
Docker	Cheat	Sheet
NOTE:	This	used	to	be	a	gist	that	continually	expanded.	It’s	now	a	GitHub	project	because

it’s	considerably	easier	for	other	people	to	edit,	fix	and	expand	on	Docker	using	Github.	Just

click	README.md,	and	then	on	the	“writing	pen”	icon	on	the	right	to	edit.

Why

Prerequisites

Installation

Containers

Images

Networks

Registry	and	Repository

Dockerfile

Layers

Links

Volumes

Exposing	Ports

Best	Practices

Security

Tips

Why
"With	Docker,	developers	can	build	any	app	in	any	language	using	any	toolchain.

“Dockerized”	apps	are	completely	portable	and	can	run	anywhere	-	colleagues’	OS	X	and

Windows	laptops,	QA	servers	running	Ubuntu	in	the	cloud,	and	production	data	center	VMs

running	Red	Hat.

Developers	can	get	going	quickly	by	starting	with	one	of	the	13,000+	apps	available	on

Docker	Hub.	Docker	manages	and	tracks	changes	and	dependencies,	making	it	easier	for

sysadmins	to	understand	how	the	apps	that	developers	build	work.	And	with	Docker	Hub,

developers	can	automate	their	build	pipeline	and	share	artifacts	with	collaborators	through

public	or	private	repositories.

Docker	helps	developers	build	and	ship	higher-quality	applications,	faster."	–	What	is	Docker

Prerequisites
I	use	Oh	My	Zsh	with	the	Docker	plugin	for	autocompletion	of	docker	commands.	YMMV.

Linux
The	3.10.x	kernel	is	the	minimum	requirement	for	Docker.

MacOS
10.8	“Mountain	Lion”	or	newer	is	required.

Installation

Linux
Quick	and	easy	install	script	provided	by	Docker:

curl	-sSL	https://get.docker.com/	|	sh

If	you’re	not	willing	to	run	a	random	shell	script,	please	see	the	installation	instructions	for

your	distribution.

If	you	are	a	complete	Docker	newbie,	you	should	follow	the	series	of	tutorials	now.

Mac	OS	X
Download	and	install	Docker	Toolbox.	If	that	doesn’t	work,	see	the	installation	instructions.

Docker	used	to	use	boot2docker,	but	you	should	be	using	docker	machine	now.	The	Docker

website	has	instructions	on	how	to	upgrade.	If	you	have	an	existing	docker	instance,	you	can

also	install	the	Docker	Machine	binaries	directly.

Once	you’ve	installed	Docker	Toolbox,	install	a	VM	with	Docker	Machine	using	the	VirtualBox

provider:

docker-machine	create	--driver=virtualbox	default

docker-machine	ls

eval	"$(docker-machine	env	default)"

Then	start	up	a	container:

docker	run	hello-world

That’s	it,	you	have	a	running	Docker	container.

If	you	are	a	complete	Docker	newbie,	you	should	probably	follow	the	series	of	tutorials	now.

Containers
Your	basic	isolated	Docker	process.	Containers	are	to	Virtual	Machines	as	threads	are	to

processes.	Or	you	can	think	of	them	as	chroots	on	steroids.

Lifecycle

docker	create 	creates	a	container	but	does	not	start	it.

docker	run 	creates	and	starts	a	container	in	one	operation.

docker	rm 	deletes	a	container.

If	you	want	a	transient	container,	 docker	run	--rm 	will	remove	the	container	after	it	stops.

If	you	want	to	map	a	directory	on	the	host	to	a	docker	container,	 docker	run	-v

$HOSTDIR:$DOCKERDIR .	Also	see	Volumes.

If	you	want	to	remove	also	the	volumes	associated	with	the	container,	the	deletion	of	the

container	must	include	the	-v	switch	like	in	 docker	rm	-v .

Starting	and	Stopping
docker	start 	starts	a	container	so	it	is	running.

docker	stop 	stops	a	running	container.

docker	restart 	stops	and	starts	a	container.

docker	pause 	pauses	a	running	container,	“freezing”	it	in	place.

docker	unpause 	will	unpause	a	running	container.

docker	wait 	blocks	until	running	container	stops.

docker	kill 	sends	a	SIGKILL	to	a	running	container.

docker	attach 	will	connect	to	a	running	container.

