
https://www.mdpi.com/2076-3417/10/12/4214 → Programming Real-Time Sound in Python

Pandey, Maulishree, et al. “Understanding Accessibility and Collaboration in Programming for
People with Visual Impairments.” Proceedings of the ACM on Human-Computer
Interaction, vol. 5, no. CSCW1, 13 Apr. 2021, pp. 1–30, https://doi.org/10.1145/3449203.
Accessed 31 May 2021.

In the paper, it aims to investigate the collaborative experiences and challenges of
visually impaired programmers in professional contexts through semi-structured interviews with
22 visually impaired software professionals. It further aims to provide insights and
recommendations for improving the accessibility and inclusivity of collaborative programming
environments. The information provided by the study can help us understand how to
accommodate and create an accessible and inclusive environment for programming.
Programming has been deemed relatively accessible as it is text- based, and new assistive tech
like graphical user interfaces (GUIs), but there is still more to discover and analyze how those
findings can be applied into Word Playpen. The study grounded its focus by looking at the
challenges of visually impaired programmers in professional contexts through semi-structured
interviews with 22 visually impaired software professionals.

The paper focuses on how assistive technology is used in social settings. There has
been research on how accessibility in Human-computer interaction emphasizes the social
contexts of assistive technology use, and found that they often lag behind mainstream products
and draw unwanted attention. As a result, users have to balance utility with the desire to avoid
attention and maintain self-esteem. Thus, it is important to denote that when designing assistive
tech one must consider both functional and social scenarios and involve both users with and
without disabilities in the design process, which often is overlooked.

There is an emphasis on how research has indicated that people with disabilities face
social costs when seeking help, as it can make them appear less competent. Due to that,
people with disabilities prefer using external assistance to avoid burdening others. In
mixed-ability contexts, accessibility is achieved through collaboration, often requiring people
with visual impairments to perform additional work to address accessibility challenges,
continually advocating for their needs.

The accessibility challenges that are faced is from being hesitant to seek one’s employer
for accommodations. It mainly stems from assistive tech having an expense, or even fearing
being seen as making excuses, and it would additionally reflect negatively on their programming
ability. The study’s participants preferred to demonstrate their preferred work practices to
colleagues to familiarize them with assistive tech and workflows. Through the study, he
researches the need for more accessible internal tools as it helps enhance work experience by
enabling more efficient work and reducing the need for assistance. Overall, the paper proved
the need for accessibility and showed insights on the need for implementing assistive
technology as well as working with programmers who have disabilities.

https://www.mdpi.com/2076-3417/10/12/4214


Yee-King, Matthew John, et al. “Automatic Programming of vst Sound Synthesizers Using Deep
Networks and Other Techniques.” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 2, no. 2, Apr. 2018, pp. 150–159,
https://doi.org/10.1109/tetci.2017.2783885. Accessed 26 Mar. 2021.

This thesis investigates the techniques and applications of automatic sound synthesizer
programming. It discusses the types of systems such as tone matching programmers and
synthesis space explorers. Tone matching programmers take a sound synthesis algorithm and a
target sound as input. Synthesis space explorers, provides users with a representation of the
synthesizer's sound space, which allows for interactive exploration of the space. It uses Studio
tools, autonomous musical agents, and self-reprogramming drum machines.

This paper was much too advanced for me, however I wrote down what I was able to
understand. But I think it is a thesis worth revisiting again. But what I was able to understand
from the conclusion, the thesis delves into the concept of automatic sound synthesizer
programming, which is aimed at removing the need for users to specify parameter settings
explicitly. It believed that preset banks, presentation of synthesizer sound space, and search
algorithms to find specific target sounds, would help remove the need. It also discussed the
Integration of automated timbral exploration into a drum machine enhances creativity for
musicians. I believe the thesis explores the implications and impacts of sound systems, but at
the moment my knowledge is lacking to fully understand the scope of what this thesis is trying to
explain.



Pires, Ana Cristina, et al. “Exploring Accessible Programming with Educators and Visually
Impaired Children.” Proceedings of the Interaction Design and Children Conference, 21
June 2020, https://doi.org/10.1145/3392063.3394437. Accessed 13 Mar. 2023.

This thesis explored the emergence of computational thinking as a discipline in schools,
which further emphasized the importance of it beyond just computing context. It believes that
through the use of visual programming environments such as Scratch and Blocky it will help
promote computational thinking to enhance children’s abilities and prepare them for
programming in the future. However, they found out that the tools provided were not accessible
to visually impaired children. The paper proposes new approaches to address the lack of
accessibility, and explore more opportunities for spatial activities. The paper focuses on two of
the studies that they did.

