Docker Cheat Sheet

wsargent

Docker Cheat Sheet

Inhaltsverzeichnis

1 Docker Cheat Sheet 4
10 WhyDocker e e e e e e 4
1.2 Prerequisites e e e e e e 4
121 LinUX . . e e e e e e e e e e e 4
122 MacOS . . . e e e e 4
123 WIindowsT0 o ot e e e e e e e e e 4
124 WindowsServer e e e e e e e e 5
1.3 Installation o L e 5
130 LiNUX ..o o e e e e e 5
1322 macOS . . . e e e 5
133 Windows10 o o e e e e 5
1.3.4 Windows Server2016 /2019 e 6
1.3.5 CheckVersion 7
1.4 Containers e e e 7
1.41 Lifecycle e 7
1.4.2 Startingand Stopping 8
143 Info . . . 9
1.44 Import/Export e e e 10
1.45 ExecutingCommands e 10
1.5 Images e 10
151 Lifecycle . . . o L e e e 10
152 Info . o o e 10
1.5.3 Cleaningup o e e e e 10
1.5.4 Load/Saveimage i 1
1.5.5 Import/Exportcontainer e e n

1.5.6 Difference between loading a saved image and importing an exported container
ASANIMAGE o vt e e e e e e e e e e e e n
1.6 Networks . . . o o e e e 1
1.6.1 Lifecycle o . e e e 1
1.6.2 Info e 12
1.6.3 Connection L 12
1.7 Registry & Repository e 12
171 Runlocalregistry e 13
1.8 Dockerfile e 13
1.8.1 Instructions. L 13
1.8.2 Tutorial 14

wsargent 2

Docker Cheat Sheet

1.8.3 Examples L e e e e e 14
1.9 Layers . . . o e e e e e e e e 14
100 Links . . . e e e 14
101 Volumes e e 15
1110 Lifecycle e 15
1012 Info 15
102 EXPOSINGPOItS . . o o o i o e e e e e e e e e e e 16
103 BestPractices L e e e e 17
1014 Docker-Compose o o o e e e e e e e e e 17
105 SeCurity o e e e e e e e e e 17
10501 Security TIPS .« . v v v v e e e e e e e e e e e e e 18
1.15.2 UserNamespaces o i i i i ittt e e e e e e 19
115.3 SecurityVideos L e e e 19
115.4 SecurityRoadmap e e 19
106 TIPS o v o o e 19
1161 Prune . . . o oo e e e 20
106.2 df . . e 20
1.16.3 Heredoc Docker Container 20
106.4 Lastlds 20
1.16.5 Commit with command (needs Dockerfile) 20
116.6 GetlPaddress 20
106.7 Getportmapping o . i e e e e 21
1.16.8 Find containers by regularexpression 21
116.9 GetEnvironmentSettings L Lo oo 21
116,10 Killrunningcontainers. e 21
1.16.11 Delete all containers (force!! running or stopped containers) 21
1.16.12 Deleteold containers 22
1.16.13 Deletestoppedcontainers.. e 22
1.16.14 Delete containers afterstopping L 22
1.16.15 Deletedanglingimages 22
116.16 Deleteallimages 22
1.16.17 Deletedanglingvolumes 22
1.16.18 Showimagedependencies e 22
1.16.19 Slimming down Dockercontainers 22
1.16.20 Monitor system resource utilization for running containers 23
1.16.21 Volumescanbefiles 24
107 Contributing o e e e e e e 24
1171 OpenREADME.Md e 24

wsargent 3

Docker Cheat Sheet

1072 EditPage e e e 25
117.3 MakeChangesandCommit 25

1 Docker Cheat Sheet

Want to improve this cheat sheet? See the Contributing section!

1.1 Why Docker

»With Docker, developers can build any app in any language using any toolchain. “Dockerized“ apps
are completely portable and can run anywhere - colleagues’ OS X and Windows laptops, QA servers
running Ubuntu in the cloud, and production data center VMs running Red Hat.

Developers can get going quickly by starting with one of the 13,000+ apps available on Docker Hub.
Docker manages and tracks changes and dependencies, making it easier for sysadmins to understand
how the apps that developers build work. And with Docker Hub, developers can automate their build
pipeline and share artifacts with collaborators through public or private repositories.

Docker helps developers build and ship higher-quality applications, faster." - What is Docker

1.2 Prerequisites

| use Oh My Zsh with the Docker plugin for autocompletion of docker commands. YMMV.

1.2.1 Linux

The 3.10.x kernel is the minimum requirement for Docker.

