truth about chance and credence. It says is that
chance plays a certain role. But when we consider different hypotheses about the nature
of chance, we have to ask whether these candidates are apt to play the role. By analogy,
consider the claim that Jack the Ripper (if he exists) committed such-and-such murders
in the late 19th century. This may well be analytic. Nonetheless, when we consider
different hypotheses about the identity of Jack the Ripper – that he is Lewis Carroll, or
Barack Obama, or some metaphysically primitive entity – we have to ask whether there
is any reason to believe that these candidates satisfy the Jack the Ripper role, i.e. that
they committed the relevant murders.
The goal, then, is to show that on a given interpretation of ‘chance’, the Principal

Principle follows from independently plausibly assumptions about rational belief – as-
sumptions that do not depend on the interpretation of ‘chance’. As we will see, this is
not too hard if chance is interpreted as the characteristic function of the set of truths, or
as relative frequency; the relevant mathematical theorems are mostly well-known and
will be briefly reviewed in section 2. In section 3, I will suggest a generalisation of the
Principal Principle that allows for indexed chance and does not require chance to deal
with “single cases”. Afterwards, I will return to the task of deriving the (now generalised)
Principle, using first a frequentist and then a best-systems analysis of chance.

2 First steps

Let’s begin with a simple case: the fatalist interpretation of chance. According to fatalism,
only what in fact will happen has any chance of happening, and its chance is 1. The
chance function Ch is the “omniscient” function that maps every true proposition to 1
and every false proposition to 0. (The domain may be somewhat restricted, to avoid
liar-type paradoxes that arise if the “propositions” are sentences.) On this interpretation,
Ch(A)=1↔ A and Ch(A)=0↔ ¬A are analytic, and given that analytic truths have
probability 1, the Coordination condition P (A / Ch(A)=x) ≈ x reduces to P (A / A) ≈ 1
and P (A / ¬A) ≈ 0. Whenever P (A) > 0 and P (¬A) > 0, these are trivial theorems
of the probability calculus. Resiliency is also guaranteed, since P (A / A ∧B) = 1 and
P (A / ¬A ∧B) = 0 are theorems for all B with P (A ∧B) > 0 and P (¬A ∧B) > 0.
Fatalist chances are completely determined by the history of actual outcomes in the

world. So here we have a Humean account that does entail the Principal Principle, without
any additional assumptions about rational credence. The only problem is that fatalism
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is not a plausible interpretation of the probabilities in statistical theories. (Incidentally,
this shows that pace [Lewis 1980], the Principle does not exhaust our concept of chance.)

On the other hand, the fatalist result points towards a more general lesson. The fatalist
chance function is a maximally informed credence function: it is the credence of an
imaginary agent who knows absolutely everything about the world. On the best-systems
account, the chance function can also be understood as very well-informed credence,
corresponding to the beliefs of an imaginary agent who has access to all occurrent facts,
but limited memory, so that she cannot store all these facts one by one. If the Principal
Principle holds for maximally informed credence, does it also hold for lesser credence
functions?

Here is a reason to think that it does. Let P be a rational prior credence function, and
define Ch as P conditioned on the true answer to some question Q. Assume for simplicity
that the possible answers to Q form a finite partition. Let A be any proposition and
x any number for which P (Ch(A) =x) > 0. Let Ex be the disjunction of all possible
answers E to Q with P (A/E)=x. (There is at least one such E, as otherwise Ch(A)=x
couldn’t have probability > 0.) Since the answers are mutually exclusive, it follows that
P (A/Ex) = x. Moreover, P (Ch(A)=x↔ Ex)=1. So P (A/Ch(A)=x) = P (A/Ex) = x.
That is, if Ch is a probability function that lies in between the rational prior credence P
and the omniscient function in terms of what it knows about the events in a world, then
Ch satisfied the Coordination condition.
This is encouraging, but it does not go far enough. For one thing, we also need to

establish Resiliency. Moreover, most Humeans do not define chance as rational credence
conditional on the answer to a certain question – although the pragmatist best-systems
accounts of [Cohen and Callender 2009] and [Frigg and Hoefer 2010] come rather close.

The perhaps best known Humean account of chance is (finite) frequentism. Here chance
is identified with relative frequency in a suitable sequence of events. For example, if 40%
of the coin tosses in a certain sequence land heads, then the chance of heads, relative to
that sequence, is 0.4.
Bruno de Finetti [1937] proved some important connections between rational belief

and relative frequency. Consider a sequence of n coin tosses, with 2n possible outcomes,
represented by the vectors Ω = {H,T}n. Suppose the rational prior belief function P
regards these outcomes as exchangeable, meaning that it assigns the same probability
to any two outcomes ω, ω′ ∈ Ω that agree in the number of heads and tails. Let
Ch(H) = r be the proposition that the relative frequency of heads in the sequence is r
(for r ∈ {mn : 0 ≤ m ≤ n}). Let Hi be the proposition that the ith outcome is heads (for
i ≤ n). Exchangeability then entails that

P (Hi/Ch(H)=r) = r.