The first study explores current approaches to promote computational thinking
environments for visually impaired children putting a focus on spatial programming activities.
The different environments that they investigated were fully virtual ones, virtual environments
with tangible output, tangible environments with virtual output, and fully tangible environments.
Though schools (Portugal) have adopted it, these environments are still not fully accessible to
visually impaired children. As such, the study gathered a focus group with special needs
educators and information tech instructors from inclusive schools. The participants were asked
to discuss the qualities and limitations of the environments and further explore avenues to make
them more accessible. The researchers found the importance of using robots, tangible blocks,
boards, and maps to help programming activities for visually impaired children. The participants
also believed that there needs to be more tactile feedback, auditory cues, and Braille
inscriptions in order to enhance accessibility for the children. As such, the study saw that in
order to design an accessible programming environment, one must engage robots with
feedback mechanisms, tactile-rich maps for spatial perception, and tangible blocks with sensory
representations. Overall, the participants did feel enthusiastic about using these new
environments with visually impaired children but further stressed the importance of making them
more accessible through sensory enhancements.

The second study explored the adaptation of solutions from Study 1 in order to create
accessible programming environments for visually impaired children. They mainly focused on
using tangible blocks and a robot with augmented physicality. The study worked with seven
visually impaired children in a workshop, and later analyzed them through thematic analysis and
validation with educators. They implemented tangible blocks and a robot with augmented
physicality to facilitate programming. The robot called DASH was chosen for its existing usage
in schools, however modifications were made such as adding tactile cues and audio feedback to
the blocks and robot actions. The researchers wanted to make sure that the workshop was
unstructured and just had goal-directed spatial activities. As a result, children were more excited
to participate and had better interactions that helped perceive agency in controlling the robot.
Through the workshop's analysis, it revealed that the children were able to understand the
programming concepts, and looked like they wanted to learn more. Though successful, the
educators put focus on the importance of using step-by-step instructions and real life context
that will help with learning. During the workshop, the researchers also saw how children



naturally collaborated and engaged with the robot through the use of tangible elements that
helped sharing and exploration.

The researchers also looked at the children's cognitive development, and found that
older children showed more intentional movements and debugging skills compared to younger
children, which indicated the development of abstract thinking. They also looked at spatial
cognition and saw how it was enhanced through activities involving the robot's movement,
promoting spatial orientation and conceptual understanding. The setup of the workshop proved
to be beneficial for visually impaired children, improving their spatial cognition, mental rotation,
and navigation skills. The educators from study 1 recognized the potential of tangible
programming environments to reinforce existing educational goals and promote inclusive
learning. They identified opportunities to integrate programming activities with other subjects like
math and science. Collaboration was seen as a crucial aspect, facilitated by tangible elements
and spatial activities. The researchers also looked at the limitations of the study, and saw how
they focus solely on visually impaired children and the novelty effect of the activities. However,
the study offers valuable insights for researchers, developers, and educators to develop
inclusive programming environments and foster collaborative learning among children with
mixed abilities.

The educators in the previous study recognized the potential of tangible programming
environments to reinforce existing educational goals and promote inclusive learning. They
identified opportunities to integrate programming activities with other subjects like math and
science. Collaboration was seen as a crucial aspect, facilitated by tangible elements and spatial
activities. The researchers also looked at the limitations within the research. One of them was
just focusing exclusively on a group of visually impaired children, but it did not include sighted
children. This in turn restricts the understanding of how these activities might function in a fully
inclusive classroom setting where children of mixed abilities interact. Additionally, the study was
only conducted in a single session, which doesn’t show how children might behave in a
long-term setting. Another limitation is lack of diverse educational context, it limited the
generalizability of the findings to different educational contexts or settings. Different schools or
cultural environments may get different results.

Overall, I think this paper helps understand the importance of providing accessible tools
in programming languages. Not only do programmers need it, but as Wordplay also wants
educators to use it, it is important that the assistive technology we are using can also help
include children with disabilities that want to learn programming languages.



Romano, Simone, et al. “The Effect of Noise on Software Engineers’ Performance.” ArXiv
(Cornell University), 11 Oct. 2018, https://doi.org/10.1145/3239235.3240496.

In this paper it doesn’t particularly talk about the accessibility with programmers who
vision impairments but more or else shows the effects of noise on programming. It looks into
different theories of noise effects on performance. The theories consist of, Arousal Theory,
Composite Theory, and Maximal Adaptability Theory.