1.2.2 MacOS

10.8 ,,Mountain Lion“ or newer is required.

1.2.3 Windows 10

Hyper-V must be enabled in BIOS VT-D must also be enabled if available (Intel Processors)

wsargent 4

https://www.docker.com/what-docker#copy1
https://github.com/ohmyzsh/oh-my-zsh
https://github.com/robbyrussell/oh-my-zsh/wiki/Plugins#docker
https://docs.docker.com/engine/installation/binaries/#check-kernel-dependencies

Docker Cheat Sheet

1.2.4 Windows Server

Windows Server 2016 is the minimum version required to install docker and docker-compose. Limitati-
ons exist on this version, such as multiple virtual networks and linux containers. Windows Server 2019
and later are recommended.

1.3 Installation
1.3.1 Linux

Quick and easy install script provided by Docker:

curl -sSL https://get.docker.com/ | sh

If you’re not willing to run a random shell script, please see the installation instructions for your
distribution.

If you are a complete Docker newbie, you should follow the series of tutorials now.

1.3.2 macOS

Download and install Docker Community Edition. if you have Homebrew-Cask, just type brew cask
install docker.OrDownload and install Docker Toolbox. Docker For Mac is nice, but it’s not quite
as finished as the VirtualBox install. See the comparison.

NOTE Docker Toolbox is legacy. You should to use Docker Community Edition, See Docker Toolbox.

Once you've installed Docker Community Edition, click the docker icon in Launchpad. Then start up a
container:

docker run hello-world

That’s it, you have a running Docker container.
If you are a complete Docker newbie, you should probably follow the series of tutorials now.
1.3.3 Windows 10

Instructions to install Docker Desktop for Windows can be found here

Once insalled, open powershell as administrator

wsargent 5

https://docs.docker.com/engine/installation/linux/
https://docs.docker.com/engine/getstarted/
https://www.docker.com/community-edition
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-mac/docker-toolbox/
https://docs.docker.com/toolbox/overview/
https://docs.docker.com/engine/getstarted/
https://hub.docker.com/editions/community/docker-ce-desktop-windows

Docker Cheat Sheet

#Display the version of docker -installed:
docker version

##Pull, create, and run "hello-world' all in one command:
docker run hello-world

To continue with this cheat sheet, right click the Docker icon in the system tray, and go to settings. In
order to mount volumes, the C:/ drive will need to be enabled in the settings to that information can
be passed into the containers (later described in this article).

To switch between Windows containers and Linux containers, right click the icon in the system tray
and click the button to switch container operating system Doing this will stop the current containers
that are running, and make them unaccessible until the container OS is switched back.

Additionally, if you have WSL or WSL2 installed on your desktop, you might want to install the Linux
Kernel for Windows. Instructions can be found here. This requires the Windows Subsystem for Linux
feature. This will allow for containers to be accessed by WSL operating systems, as well as the efficiency
gain from running WSL operating systems in docker. It is also preferred to use Windows terminal for
this.

1.3.4 Windows Server 2016 [2019

Follow Microsoft’s instructions that can be found here

If using the latest edge version of 2019, be prepared to only work in powershell, as it is only a servercore
image (no desktop interface). When starting this machine, it will login and go straight to a powershell
window. It is reccomended to install text editors and other tools using Chocolatey.

After installing, these commands will work:

#Display the version of docker installed:
docker version

##Pull, create, and run 'hello-world' all in one command:
docker run hello-world

Windows Server 2016 is not able to run linux images.

Windows Server Build 2004 is capable of running both linux and windows containers simultaneously
through Hyper-Visolation. When running containers, use the --isolation=hyperv command, which
will isolate the container using a seperate kernel instance.

wsargent 6

https://techcommunity.microsoft.com/t5/windows-dev-appconsult/using-wsl2-in-a-docker-linux-container-on-windows-to-run-a/ba-p/1482133
https://docs.microsoft.com/en-us/windows/terminal/get-started
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/deploy-containers-on-server#install-docker
https://chocolatey.org/install

Docker Cheat Sheet

1.3.5 Check Version

It is very important that you always know the current version of Docker you are currently running on at
any point in time. This is very helpful because you get to know what features are compatible with what
you have running. This is also important because you know what containers to run from the docker
store when you are trying to get template containers. That said let see how to know which version of
docker we have running currently.

« docker versionshows which version of docker you have running.