Moreover, the longer the sequence, the more stable P (Hi/Ch(H) = r) becomes under
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conditioning on other outcomes:

P (Hi/Ch(H)=r) ≈ P (Hi/Ch(H)=r ∧Hj) ≈ P (Hi/Ch(H)=r ∧ ¬Hj).

So exchangeability guarantees both Coordination and Resiliency, of a kind.
‘Of a kind’, because the chance function Ch and the credence function P apply to

different objects. Credence is defined for token events, such as the first toss landing
heads, H1. The frequentist chance function Ch, on the other hand, only applies to event
types, e.g. heads.

The correct response to this “type conflict” between chance and credence, I think, is to
reformulate the Principles of section 1. This will be the topic of section 3. For now, let’s
choose a simpler response and extend the frequentist interpretation to events like H1, by
ignoring the reference class problem and letting every token event inherit its chance from
the corresponding type. So the (extended) chance of H1 is the relative frequency of H.
To get a probability measure over the space of outcomes Ω, we also need to specify joint
probabilities for different tosses. The most natural choice here is to treat them all as
independent. Thus suppose r is the ratio of heads in the actual sequence. Then for any
sequence ω ∈ Ω, we define

Chr(ω) = rh(1− r)n−h,

where h is the number of heads in ω.
In this way, every relative frequency r determines an extended frequentist chance

function Chr over Ω. De Finetti famously showed that as n goes to infinity, any credence
function P that regards the sequence as exchangeable converges to a mixture of such
chance functions. In fact, P comes close to such a mixture as long as n is not very small.
So if the sequence at issue is sufficiently long and we read Ch=Chr as the hypothesis
that Chr is the extended frequentist chance function (i.e., that r is the relative frequency
of heads), then for all A ⊆ Ω, the prior credence in A equals the expectation of the
chance of A:

P (A) ≈
∑
r

Chr(A)P (Ch=Chr).

This is a little weaker than the Coordination principle P (A/Ch(A) = x) ≈ x. The
principle itself fails, because Chr generally assigns positive probability to outcomes in
which the relative frequency of heads is not r. For example, if A is the proposition that
all tosses land heads, then Ch(A)=x entails that the actual ratio of heads is n

√
x. For

x < 1, this means that Ch(A)=x is incompatible with A, so that P (A/Ch(A)=x) = 0.
This is an instance of the undermining problem for Humean accounts of chance. In

response, Hall [1994] and Lewis [1994] argued that the Principal Principle should be
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replaced by a more accurate “New Principle”. In the present context, the “New” form of
Coordination could be expressed as

P (A/Ch=Chr) = Chr(A/Ch=Chr).

On the frequentist account, this immediately follows from exchangeability: Ch=Chr is
the set of outcome sequences ω in which the relative frequency is r; Chr is uniform over
this set, and so is P if it satisfies exchangeability.
We can also establish restricted, ceteris paribus versions of the old Principle. In

particular, we have

P (H1 . . . Hk/Ch(H1 . . . Hk) = x) ≈ x

as long as k is small compared to n. And we have Resiliency in the sense that for j , i,

P (Hi/Ch(Hi)=r) ≈ P (Hi/Ch(Hi)=r ∧Hj) ≈ P (Hi/Ch(Hi)=r ∧ Tj).

We have assumed that the rational prior credence P regards the relevant sequence as
exchangeable. But this is problematic. For suppose you learn that the first 100 outcomes
in some binary sequence about which you have no preconceptions are 101010 . . . 10.
Intuitively, you should then be more confident that next two outcomes are 10 than
that they are 01. This suggests that 101010 . . . 1010 had higher prior probability than
101010 . . . 1001, so your priors didn’t regard the sequence as exchangeable. Indeed,
frequentist definitions of chance are often restricted to random (i.e., irregular) sequences,
rather than simple patterns like 101010 . . . 10. The information that the frequentist
chance of heads in a given sequence is 0.5 therefore entails that the sequence is sufficiently
random. But then 101010 . . . 10 is ruled out and the sequence isn’t exchangeable relative
to P conditioned on information about Chr.
Fortunately, all this doesn’t really matter because we don’t need full exchangeability.

The proofs just mentioned still go through if we only require that the rational prior
credence P gives equal probability to any two sufficiently random sequences with the
same ratio of outcomes, assuming that swapping all 1s and 0s in a sequence does not
affect whether it is sufficiently random. This restricted form of exchangeability is quite
plausible: if all you know about a sequence is that it looks random and contains a certain
ratio of 1s to 0s, you should arguably assign equal credence to random-looking sequences
with that ratio.

A precise frequentist analysis would now have to define a suitable notion of randomness
for sequences (without mentioning chance, of course); see [Eagle Forthcoming] for a survey
of the usual candidates. Fortunately, the present results are valid on any sensible way of
filling in these details. However, one plausible requirement may be worth pointing out:
the relative frequencies in a “sufficiently random” sequence should not fluctuate much
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between earlier and later parts of a sequence. This means that the sequence of states in
a Markov chain are often not a suitable base for the identification of chance with relative
frequency. A suitable base would here be the sequence of state transitions rather than
the sequence of states. (Exchangeability with respect to such derived sequences is closely
related to de Finetti’s notion of partial exchangeability; see [Diaconis and Freedman
1980]).