Broadbent's Arousal Theory explains noise effects through an arousal-induced
attentional narrowwing mechanism. Meaning that the noise can increase arousal helping intially
with exclusig irrelevant cues, and imporving performance. However, it doesn’t include beyond
the optimal arousal level, so there is no way of knowing when performance declines as relevant
cues are excluded. Moreover, the theory believes that noise intensity and duration influence
one’s performance, with intermittent noise causing more impairment than continuous noise.

Poulton's Composite Theory believes that noise degrades performance when it is
masked with inne speech, which is a crucial for task performance. They believe continuous
noise can increase arousal, offsetting masking effects, but over time, arousal decreases, and
masking dominates, impairing performance. Noise effects are similar across tasks and types but
vary with intensity, duration, and schedule.

The Maximal Adaptability Theory believes that theb stress from noise affects
performance through input (environmental factors like noise), adaptation (individual coping
mechanisms), and output (task performance). Noise impairs performance by masking relevant
auditory information. Individuals adapt to varying stress levels, but beyond a threshold,
performance declines.

These theories all suggest that noise effects on performance depend on the nature of
the task, the characteristics of the noise, and individual adaptation mechanisms.

The study evaluates the effect of noise on software engineering tasks through two
controlled experiments. Noise negatively impacted fault fixing but not the comprehension of
functional requirements. This indicates that tasks requiring more cognitive resources, like fault
fixing, are more susceptible to noise, highlighting the need for quieter work environments for
such tasks.

I am not sure yet how I could connect this with WordPlay, but it give me a deeper
understanding on the effects of noise in engineering work environments.



Sánchez, Jaime, and Fernando Aguayo. Blind Learners Programming through Audio. 2 Apr.
2005, https://doi.org/10.1145/1056808.1057018. Accessed 30 Mar. 2024.

The paper discusses the efforts to make programming more accessible to end-users
which include languages like Basic, Logo, Smalltalk, Pascal, and others. Those programming
languages have improved beginners skills by using user interface principles. However, the
languages are not accessible to visually impaired learners. Many studies have shown that
audio-based applications are able to enhance cognitive skills to blind children, which focus on
3D audio interfaces for spatial and abstract reasoning.

The Audio Programming Language (APL) was developed to aid blind novice
programmers by simplifying syntax and enhancing problem-solving and thinking skills through
audio interfaces. The APL uses a circular command list and query system, making programming
accessible without requiring memorization of commands. It features a dynamic command list
and unconventional variables to store sounds, facilitating interaction with the machine.

APL underwent usability testing with expert and beginner users, which revealed initial
functionality issues and showed that blind learners eventually grasped programming concepts
through concrete experience and interaction. Learners created simple and complex programs,
demonstrating increased understanding and enthusiasm. The study indicates that audio
interfaces can help blind learners develop algorithmic thinking and cognitive skills, suggesting
the need for further research on how blind users map the programming process differently from
sighted users.

Though this paper didn’t show that much insight, it helped understand what other people
are doing in order to make programming languages more accessible, and show that it is
possible.



Howard, A. M., et al. “Using Haptic and Auditory Interaction Tools to Engage Students with
Visual Impairments in Robot Programming Activities.” IEEE Transactions on Learning
Technologies, vol. 5, no. 1, 2012, pp. 87–95, https://doi.org/10.1109/tlt.2011.28.

The paper first recognizes the number of college freshmen with disabilities has been
increasing, with vision impairments accounting for 16% of these students. However, only 3.9%
of disabled students major in computer science. This disparity is largely due to inadequate
pre-college math and science education, which is foundational for computing degrees.
Approximately 11% of children aged 6 to 14 have disabilities, but they take fewer science and
math courses than their peers, often due to inaccessible information and unfamiliarity with
nonvisual teaching methods.

There isn’t much effort being made to engage visually impaired students in computing at
the precollege level. There have been some initiatives such as the National Center for Blind
Youth in Science, the AccessComputing Alliance, and Project ACE. Conversely, robotics
appeals broadly to students, including those with disabilities. However, the lack of accessible
interfaces for educational robots means visually impaired students often cannot participate
equally in robot-based computing activities. Most robot programming interfaces rely on visual
and keyboard-based inputs, which are unsuitable for many visually impaired students.

The research in the paper focuses on creating accessible interfaces for robot
programming to engage visually impaired students. Their goal is to leverage the appeal of
robotics to involve students with disabilities towards computing, hypothesizing that alternative
interface technologies will enable active participation and encourage future interest in
computing.

The Programming/Robot Interaction System uses a lot of calculus which I am still
working on learning. But I believe that it will help me understand the code they used and how it
will inspire me to implement it on Word Playpen.