Get the server version:

$ docker version —--format '{{.Server.Version}}'

1.8.0

You can also dump raw JSON data:
$ docker version --format '{{json .}}'

{"Client":{"Version":"1.8.0","ApiVersion":"1.20","GitCommit":"f5baeba",
"GoVersion":"gol.4.2","0s":"Llinux","Arch":"am"}

1.4 Containers

Your basic isolated Docker process. Containers are to Virtual Machines as threads are to processes. Or
you can think of them as chroots on steroids.

1.4.1 Lifecycle

« docker create creates a container but does not start it.

« docker rename allows the container to be renamed.

« docker run creates and starts a container in one operation.
« docker rmdeletes acontainer.

« docker update updates a container’s resource limits.

Normally if you run a container without options it will start and stop immediately, if you want keep it
running you can use the command, docker run -td container_idthiswill usethe option -t that
will allocate a pseudo-TTY session and -d that will detach automatically the container (run container
in background and print container ID).

If you want a transient container, docker run --rmwill remove the container after it stops.

wsargent 7

https://docs.docker.com/engine/reference/commandline/version/
http://etherealmind.com/basics-docker-containers-hypervisors-coreos/
https://docs.docker.com/engine/reference/commandline/create
https://docs.docker.com/engine/reference/commandline/rename/
https://docs.docker.com/engine/reference/commandline/run
https://docs.docker.com/engine/reference/commandline/rm
https://docs.docker.com/engine/reference/commandline/update/

Docker Cheat Sheet

If you want to map a directory on the host to a docker container, docker run -v $HOSTDIR:
$DOCKERDIR. Also see Volumes.

If you want to remove also the volumes associated with the container, the deletion of the container
must include the -v switch like in docker rm -v.

There’s also a logging driver available for individual containers in docker 1.10. To run docker with a
custom log driver (i.e., to syslog), use docker run --log-driver=syslog.

Anotherusefuloptionisdocker run --name yourname docker_image becausewhenyou specify
the ——name inside the run command this will allow you to start and stop a container by calling it with
the name the you specified when you created it.

1.4.2 Starting and Stopping

« docker start startsacontainersoitisrunning.

« docker stop stopsarunning container.

« docker restart stopsand starts a container.

« docker pause pauses arunning container, ,freezing“itin place.
« docker unpause will unpause a running container.

+ docker wait blocks until running container stops.

« docker killsendsa SIGKILL to a running container.

« docker attach will connect to a running container.

If you want to detach from a running container,use Ctr1 + p, Ctrl + q.lfyouwanttointegrate a
container with a host process manager, start the daemon with ~r=false then use docker start -

a.
If you want to expose container ports through the host, see the exposing ports section.

Restart policies on crashed docker instances are covered here.

1.4.2.1 CPU Constraints You can limit CPU, either using a percentage of all CPUs, or by using specific
cores.

For example, you can tell the cpu-shares setting. The setting is a bit strange - 1024 means 100%
of the CPU, so if you want the container to take 50% of all CPU cores, you should specify 512. See
https://goldmann.pl/blog/2014/09/11/resource-management-in-docker/#_cpu for more:

docker run -it -c 512 agileek/cpuset-test

You can also only use some CPU cores using cpuset-cpus. See https://agileek.github.io/docker/201
4/08/06/docker-cpuset/ for details and some nice videos:

wsargent 8

https://github.com/wsargent/docker-cheat-sheet/#volumes
https://docs.docker.com/engine/admin/logging/overview/
https://docs.docker.com/engine/reference/commandline/start
https://docs.docker.com/engine/reference/commandline/stop
https://docs.docker.com/engine/reference/commandline/restart
https://docs.docker.com/engine/reference/commandline/pause/
https://docs.docker.com/engine/reference/commandline/unpause/
https://docs.docker.com/engine/reference/commandline/wait
https://docs.docker.com/engine/reference/commandline/kill
https://docs.docker.com/engine/reference/commandline/attach
https://docs.docker.com/engine/admin/host_integration/
http://container42.com/2014/09/30/docker-restart-policies/
https://docs.docker.com/engine/reference/run/#/cpu-share-constraint
https://goldmann.pl/blog/2014/09/11/resource-management-in-docker/#_cpu
https://docs.docker.com/engine/reference/run/#/cpuset-constraint
https://agileek.github.io/docker/2014/08/06/docker-cpuset/
https://agileek.github.io/docker/2014/08/06/docker-cpuset/

Docker Cheat Sheet

docker run -it —--cpuset-cpus=0,4,6 agileek/cpuset-test

Note that Docker can still see all of the CPUs inside the container - it just isn’t using all of them. See
https://github.com/docker/docker/issues/20770 for more details.