In practice, when we toss a coin, or set up a Stern-Gerlach experiment, we rarely
identify the occasion as the ith member of a certain sequence. Even if there is a privileged
way of arranging the relevant events in a series, we rarely know at which position in the
series we are. On the other hand, the probability that the present toss lands heads, given
that the overall frequency is x, plausibly equals the average of the conditional probability
that the ith toss lands heads, weighted by the probability that the present toss is the ith
toss. So we also have Coordination and Resiliency for hypotheses about the present toss.
We may also exploit our ignorance of the present position to directly support the

Principal Principle, without assuming any form of exchangeability. This was already
pointed out by Bertrand Russell in [Russell 1948: 402ff.] – to my knowledge, the first
explicit outline of a proof for the Principal Principle. Russell’s argument goes as follows.
Let C be a class of events, and D an arbitrary member of C. Given that r percent of Cs
are H, what is your degree of belief that D is H? Answer: r. This is a consequence of
the “arbitrariness” of the choice. Now when we toss a coin, we haven’t literally chosen an
arbitrary member of the relevant class – whatever that would mean. But our epistemic
situation with respect to the outcome is typically just the same: if r percent of tosses
land heads, and we have no further information about this particular toss, then it could
just as well be any member of the class, so our credence in heads should be r.
I will return to this line of thought in sections 4 and 5, where I will also explain how

the results established so far bear on the best-systems analysis. But first, I want to make
the promised amendments to the Principal Principle.

3 Generalising the Principal Principle

As formulated in section 1, Coordination and Resiliency presuppose that the objects
of chance are unrepeatable, single-case propositions like heads on the 17th toss, rather
than repeatable event types like heads. As we’ve seen, this is incompatible with the most
straightforward frequentist interpretation. It arguably also doesn’t match the probability
statements in actual statistical theories, which typically say that under such-and-such
conditions C, outcome A has probability x. Here, C and A are naturally understood as
event types – in other words, properties – that can be instantiated several times within a
world. The statistical law that outcome A under condition C has probability x can be
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understood as a “partial” counterpart of the strict law that all Cs are As. Like the strict
law, the statistical law primarily states a relation between properties.
The principles from section 1 not only presuppose that chance applies to single-case

propositions, they also neglect the relational character of chance: they don’t take into
account that chance might be relative to a condition, a time, or a reference class. This
is not what we find in many statistical theories, and it contradicts several important
accounts of chance: for Lewis, chance is relative to a time-world pair or history; for
frequentists, chance is relative to an underlying sequence; for propensity theorists, chance
is a measure of the causal tendency of a physical system in state C to produce outcome
A.
The chance of A relative to C is a kind of conditional probability, but it need not

satisfy standard laws for conditional probabilities. Without committing to a particular
theory of chance, all we can say is that chance is a family of probability functions,
indexed by a set of properties. More precisely, I will assume that a chance function
can be modeled as a function Ch that maps every element C of some set Γ of mutually
exclusive properties to a probability space 〈ΩC ,FC , ChC 〉, where ΩC is again a set of
mutually exclusive properties, FC is a suitable algebra over ΩC , and ChC is a probability
measure on FC . For instance, if C picks out a certain type of die toss, ΩC might be
the set of possible outcomes {One,Two, . . . ,Six }, and FC the set of subsets of ΩC .
Intuitively, the set {Two,Four,Six } here stands for the unspecific property of landing
with an even-numbered side up. I will often refer to the members of Γ as conditions and
to the members of ΩC as (basic) outcomes, but these names aren’t meant to carry any
significance: a condition may, for example, simply be a time.
The probability ChC(A) of A relative to C is not derived from an unrelativised

probability measure on a more inclusive algebra, perhaps as the ratio Ch(A∧C)/Ch(C).
We often have a well defined probability ChC(A) e.g. of future states given present
states, but no converse probability ChA(C) of present states given future states, nor an
unrelativised probability of the present state C. Relative to each index C ∈ Γ, there
are ordinary conditional probabilities. Thus in the die toss example, it might be that
ChC(Two/Even) = ChC(Two ∧ Even)/ChC(Even) = 1/3. This must not be confused
with ChC∧Even(Two) or Ch(Two/C ∧Even), both of which are undefined. Confusing the
two kinds of conditionality leads to what is known as “Humphreys’ Paradox”.

Traditional, single-case propositions are properties of a special kind: the proposition A is
the property of being such that A. So the present framework does not rule out irreducible
single-case chance. For the sake of generality, we might also allow for unrelativised chance.
In this case, Γ is best identified with {>}, the singleton of the tautologous property >.
A has unrelativised chance x iff A has chance x under condition >. The condition is
logically guaranteed to always obtain, so the relativisation does no work.
Now return to Coordination, Resiliency and the Principal Principle. We somehow
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need to include the extra argument place for conditions. The most obvious way to adjust
Coordination would be to replace P (A/Ch(A)=x) ≈ x with

(1) P (A/ChC(A)=x ∧ C) ≈ x.