If	you	want	to	integrate	a	container	with	a	host	process	manager,	start	the	daemon	with	 -

r=false 	then	use	 docker	start	-a .

If	you	want	to	expose	container	ports	through	the	host,	see	the	exposing	ports	section.

Restart	policies	on	crashed	docker	instances	are	covered	here.

Info

docker	ps 	shows	running	containers.

docker	logs 	gets	logs	from	container.

docker	inspect 	looks	at	all	the	info	on	a	container	(including	IP	address).

docker	events 	gets	events	from	container.

docker	port 	shows	public	facing	port	of	container.

docker	top 	shows	running	processes	in	container.

docker	stats 	shows	containers’	resource	usage	statistics.

docker	diff 	shows	changed	files	in	the	container’s	FS.

docker	ps	-a 	shows	running	and	stopped	containers.

Import	/	Export

docker	cp 	copies	files	or	folders	between	a	container	and	the	local	filesystem…

docker	export 	turns	container	filesystem	into	tarball	archive	stream	to	STDOUT.

Executing	Commands

docker	exec 	to	execute	a	command	in	container.

To	enter	a	running	container,	attach	a	new	shell	process	to	a	running	container	called	foo,

use:	 docker	exec	-it	foo	/bin/bash .

Images
Images	are	just	templates	for	docker	containers.

Lifecycle

docker	images 	shows	all	images.

docker	import 	creates	an	image	from	a	tarball.

docker	build 	creates	image	from	Dockerfile.

docker	commit 	creates	image	from	a	container,	pausing	it	temporarily	if	it	is

running.

docker	rmi 	removes	an	image.

docker	load 	loads	an	image	from	a	tar	archive	as	STDIN,	including	images	and	tags

(as	of	0.7).

docker	save 	saves	an	image	to	a	tar	archive	stream	to	STDOUT	with	all	parent

layers,	tags	&	versions	(as	of	0.7).

Info

docker	history 	shows	history	of	image.

docker	tag 	tags	an	image	to	a	name	(local	or	registry).

Cleaning	up
While	you	can	use	the	 docker	rmi 	command	to	remove	specific	images,	there’s	a	tool	called

docker-gc	that	will	clean	up	images	that	are	no	longer	used	by	any	containers	in	a	safe

manner.

Networks
Docker	has	a	networks	feature.	Not	much	is	known	about	it,	so	this	is	a	good	place	to	expand

the	cheat	sheet.	There	is	a	note	saying	that	it’s	a	good	way	to	configure	docker	containers	to

talk	to	each	other	without	using	ports.	See	working	with	networks	for	more	details.

Lifecycle

docker	network	create

docker	network	rm

Info

docker	network	ls

docker	network	inspect

Connection

docker	network	connect

docker	network	disconnect

Registry	&	Repository
A	repository	is	a	hosted	collection	of	tagged	images	that	together	create	the	file	system	for	a

container.

A	registry	is	a	host	–	a	server	that	stores	repositories	and	provides	an	HTTP	API	for

managing	the	uploading	and	downloading	of	repositories.

Docker.com	hosts	its	own	index	to	a	central	registry	which	contains	a	large	number	of

repositories.	Having	said	that,	the	central	docker	registry	does	not	do	a	good	job	of	verifying

images	and	should	be	avoided	if	you’re	worried	about	security.

docker	login 	to	login	to	a	registry.

docker	search 	searches	registry	for	image.

docker	pull 	pulls	an	image	from	registry	to	local	machine.

docker	push 	pushes	an	image	to	the	registry	from	local	machine.

Run	local	registry
Registry	implementation	has	an	official	image	for	basic	setup	that	can	be	launched	with

docker	run	-p	5000:5000	registry 	Note	that	this	installation	does	not	have	any

authorization	controls.	You	may	use	option	 -P	-p	127.0.0.1:5000:5000 	to	limit	connections

to	localhost	only.	In	order	to	push	to	this	repository	tag	image	with

repositoryHostName:5000/imageName 	then	push	this	tag.

Dockerfile
The	configuration	file.	Sets	up	a	Docker	container	when	you	run	 docker	build 	on	it.	Vastly

preferable	to	 docker	commit .	If	you	use	jEdit,	I’ve	put	up	a	syntax	highlighting	module	for

Dockerfile	you	can	use.	You	may	also	like	to	try	the	tools	section.