1.4.2.2 Memory Constraints You can also set memory constraints on Docker:

docker run -it -m 300M ubuntu:14.04 /bin/bash

1.4.2.3 Capabilities Linux capabilities can be set by using cap-add and cap-drop. See https:
//docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities for details. This
should be used for greater security.

To mount a FUSE based filesystem, you need to combine both -cap-add and -device:

docker run --rm -it --cap-add SYS_ADMIN --device /dev/fuse sshfs

Give access to a single device:

docker run -it --device=/dev/ttyUSBO debian bash

Give access to all devices:

docker run -it --privileged -v /dev/bus/usb:/dev/bus/usb debian bash

More info about privileged containers here.

1.4.3 Info

« docker psshows running containers.

« docker Tlogs getslogsfrom container. (You can use a custom log driver, but logs is only available
for json-file and journaldin1.10).

« docker dnspect looks at all the info on a container (including IP address).

+ docker events gets events from container.

« docker port shows public facing port of container.

+ docker top shows running processesin container.

« docker stats shows containers’ resource usage statistics.

+ docker diff showschanged filesin the container’s FS.

docker ps -ashows running and stopped containers.

docker stats --allshows a list of all containers, default shows just running.

wsargent 9

https://github.com/docker/docker/issues/20770
https://docs.docker.com/engine/reference/run/#/user-memory-constraints
https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/commandline/ps
https://docs.docker.com/engine/reference/commandline/logs
https://docs.docker.com/engine/reference/commandline/inspect
https://docs.docker.com/engine/reference/commandline/events
https://docs.docker.com/engine/reference/commandline/port
https://docs.docker.com/engine/reference/commandline/top
https://docs.docker.com/engine/reference/commandline/stats
https://docs.docker.com/engine/reference/commandline/diff

Docker Cheat Sheet

1.4.4 Import [Export

« docker cp copiesfiles or folders between a container and the local filesystem.
« docker export turns container filesystem into tarball archive stream to STDOUT.

1.4.5 Executing Commands

« docker exec toexecute a command in container.

To enter a running container, attach a new shell process to a running container called foo, use: docker

exec —-it foo /bin/bash.

1.5 Images

Images are just templates for docker containers.

1.5.1 Lifecycle

« docker images shows all images.

« docker import creates an image from a tarball.

« docker build createsimage from Dockerfile.

« docker commit createsimage from a container, pausing it temporarily if it is running.

« docker rmiremovesanimage.

« docker Tload loads animage from a tar archive as STDIN, including images and tags (as of 0.7).

« docker save saves animage to a tar archive stream to STDOUT with all parent layers, tags &
versions (as of 0.7).

1.5.2 Info

+ docker history shows history of image.
+ docker tagtagsanimage toaname (local or registry).

1.5.3 Cleaning up

While you can use the docker rmicommand to remove specificimages, there’s a tool called docker-gc
that will safely clean up images that are no longer used by any containers. As of docker 1.13, docker
image prune is also available for removing unused images. See Prune.

wsargent 10

https://docs.docker.com/engine/reference/commandline/cp
https://docs.docker.com/engine/reference/commandline/export
https://docs.docker.com/engine/reference/commandline/exec
https://docs.docker.com/engine/understanding-docker/#how-does-a-docker-image-work
https://docs.docker.com/engine/reference/commandline/images
https://docs.docker.com/engine/reference/commandline/import
https://docs.docker.com/engine/reference/commandline/build
https://docs.docker.com/engine/reference/commandline/commit
https://docs.docker.com/engine/reference/commandline/rmi
https://docs.docker.com/engine/reference/commandline/load
https://docs.docker.com/engine/reference/commandline/save
https://docs.docker.com/engine/reference/commandline/history
https://docs.docker.com/engine/reference/commandline/tag
https://github.com/spotify/docker-gc

Docker Cheat Sheet

1.5.4 Load/Save image

Load an image from file:

docker load < my_dimage.tar.gz

Save an existing image:

docker save my_image:my_tag | gzip > my_image.tar.gz

1.5.5 Import/Export container

Import a container as an image from file:

cat my_container.tar.gz | docker import - my_image:my_tag

Export an existing container:

docker export my_container | gzip > my_container.tar.gz

1.5.6 Difference between loading a saved image and importing an exported container as an
image

Loading an image using the Lload command creates a new image including its history.
Importing a container as an image using the import command creates a new image excluding the
history which results in a smaller image size compared to loading an image.