This resembles the “reformulated” Principal Principle in [Lewis 1980: 97]. Lewis’s
principle says, in effect, that

(2) P (A/Ch=f ∧ C) = fC(A),

where Ch= f is the proposition that the function f is the chance function, and the
condition C is a complete history of a universe up to a certain time. [Meacham 2005] rec-
ommends generalising this Principle to other conditions, in order to accommodate chances
in statistical mechanics and time-symmetrical versions of quantum mechanics. Like Lewis,
Meacham assumes that the conditions Γ are very rich in information. (Meacham even
assumes that each C ∈ Γ uniquely determines the true chance function Ch.) (1) and
(2) then guarantee a great deal of resiliency. To illustrate, suppose Γ is a finite set of
hypotheses about the complete history of the world up to now. Let Ch@(A)=x be the
proposition that the chance of A relative to the history of the (actual) world up to now
is x. By the law of total probability, and the fact that ChC(A)=x ∧ C is equivalent to
Ch@(A)=x ∧ C,

P (A/Ch@(A)=x) =
∑
C∈Γ

P (C)P (A/ChC(A)=x ∧ C).

By (1), P (A/ChC(A)=x∧C) ≈ x for all C. Hence if E is any disjunction of propositions
in Γ – in other words, any information about the past – then P (A/Ch@(A)=x ∧E) ≈ x.
So information about chance screens off all information about the past.
It would be nice, I suppose, if we could always identify a chance function’s domain

of resiliency with the relevant conditions Γ. However, I do not want to assume that
information about chance always screens off information about the relevant condition. I
also don’t want to assume that the conditions in Γ are informationally rich. If a statistical
theory specifies probabilities for outcomes of coin tosses, then the relevant condition is
being a coin toss, or perhaps being a coin toss of type so-and-so. The instantiation of
this condition entails very little about the world, so Coordination does not automatically
entail Resiliency.
In any case, there is something odd about (1) and (2). If A is landing heads and C

being a coin toss, then (1) constrains a rational agent’s prior degree of belief in landing
heads, conditional on being a coin toss. But what does it mean to assign degrees of belief
to a property?

[Lewis 1979] argued that the objects of credence really are properties. On this view, to
assign high credence to a property is (roughly speaking) to self-attribute that property.
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But this is not what we want. Most of us are fairly certain that we are not coin tosses,
so it is not very useful to learn what we should believe conditional on this outlandish
assumption. In general, our principles should cover attributions of the properties A and
C to things other than ourselves: the probability that this toss will result in heads, given
that it is a toss of the relevant type, should be such-and-such.

But now it matters how the relevant things are picked out. Suppose a certain coin will
actually lands heads on its next toss. Then we can identify that toss as the next toss
of the coin resulting in heads. The rational degree of belief in the hypothesis that the
so-described toss will result in heads is 1, and remains 1 conditional on any hypothesis
about chance. So Coordination fails. The problem here is that inadmissible information
about the outcome has been smuggled into the way the chance process is picked out.

I will write ‘R : A’ for the proposition that attributes the property A to the individual
(event, process, etc.) identified by R. You may think of the identifier R as an individual
concept or a Russellian definite description: ‘R : A’ is true iff there is a unique individual
that satisfies the condition R and this individual is A. I prefer to think of identifiers as
binary relations, assuming with Lewis that the objects of credence are properties. When
we attribute a property to an individual other than ourselves, we generally identify the
individual by a relation it bears to us and our present location in space and time, as
when we consider the next toss of this coin (see [Lewis 1979: sec.8]). For any (binary)
relation R and property A, R :A is the property that applies to an object x iff there is a
unique object R-related to x and this object has A. For apparently non-relational ways
of picking out an individual as, say, ‘the tallest man in the history of the universe’, the
identifier is the relation that holds between x and y iff y is the tallest man in the history
of the universe of x. Even more degenerate cases are “singular” identifiers =α which
always pick out a particular individual α. =α is the relation that holds between x and y
iff y is α.
Now we can take the Principal Principle to say that for many ordinary identifiers R

and propositions B,

P (R :A / R :C ∧ ChC(A)=x ∧B) ≈ x.

An identifier that picks out the next toss as ‘next toss landing heads’ would not count as
suitable, because it contains inadmissible information.
The problem of inadmissible identifiers is rarely noted ([Skyrms 1980: 6ff.] is an

exception), but it is a real phenomenon. For example, consider a variation of the Sleeping
Beauty problem in which a second coin is tossed on Monday night. The proposition that
last night’s coin landed heads must then have different probability than the proposition
that the Sunday night coin landed heads, even if last night’s coin is the Sunday night
coin (see [Schwarz 2012]). Inadmissible identifiers also often show up in “observation
selection effects”. Suppose the chance of life to evolve on an Earth-like planet is 0.1.
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Conditional on this assumption, what is your subjective probability that life evolved on
the Earth-like planet on which you were born? Not 0.1, of course. In this context, it is
sometimes suggested that Coordination should be restricted to singular identifiers: if ‘α’
is a name of the Earth that conveys no qualitative information about its referent and its
relation to ourselves, then conditional on the chance of life to evolve on an Earth-like
planet being 0.1, the probability that life evolved on Earth-like planet α is plausibly 0.1
(see e.g. [White 2000]). However, it is controversial whether it is possible to pick out
individuals in a relevantly non-descriptive way. Moreover, even the singular information
=α:C can reveal inadmissible information, because it indicates that there are many Cs:
in worlds where almost everything is C, it is less surprising that the individual α is C
than in worlds where almost nothing is C; but the information that there are many Cs
can be evidence about the outcome of a chance process under condition C.
To keep issues of admissibility out of the Coordination condition, I will resort to a

