An official PyTorch implementation of the paper "Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language", NeurIPS 2018
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
images
scripts
test
.gitignore
CONFIG
LICENSE
README.md
data.py
model.py
preprocess_caption.py
test.py
train.py

README.md

Text-Adaptive Generative Adversarial Network (TAGAN)

A PyTorch implementation of the paper "Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language". This code implements a Text-Adaptive Generative Adversarial Network (TAGAN) for manipulating images with natural language.

Model architecture

Requirements

Pretrained word vectors for fastText

Download a pretrained English word vectors. You can see the list of pretrained vectors on this page.

Datasets

The caption data is from this repository. After downloading, modify CONFIG file so that all paths of the datasets point to the data you downloaded.

Pretrained models

Please put these files in ./models/ folder.

Run

  • scripts/preprocess_caption.sh
    Preprocess caption data using fastText embedding. You only need to run it once before training.
  • scripts/train_[flowers/birds].sh
    Train a network. If you want to change arguments, please refer to train.py.
  • scripts/test_[flowers/birds].sh
    Test a trained network. After running it, please see ./test/result_[flowers/birds]/index.html.

Results

Flowers

Birds

Citation

Please cite our paper when you use this code.

@inproceedings{nam2018tagan,
  title={Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language},
  author={Nam, Seonghyeon and Kim, Yunji and Kim, Seon Joo},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2018}
}

Contact

Please contact shnnam@yonsei.ac.kr if you have any question about this work.