1.6 Networks

Docker has a networks feature. Docker automatically creates 3 network interfaces when you install
it (bridge, host none). A new container is launched into the bridge network by default. To enable
communication between multiple containers, you can create a new network and launch containers in
it. This enables containers to communicate to each other while being isolated from containers that are
not connected to the network. Furthermore, it allows to map container names to their IP addresses.
See working with networks for more details.

1.6.1 Lifecycle

« docker network create NAME Create a new network (default type: bridge).

wsargent 1

https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/work-with-networks/
https://docs.docker.com/engine/reference/commandline/network_create/

Docker Cheat Sheet

« docker network rmNAME Remove one or more networks by name or identifier. No containers
can be connected to the network when deleting it.

1.6.2 Info

« docker network Ts List networks
« docker network inspect NAME Display detailed information on one or more networks.

1.6.3 Connection

o docker network connect NETWORK CONTAINER Connect a container to a network
o docker network disconnect NETWORK CONTAINER Disconnect a container from a network

You can specify a specific IP address for a container:

create a new bridge network with your subnet and gateway for your -p
block

docker network create --subnet 203.0.113.0/24 --gateway 203.0.113.254
iptastic

run a nginx container with a specific ip in that block
$ docker run --rm -it --net diptastic --ip 203.0.113.2 nginx

curl the 1ip from any other place (assuming this is a public ip block
duh)
$ curl 203.0.113.2

1.7 Registry & Repository

Arepository is a hosted collection of tagged images that together create the file system for a container.

A registry is a host — a server that stores repositories and provides an HTTP API for managing the
uploading and downloading of repositories.

Docker.com hosts its own index to a central registry which contains a large number of repositories.
Having said that, the central docker registry does not do a good job of verifying images and should be
avoided if you’re worried about security.

« docker Tloginto login to aregistry.

« docker logout to logout from a registry.

+ docker search searches registry forimage.

« docker pull pulls animage from registry to local machine.

« docker push pushes animage to the registry from local machine.

wsargent 12

https://docs.docker.com/engine/reference/commandline/network_rm/
https://docs.docker.com/engine/reference/commandline/network_ls/
https://docs.docker.com/engine/reference/commandline/network_inspect/
https://docs.docker.com/engine/reference/commandline/network_connect/
https://docs.docker.com/engine/reference/commandline/network_disconnect/
https://blog.jessfraz.com/post/ips-for-all-the-things/
https://docs.docker.com/engine/tutorials/dockerrepos/
https://docs.docker.com/engine/tutorials/dockerrepos/
https://hub.docker.com/
https://titanous.com/posts/docker-insecurity
https://docs.docker.com/engine/reference/commandline/login
https://docs.docker.com/engine/reference/commandline/logout
https://docs.docker.com/engine/reference/commandline/search
https://docs.docker.com/engine/reference/commandline/pull
https://docs.docker.com/engine/reference/commandline/push

Docker Cheat Sheet

1.7.1 Run local registry

You can run a local registry by using the docker distribution project and looking at the local deploy

instructions.

Also see the mailing list.

1.8 Dockerfile

The configuration file. Sets up a Docker container when you run docker build onit. Vastly preferable

to docker commit.

Here are some common text editors and their syntax highlighting modules you could use to create

Dockerfiles: * If you use jEdit, I've put up a syntax highlighting module for Dockerfile you can use. *
Sublime Text 2 * Atom * Vim * Emacs * TextMate * VS Code * Also see Docker meets the IDE

1.8.1

Instructions

.dockerignore

FROM Sets the Base Image for subsequent instructions.

MAINTAINER (deprecated - use LABEL instead) Set the Author field of the generated images.
RUN execute any commands in a new layer on top of the currentimage and commit the results.
CMD provide defaults for an executing container.

EXPOSE informs Docker that the container listens on the specified network ports at runtime.
NOTE: does not actually make ports accessible.

ENV sets environment variable.

ADD copies new files, directories or remote file to container. Invalidates caches. Avoid ADD and
use COPY instead.

COPY copies new files or directories to container. By default this copies as root regardless of
the USER/WORKDIR settings. Use -—chown=<user>:<group> to give ownership to another
user/group. (Same for ADD.)

ENTRYPOINT configures a container that will run as an executable.

VOLUME creates a mount point for externally mounted volumes or other containers.

USER sets the user name for following RUN / CMD / ENTRYPOINT commands.

WORKDIR sets the working directory.