technical trick. I will explain how to transform any credence function P into a function
PC relative to which a certain identifier εC picks out an individual of type C without
conveying any further information about the individual or the world. Intuitively, εC :A
is the proposition that an arbitrarily chosen C is A, and PC is an extension of P that
believes in a corresponding process of arbitrary choice. More formally, let W be the class
of atomic possibilities (“worlds”) in the domain of the credence function P . Relative
to each w ∈W , any property F has an extension Fw, i.e. the class of F instances that
exist relative to w. For any condition C, let WC be the class of all pairs 〈w, c〉 where
w ∈ W and c ∈ Cw. It may help to think of WC as a class of centred worlds, except
that the centre is not supposed to represent the location of an epistemic subject, but
the “randomly selected” C: the ‘you are here’ arrow says ‘the randomly selected C is
here’. Note that WC also excludes all worlds where there are no Cs. Since ordinary,
uncentred propositions do not distinguish which C is selected, an ordinary proposition
X is represented in WC by the set of centred worlds 〈w, c〉 such that X is true at w. On
the other hand, the centred proposition εC :F is the set of centred worlds 〈w, c〉 such
that c is in the extension of F at w.
If WC is finite, we can now define PC as the probability measure over WC such that

PC(〈w, c〉) = P (w/∃xCx)
|C|w

,

where |C|w is the number of Cs at w. Thus PC conditionalises P on the assumption that
there are Cs and then evenly divides the probability of any world w ∈W among all the
pairs 〈w, c〉. This ensures that every C-instance in a world has equal probability of being
“selected”. It follows that for uncentred propositions X,

(3) PC(X) = P (X/∃xCx),
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and that PC(εC :A) equals the P -expectation of the ratio of As among Cs:

(4) PC(εC :A) = EP
[ |A ∧ C|
|C|

]
These equalities can also be used to define PC (to the extent that we need it) for cases
where WC is infinite, as long as zero probability is given to the hypothesis that there are
infinitely many instances of C. I will return to this limitation at the end of the paper.
Now Coordination can be expressed as follows.

Coordination.
Normally, if P is a rational prior credence function, A and C are properties,
and PC(ChC(A)=x) > 0, then PC(εC :A/ChC(A)=x) ≈ x.

Informally: the prior probability that an arbitrarily chosen C is A, given that the chance
of A under C is x, should be approximately equal to x. Unlike in (1) and (2) above, there
is no extra assumption about the instantiation of the condition C, since the randomly
chosen individual of type C is already guaranteed to be an instance of C.
Coordination only indirectly links chance ChC to rational credence P by directly

linking ChC to the C-transform PC of P . Resiliency is also expressed in terms of PC :

Resiliency.
Normally, if P is a rational prior credence function, A and C are properties,
and PC(ChC(A)=x) > 0, then there is a substantial range of propositions
B and identifiers R such that PC(R :A/R :C ∧ ChC(A) =x ∧ B) = PC(εC :
A/ChC(A)=x).

PC(X) equals P (X/∃xCx) if X does not involve the identifier εC. Thus the Principal
Principle, combining Coordination and Resiliency, can be expressed directly in terms of
P , as promised above:

Principal Principle.
Normally, if P is a rational prior credence function, A and C are properties,
and P (ChC(A) = x) > 0, then there is a substantial range of identifiers R
and propositions B such that P (R :A/R :C ∧ ChC(A)=x ∧B) ≈ x.

The present formulations reduce to those of section 1 if C is the tautologous property
> and R is any non-defective identifier, since PC(R :A) is then equivalent to P (A).

4 Russell’s Argument

Now return to the Russellian argument from section 2. On the frequentist interpretation,
ChC(A) = x says that the relative frequency of As within a suitable sequence of Cs is x.
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Presumably this implies that the total number of Cs is positive and finite. Let P be a
rational prior credence function for which P (ChC(A) = x) > 0. Let P ′ be P conditioned
on ChC(A) = x. By (4), P ′C(εC :A) is the expectation, by the lights of P ′, of the relative
frequency of As among Cs. Since P ′ is certain that this ratio is x, P ′C(εC :A) = x. Hence
PC(εC :A/ChC(A)=x) = x. We’ve proved Coordination.
Thus far, all we needed was the assumption that rational prior credence obeys the

probability calculus. However, Coordination is only half of the story. We also need
Resiliency. We have to show that there is (normally) a substantial range of ordinary
propositions B and identifiers R such that PC(R : A/R : C ∧ B) 0 P (R : A), but
PC(R :A/R :C∧ChC(A)=x∧B) = PC(εC :A/ChC(A)=x). Together with Coordination,
it then follows that P (R :A/R :C ∧ ChC(A)=x ∧ B) = x. Showing this requires more
substantial assumptions.