Instructions

.dockerignore

FROM	Sets	the	Base	Image	for	subsequent	instructions.

MAINTAINER	Set	the	Author	field	of	the	generated	images…

RUN	execute	any	commands	in	a	new	layer	on	top	of	the	current	image	and	commit

the	results.

CMD	provide	defaults	for	an	executing	container.

EXPOSE	informs	Docker	that	the	container	listens	on	the	specified	network	ports	at

runtime.	NOTE:	does	not	actually	make	ports	accessible.

ENV	sets	environment	variable.

ADD	copies	new	files,	directories	or	remote	file	to	container.	Invalidates	caches.	Avoid

ADD 	and	use	 COPY 	instead.

COPY	copies	new	files	or	directories	to	container.

ENTRYPOINT	configures	a	container	that	will	run	as	an	executable.

VOLUME	creates	a	mount	point	for	externally	mounted	volumes	or	other	containers.

USER	sets	the	user	name	for	following	RUN	/	CMD	/	ENTRYPOINT	commands.

WORKDIR	sets	the	working	directory.

ARG	defines	a	build-time	variable.

ONBUILD	adds	a	trigger	instruction	when	the	image	is	used	as	the	base	for	another

build.

STOPSIGNAL	sets	the	system	call	signal	that	will	be	sent	to	the	container	to	exit.

LABEL	apply	key/value	metadata	to	your	images,	containers,	or	daemons.

Tutorial

Flux7’s	Dockerfile	Tutorial

Examples

Examples

Best	practices	for	writing	Dockerfiles

Michael	Crosby	has	some	more	Dockerfiles	best	practices	/	take	2.

Building	Good	Docker	Images	/	Building	Better	Docker	Images

Managing	Container	Configuration	with	Metadata

Layers
The	versioned	filesystem	in	Docker	is	based	on	layers.	They’re	like	git	commits	or	changesets

for	filesystems.

Note	that	if	you’re	using	aufs	as	your	filesystem,	Docker	does	not	always	remove	data

volumes	containers	layers	when	you	delete	a	container!	See	PR	8484	for	more	details.

Links
Links	are	how	Docker	containers	talk	to	each	other	through	TCP/IP	ports.	Linking	into	Redis

and	Atlassian	show	worked	examples.	You	can	also	(in	0.11)	resolve	links	by	hostname.

NOTE:	If	you	want	containers	to	ONLY	communicate	with	each	other	through	links,	start	the

docker	daemon	with	 -icc=false 	to	disable	inter	process	communication.

If	you	have	a	container	with	the	name	CONTAINER	(specified	by	 docker	run	--name

CONTAINER)	and	in	the	Dockerfile,	it	has	an	exposed	port:

EXPOSE	1337

Then	if	we	create	another	container	called	LINKED	like	so:

docker	run	-d	--link	CONTAINER:ALIAS	--name	LINKED	user/wordpress

Then	the	exposed	ports	and	aliases	of	CONTAINER	will	show	up	in	LINKED	with	the	following

environment	variables:

$ALIAS_PORT_1337_TCP_PORT

$ALIAS_PORT_1337_TCP_ADDR

And	you	can	connect	to	it	that	way.

To	delete	links,	use	 docker	rm	--link .

If	you	want	to	link	across	docker	hosts	then	you	should	look	at	Swarm.	This	link	on

stackoverflow	provides	some	good	information	on	different	patterns	for	linking	containers

across	docker	hosts.

Volumes
Docker	volumes	are	free-floating	filesystems.	They	don’t	have	to	be	connected	to	a	particular

container.	You	should	use	volumes	mounted	from	data-only	containers	for	portability.

Lifecycle

docker	volume	create

docker	volume	rm

Info

docker	volume	ls

docker	volume	inspect

Volumes	are	useful	in	situations	where	you	can’t	use	links	(which	are	TCP/IP	only).	For

instance,	if	you	need	to	have	two	docker	instances	communicate	by	leaving	stuff	on	the

filesystem.

You	can	mount	them	in	several	docker	containers	at	once,	using	 docker	run	--volumes-

from .

Because	volumes	are	isolated	filesystems,	they	are	often	used	to	store	state	from

computations	between	transient	containers.	That	is,	you	can	have	a	stateless	and	transient

container	run	from	a	recipe,	blow	it	away,	and	then	have	a	second	instance	of	the	transient

container	pick	up	from	where	the	last	one	left	off.