Take a concrete example. Suppose the relevant C-instance is picked out demonstratively,
say, as ‘the next toss of this coin’. If all you know is that the total ratio of heads among
all tosses of a coin is 80%, what degree of belief should you assign to the hypothesis that
the next toss will land heads? The probability calculus doesn’t settle the answer. You
might be certain that the next toss lands tails, or heads, or give equal credence to heads
and tails. But recall that we are talking about prior credence. If any of these attitudes
are part of your priors, they are either based on no evidence at all, or on the information
that the relative frequency is 80%. In this case, wouldn’t the attitude be irrational? If
all you know is that the relative frequency of heads among some tosses is 80%, then you
should be 80% certain that the next toss lands heads.
What’s at work here is a principle of indifference. In general, consider any random-

looking sequence of heads and tails with 80% heads. If the length of the sequence is
n, then there are n possibilities about the location of the “next toss”: it might be the
first, or the second, . . . , or the nth. In the absence of relevant evidence, you should give
equal credence to these n possibilities. It then follows that your credence in the next toss
landing heads will be 0.8. The principle of indifference required here is closely related
to the principle of induction. To be confident that the tosses you are going to observe
land tails while the unobserved tosses mostly land heads would reflect an irrational,
counterinductive attitude towards the world.
It is notoriously difficult to find a satisfactory, precise formulation of indifference, or

of inductive probabilities more generally. But these difficulties should not cast doubt
on the fact that there are some indifference constraints on prior credence. Fortunately,
the present argument requires only a very restricted, compartmentalised principle of
indifference. It is not required that you distribute your credence uniformly over all ways
things could be, which would presuppose a privileged parameterisation of logical space,
and would arguably make it impossible to learn from experience. Imagine a grid imposed
on logical space, each cell corresponding to a particular sequence of heads and tails. Set
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aside all cells in which the ratio of heads is not 80%, as well as possibilities in which the
distribution of heads and tails shows a conspicuous pattern. Each of the remaining cells
divides into subcells, corresponding to different possibilities about the location of the
next toss. We require that within each of the left-over cells from the original partition,
you assign the same credence to every subcell. Nothing is said about how your credence
should be divided between the larger cells, nor how it should be distributed within the
subcells.

These remarks about the next toss carry over to other common identifiers such as the
previous toss or the toss presently reported by Jones. They do not carry over to the next
toss that will land heads. Here every specific hypothesis about a sequence of coin tosses
still divides into different hypotheses about which of the tosses is the next toss that will
land heads: the first, the second, and so on. But unless the sequence contains only heads
outcomes, some of these subcells will be empty: if the ith element in the sequence is tails,
then the ith element certainly isn’t the next toss that lands heads. So your credence
cannot be divided evenly between the subcells.
What about the extra information B in the Resiliency condition? For the neutral

identifier εC, it is easy to see that ordinary, uncentred propositions are always admissible;
i.e. for all uncentred propositions B, PC(εC :A ∧ ChC(A)=x ∧ B) = x. On the other
hand, ordinary identifiers and ordinary propositions together can become inadmissible.
If B suggests that Jones tends to report only tails outcomes, then your credence in the
outcome reported by Jones being heads, conditional on the relative frequency being 80%
and B, won’t be 0.8. We could say that in the presence of B, the identifier the toss
reported by Jones is inadmissible. Or we could say that in the presence of this identifier,
the information B is inadmissible. It doesn’t really matter. (Technically, the addition
of B in the Resiliency condition and the Principal Principle is redundant, since the
information in B can always be folded into the identifier R.)
In section 2, we saw that information B about previous outcomes, combined with

information about the total length of a sequence, can be inadmissible for frequentist
chance. On the other hand, we also saw that if the credence function is not unduly
opinionated, then Resiliency holds with respect to all B that specify not too many other
outcomes. The relevant constraint on rational credence – exchangeability among random
sequences – is another highly restricted form of indifference. As Lewis [1994: 229] points
out, frequency information also tends to screen off many other facts that would otherwise
be relevant to the outcome of the next toss, such as symmetries or asymmetries in the
coin and the tossing procedure.
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5 Best-System Probabilities

Let us move on to the leading Humean theory of chance: the best-systems approach. Here,
‘chance’ is defined indirectly via statistical theories. Let a theory be any logically closed
set of sentences in a suitable language that includes resources to talk about probability.
Given the total history H of (relevant) events in a world, theories can be ranked by
their simplicity, strength, fit and possibly further criteria. Then chance is defined as
the probability function employed in whatever theory ranks highest, on balance, in
terms of these virtues. (See [Lewis 1994], [Loewer 2004], [Hoefer 2007] for more detailed
expositions, and different ways of filling in the details.)
The fit between a theory T and a history H measures the extent to which T assigns

high probability to events in H. Lewis suggested that if P T is the probability function
specified by theory T , then P T (H) can serve as measure of fit. This presupposes that
statistical theories assign an absolute, unrelativised probability to complete histories. A
natural generalisation to the present framework would use the product of P TC (A) for each
occurrence of an outcome A under a condition C in the history:

(5)
∏

〈C,A〉∈H
P TC (A).

Here I assume that a history is represented as a sequence (or multiset) of condition-
outcome pairs.
Formally, (5) defines a family of probability measures for every set of histories all of

which agree in their frequency distribution over conditions C ∈ Γ. To make this more
explicit, let T be any theory and P T the probability function employed in T . Partition
the space of histories by the distribution of frequencies over P T ’s conditions Γ: H ∼ H ′

iff |C|H = |C|H′ for all C ∈ Γ. For any cell F in this partition, define FitT,F as the
probability measure over F given by

FitT,F (H) =
∏

〈C,A〉∈H
P TC (A).

FitT,F resembles the “extended” frequentist chance function of section 2, but here it is
not meant to represent T ’s probability for a history. Rather FitT,F (H) is supposed to
capture the extent to which H fits the probabilistic predictions of T , given the condition
frequencies F .
What actually matters for the fit of a history to a theory are only the frequencies of

outcomes in the history, not their order:

FitT,F (H) =
∏
C∈Γ

∏
A∈ΩC

P TC (A)|C∧A|H .

Thus we can also measure fit directly in terms of a history’s frequency distribution. Let
〈k1, . . . , kn 〉C be the set of histories H ∈ F for which the outcomes A1, . . . , An under
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condition C have frequency k1, . . . , kn, respectively. FitT,F (〈k1, . . . , kn 〉C) is given by the
multinomial formula

FitT,F (〈k1, . . . , kn 〉C) =
(
|C|F

k1, . . . , kn

)
n∏
i=1

P TC (Ai)ki ,

where |C|F is the (constant) number of C instances in F histories. The fit for a single F
history is the product of these values, for every condition C.

An alternative way to measure fit is to look at the differences ∆ = |C∧A|H−P TC (A)|C|H
between the “observed” frequencies |C ∧ A|H of A outcomes under condition C in a
history and the “expected” frequencies by the light of the theory, P TC (A)|C|H . Intuitively,
the more the observed frequencies match the expected frequencies, the better the fit
between theory and history. Aggregating the (squared normalised) differences ∆ for all
outcomes A under all conditions C yields

X2 =
∑
C∈Γ

∑
A∈ΩC

(|C ∧A|H − P TC (A)|C|H)2

P TC (A)|C|H
.

The lower X2, the better the fit. On reflection, this measure is only plausible if the
relevant frequencies are reasonably large. In this case, the X2 value of a history H

can be converted into an approximation of FitT,F (H), so the two measures of fit are
not really alternatives: since FitT,F (∆ = x) then follows an approximately normal
distribution, FitT,F (X2 = x) approaches a sum of squared standard normal distributions;
the χ2 function with

∑
C∈Γ(|ΩC | − 1) degrees of freedom thus yields an approximation

of the FitT,F of the set of histories in which the frequencies are at least as far from the
expectation as in H. (The reasoning here parallels the reasoning behind the χ2 test for
“goodness of fit” in frequentist statistics.)

Now let P ′ be a rational prior credence function P conditioned on the assumption
that (i) the frequency of Cs in actual history is k, and (ii) the best theory T assigns
probability x to outcome A under condition C. Note that whatever the total frequency
distribution F and best theory T might be, the distribution of FitT,F over values of
|C ∧A| is binomial with mean xk. Arguably, the P ′-expectation of |C ∧A| should roughly
equal this mean xk:

(6) EP (|C ∧A| / |C|=k ∧ ChC(A)=x) ≈ xk.

It follows that the P ′-expectation of the relative frequency |C∧A||C| roughly equals x. By
definition, this expectation equals P ′(εC :A); so

(7) P (εC :A / |C|=k ∧ ChC(A)=x) ≈ x.

If (7) is true for all k, we get the Coordination equality

(8) P (εC :A / ChC(A)=x) ≈ x.
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The only substantial assumption here is (6). Where does that come from? Recall that
ChC(A)=x says that the best theory assigns probability x to A under C. This reveals
various facts about the pattern of events systematised by the theory. First of all, the
pattern must be disorderly: otherwise the best theory would not involve probabilities.
Moreover, the frequencies in the pattern must be distributed in such a way that some
probability measure that assigns x to A under C strikes the best compromise, among
measures on the relevant domain, between simplicity on the one hand and, on the other
hand, closeness between probabilities and relative frequencies.
Now let T be an arbitrary theory that assigns x to A under C, and consider the

histories (sequences of condition-outcome pairs) with k instances of C that are best
systematised by T . In some of these histories, the number of A ∧ C events might be
much higher or lower than the theory’s “expectation” xk; but then this lack of fit will
usually be compensated by a closer match between frequency and expectation for other
conditions and outcomes. By contrast, if |A ∧ C| is fairly close to xk, then there is more
leeway for the other frequencies to come apart from the expectation and still achieve high
overall fit. As a consequence, there is in general a greater range of fitting histories in
which |A∧C| is fairly close to xk than histories in which the two are far apart. Moreover,
the histories in which |A ∧ C| is somewhat below xk will usually be matched by other
histories in which |A ∧ C| is somewhat above x. (6) assumes that the rational prior
credence in either sort of deviation balances out so that the subjective expectation of the
deviation is about zero.
Picture the binomial curve for FitT,F over possible frequencies of A. If all you know

is that T strikes the best balance between simplicity and maximising FitT,F (H), then
where do you think the frequency of A lies under the goodness of fit curve? In normal
cases, you should believe that it is not too far from the maximum of the curve, and your
credence in deviations on either side should balance out.