See	advanced	volumes	for	more	details.	Container42	is	also	helpful.

As	of	1.3,	you	can	map	MacOS	host	directories	as	docker	volumes	through	boot2docker:

docker	run	-v	/Users/wsargent/myapp/src:/src

You	can	also	use	remote	NFS	volumes	if	you’re	feeling	brave.

You	may	also	consider	running	data-only	containers	as	described	here	to	provide	some	data

portability.

Exposing	ports
Exposing	incoming	ports	through	the	host	container	is	fiddly	but	doable.

This	is	done	by	mapping	the	container	port	to	the	host	port	(only	using	localhost	interface)

using	 -p :

docker	run	-p	127.0.0.1:$HOSTPORT:$CONTAINERPORT	--name	CONTAINER	-t	someimage

You	can	tell	Docker	that	the	container	listens	on	the	specified	network	ports	at	runtime	by

using	EXPOSE:

EXPOSE	<CONTAINERPORT>

But	note	that	EXPOSE	does	not	expose	the	port	itself,	only	 -p 	will	do	that.

If	you’re	running	Docker	in	Virtualbox,	you	then	need	to	forward	the	port	there	as	well,	using

forwarded_port.	It	can	be	useful	to	define	something	in	Vagrantfile	to	expose	a	range	of	ports

so	that	you	can	dynamically	map	them:

Vagrant.configure(VAGRANTFILE_API_VERSION)	do	|config|

		...

		(49000..49900).each	do	|port|

				config.vm.network	:forwarded_port,	:host	=>	port,	:guest	=>	port

		end

		...

end

If	you	forget	what	you	mapped	the	port	to	on	the	host	container,	use	 docker	port 	to	show

it:

docker	port	CONTAINER	$CONTAINERPORT

Best	Practices
This	is	where	general	Docker	best	practices	and	war	stories	go:

The	Rabbit	Hole	of	Using	Docker	in	Automated	Tests

Bridget	Kromhout	has	a	useful	blog	post	on	running	Docker	in	production	at

Dramafever.

There’s	also	a	best	practices	blog	post	from	Lyst.

A	Docker	Dev	Environment	in	24	Hours!

Building	a	Development	Environment	With	Docker

Discourse	in	a	Docker	Container

Security
This	is	where	security	tips	about	Docker	go.	The	security	page	goes	into	more	detail.

First	things	first:	Docker	runs	as	root.	If	you	are	in	the	 docker 	group,	you	effectively	have

root	access.	If	you	expose	the	docker	unix	socket	to	a	container,	you	are	giving	the	container

root	access	to	the	host.	Docker	should	not	be	your	only	defense.

Security	Tips
For	greatest	security,	you	want	to	run	Docker	inside	a	virtual	machine,	or	on	a	host.	This	is

straight	from	the	Docker	Security	Team	Lead	–	slides	/	notes.	Then,	run	with	AppArmor	/

seccomp	/	SELinux	/	grsec	etc	to	limit	the	container	permissions.

Docker	image	ids	are	sensitive	information	and	should	not	be	exposed	to	the	outside	world.

Treat	them	like	passwords.

See	the	Docker	Security	Cheat	Sheet	by	Thomas	Sjögren:	some	good	stuff	about	container

hardening	in	there.

Check	out	the	docker	bench	security	script,	download	the	white	papers	and	subscribe	to	the

mailing	lists	(unfortunately	Docker	does	not	have	a	unique	mailing	list,	only	dev	/	user).

You	should	start	off	by	using	a	kernel	with	unstable	patches	for	grsecurity	/	pax	compiled	in,

such	as	Alpine	Linux.	If	you	are	using	grsecurity	in	production,	you	should	spring	for

commercial	support	for	the	stable	patches,	same	as	you	would	do	for	RedHat.	It’s	$200	a

month,	which	is	nothing	to	your	devops	budget.