The rationality constraint reflected in (6) is again a restricted principle of indifference.
The precise nature of the constraint depends on C and A, and on the criteria for a good
theory. Not every instance is plausible. Suppose the best system assigns probabilities
to informationally very rich events, such as the hypothesis A that the universe contains
precisely 1000 coin tosses all of which land heads. The information that the best system
assigns low probability x to A may then imply that A is false, since the best system
of a world where A is true would not treat the coin tosses as chancy at all. So the
P ′-expectation of the frequency of A is zero, rather than xk. This is the phenomenon
of undermining. As [Lewis 1980: 111f.] points out, Humean accounts of chance that
allow for undermining propositions like A are incompatible with the strict Coordination
condition. Accordingly, the present derivation of (8) breaks down for these propositions.

What about Resiliency? Here most of what I said for frequentism carries over. In fact,
the best-systems account generally yields a wider domain of resiliency. That’s because

17



best-system probabilities have to fit many frequencies, for many conditions. For example,
if the state transitions for a certain system are modeled as a random walk, then the
relative frequency of transitions from state C to state A may differ widely from the
best system’s probability PC(A) – especially if C or A is rare. Hence information about
previous transition frequencies has little effect on how likely you should deem a transition
from C to A, once you know the chance.

I have assumed that histories and outcome spaces are finite. If we lift this assumption,
we run into the “zero-fit” problem (see [Elga 2004]). There are really two problems
here, one arising from infinite outcome spaces, and one from infinite histories. Infinite
outcome spaces are common in science, because outcomes are often real-valued. There
are several ways to accommodate this in goodness of fit measures. A common method in
statistics is to replace individual outcomes by reasonably chosen intervals, for example
by partitioning the possible outcomes into

√
|C| many intervals with uniform expected

frequency.
Infinite histories are harder to deal with. If there are infinitely many instances of

condition C in a history, our goodness of fit measure will no longer distinguish better from
worse theories, since they all have zero fit. We also run into problems with the definition
of PC . A simple way around these issues might be to focus on finite subsets of Cs. If the
world contains infinitely many Cs, we can look at increasingly large “samples”, choosing
all Cs within a certain distance from ourselves. If the world is well-behaved, the relative
frequencies in these samples, and thereby the order of theories by fit, should converge.
Of course, there is no logical guarantee that the world is well-behaved, but ill-behaved
worlds deserve little rational credence, especially conditional on the hypothesis that the
best system specifies probabilities relative to C.

6 Wrapping up

In order to say what chance is, we may first ask what chance does, and then see if we
can find something that does that (compare [Lewis 1970: 22]). One thing chance does
is constrain rational belief, in roughly the way expressed by Lewis’s Principal Principle.
We have seen that several Humean quantities fit this job description, including the
“omniscient” probability function, relative frequencies in suitable sequences, and chance as
characterized by best-systems accounts, no matter how various details in these accounts
are spelled out.
One route to the conclusion that frequencies guide rational credence was reviewed

in section 2. Here we saw, among other things, that if Hi says that the ith element
in a (moderately long) sequence is of type H, and Ch(Hi) =x is the proposition that
the relative frequency of H in the sequence is x, then P (Hi/Ch(Hi) =x) ≈ x as long
as P treats the sequence as exchangeable. In fact, it was enough that P assigns equal
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probability to any two series of possible outcomes that agree in the total frequencies
for each outcome type as well as their degree of orderliness. Under this condition, we
could also verify that frequency information screens off other relevant information. In
particular, P (Hi/Ch(Hi)=x ∧Hj) ≈ x. In section 4, I explored an alternative line of
thought which draws on the idea that when we observe a member of a class X and know
the proportion of Hs in X, then in the absence of further information our degree of belief
that the observed X is H should equal that known proportion.

In section 5, I explained how these considerations carry over to best-systems accounts,
where chances can to some extent diverge from relative frequencies so as to allow for a
more compact statement of the relevant features of the world. Here the main idea was
that our a priori credence in possibilities where the best-system probabilities lie below
the frequencies should balance out with possibilities where they lie above, so that the
expected relative frequency, given a certain hypothesis about the best-system probability,
equals that probability.

All these arguments relied on non-trivial assumptions about rational credence: that in
the absence of further information, agents should normally not deem a given sequence of
outcomes more likely than an equally disorderly permutation; that on the information that
most Xs are H, they should normally not be confident without any evidence that a given
observed X is not-H; that on the information that the actual distribution of frequencies
over a range of properties is best systematised by a function f , they should normally
not be confident without further evidence that the true frequency for a given property
lies below the value of f . These assumptions strike me as very plausible. Moreover,
their plausibility does not rest on Humeanism or the interpretation of chance. Without
assumptions like these, science could not be understood as a rational enterprise.
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