From	the	Docker	Security	Cheat	Sheet	(it’s	in	PDF	which	makes	it	hard	to	use,	so	copying

below)	by	Container	Solutions:

Turn	off	interprocess	communication	with:

docker	-d	--icc=false	--iptables

Set	the	container	to	be	read-only:

docker	run	--read-only

Verify	images	with	a	hashsum:

docker	pull	debian@sha256:a25306f3850e1bd44541976aa7b5fd0a29be

Set	volumes	to	be	read	only:

docker	run	-v	$(pwd)/secrets:/secrets:ro	debian

Set	memory	and	CPU	sharing:

docker	-c	512	-mem	512m

Define	and	run	a	user	in	your	Dockerfile	so	you	don’t	run	as	root	inside	the	container:

RUN	groupadd	-r	user	&&	useradd	-r	-g	user	user

USER	user

Security	Videos

Using	Docker	Safely

Securing	your	applications	using	Docker

Container	security:	Do	containers	actually	contain?

Security	Roadmap

The	Docker	roadmap	talks	about	seccomp	support.	There	is	an	AppArmor	policy	generator

called	bane,	and	they’re	working	on	security	profiles.	There’s	also	work	on	user	namespaces

which	just	made	it	out	of	experimental.

Tips
Sources:

15	Docker	Tips	in	5	minutes

Last	Ids
alias	dl='docker	ps	-l	-q'

docker	run	ubuntu	echo	hello	world

docker	commit	`dl`	helloworld

Commit	with	command	(needs	Dockerfile)
docker	commit	-run='{"Cmd":["postgres",	"-too	-many	-opts"]}'	`dl`	postgres

Get	IP	address
docker	inspect	`dl`	|	grep	IPAddress	|	cut	-d	'"'	-f	4

or

wget	http://stedolan.github.io/jq/download/source/jq-1.3.tar.gz

tar	xzvf	jq-1.3.tar.gz

cd	jq-1.3

./configure	&&	make	&&	sudo	make	install

docker	inspect	`dl`	|	jq	-r	'.[0].NetworkSettings.IPAddress'

or	using	a	go	template

docker	inspect	-f	'{{	.NetworkSettings.IPAddress	}}'	<container_name>

Get	port	mapping
docker	inspect	-f	'{{range	$p,	$conf	:=	.NetworkSettings.Ports}}	{{$p}}	->	{{(i

ndex	$conf	0).HostPort}}	{{end}}'	<containername>

Find	containers	by	regular	expression
for	i	in	$(docker	ps	-a	|	grep	"REGEXP_PATTERN"	|	cut	-f1	-d"	");	do	echo	$i;	d

one`

Get	Environment	Settings
docker	run	--rm	ubuntu	env

Kill	running	containers
docker	kill	$(docker	ps	-q)

Delete	old	containers
docker	ps	-a	|	grep	'weeks	ago'	|	awk	'{print	$1}'	|	xargs	docker	rm

Delete	stopped	containers
docker	rm	-v	`docker	ps	-a	-q	-f	status=exited`

Delete	dangling	images
docker	rmi	$(docker	images	-q	-f	dangling=true)

Delete	all	images
docker	rmi	$(docker	images	-q)

Delete	dangling	volumes
As	of	Docker	1.9:

docker	volume	rm	$(docker	volume	ls	-q	-f	dangling=true)

In	1.9.0,	the	filter	 dangling=false 	does	not	work	-	it	is	ignored	and	will	list	all	volumes.

Show	image	dependencies
docker	images	-viz	|	dot	-Tpng	-o	docker.png

Slimming	down	Docker	containers	Intercity	Blog

Cleaning	APT	in	a	RUN	layer

This	should	be	done	in	the	same	layer	as	other	apt	commands.

Otherwise,	the	previous	layers	still	persist	the	original	information	and	your	images

will	still	be	fat.

RUN	{apt	commands}	\

	&&	apt-get	clean	\		

	&&	rm	-rf	/var/lib/apt/lists/*	/tmp/*	/var/tmp/*

Flatten	an	image

ID=$(docker	run	-d	image-name	/bin/bash)

docker	export	$ID	|	docker	import	–	flat-image-name

For	backup

ID=$(docker	run	-d	image-name	/bin/bash)

(docker	export	$ID	|	gzip	-c	>	image.tgz)

gzip	-dc	image.tgz	|	docker	import	-	flat-image-name

Monitor	system	resource	utilization	for	running
containers
To	check	the	CPU,	memory,	and	network	i/o	usage	of	a	single	container,	you	can	use:

docker	stats	<container>

For	all	containers	listed	by	id:

docker	stats	$(docker	ps	-q)

For	all	containers	listed	by	name:

docker	stats	$(docker	ps	--format	'{{.Names}}')