ARG defines a build-time variable.

ONBUILD adds a trigger instruction when the image is used as the base for another build.
STOPSIGNAL sets the system call signal that will be sent to the container to exit.

LABEL apply key/value metadata to your images, containers, or daemons.

wsargent 13

https://github.com/docker/distribution
https://github.com/docker/docker.github.io/blob/master/registry/deploying.md
https://groups.google.com/a/dockerproject.org/forum/#!forum/distribution
https://docs.docker.com/engine/reference/builder/
http://jedit.org
https://github.com/wsargent/jedit-docker-mode
https://packagecontrol.io/packages/Dockerfile%20Syntax%20Highlighting
https://atom.io/packages/language-docker
https://github.com/ekalinin/Dockerfile.vim
https://github.com/spotify/dockerfile-mode
https://github.com/docker/docker/tree/master/contrib/syntax/textmate
https://github.com/Microsoft/vscode-docker
https://domeide.github.io/
https://docs.docker.com/engine/reference/builder/#dockerignore-file
https://docs.docker.com/engine/reference/builder/#from
https://docs.docker.com/engine/reference/builder/#maintainer-deprecated
https://docs.docker.com/engine/reference/builder/#run
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#expose
https://docs.docker.com/engine/reference/builder/#env
https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#volume
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/engine/reference/builder/#arg
https://docs.docker.com/engine/reference/builder/#onbuild
https://docs.docker.com/engine/reference/builder/#stopsignal
https://docs.docker.com/config/labels-custom-metadata/

Docker Cheat Sheet

« SHELL override default shell is used by docker to run commands.
+ HEALTHCHECK tells docker how to test a container to check that it is still working.

1.8.2 Tutorial

 Flux7’s Dockerfile Tutorial

1.8.3 Examples

« Examples

+ Best practices for writing Dockerfiles

« Michael Crosby has some more Dockerfiles best practices / take 2.
+ Building Good Docker Images / Building Better Docker Images

+ Managing Container Configuration with Metadata

+ How to write excellent Dockerfiles

1.9 Layers

The versioned filesystem in Docker is based on layers. They’re like git commits or changesets for
filesystems.

1.10 Links

Links are how Docker containers talk to each other through TCP/IP ports. Atlassian show worked
examples. You can also resolve links by hostname.

This has been deprecated to some extent by user-defined networks.

NOTE: If you want containers to ONLY communicate with each other through links, start the docker
daemon with —icc=false to disable inter process communication.

If you have a container with the name CONTAINER (specified by docker run --name CONTAINER)
and in the Dockerfile, it has an exposed port:

EXPOSE 1337

Then if we create another container called LINKED like so:

docker run -d --link CONTAINER:ALIAS —--name LINKED user/wordpress

wsargent 14

https://docs.docker.com/engine/reference/builder/#shell
https://docs.docker.com/engine/reference/builder/#healthcheck
https://www.flux7.com/tutorial/docker-tutorial-series-part-3-automation-is-the-word-using-dockerfile/
https://docs.docker.com/engine/reference/builder/#dockerfile-examples
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
http://crosbymichael.com/
http://crosbymichael.com/dockerfile-best-practices.html
http://crosbymichael.com/dockerfile-best-practices-take-2.html
http://jonathan.bergknoff.com/journal/building-good-docker-images
http://jonathan.bergknoff.com/journal/building-better-docker-images
https://speakerdeck.com/garethr/managing-container-configuration-with-metadata
https://rock-it.pl/how-to-write-excellent-dockerfiles/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/
https://blogs.atlassian.com/2013/11/docker-all-the-things-at-atlassian-automation-and-wiring/
https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/#/updating-the-etchosts-file
https://docs.docker.com/network/

Docker Cheat Sheet

Then the exposed ports and aliases of CONTAINER will show up in LINKED with the following environ-
ment variables:

$ALIAS_PORT_1337_TCP_PORT
$ALIAS_PORT_1337_TCP_ADDR

And you can connect to it that way.
To delete links, use docker rm --T1nk.

Generally, linking between docker services is a subset of ,,service discovery®, a big problem if you’re
planning to use Docker at scale in production. Please read The Docker Ecosystem: Service Discovery
and Distributed Configuration Stores for more info.

1.11 Volumes

Docker volumes are free-floating filesystems. They don’t have to be connected to a particular container.
You can use volumes mounted from data-only containers for portability. As of Docker 1.9.0, Docker has
named volumes which replace data-only containers. Consider using named volumes to implement it
rather than data containers.

1.11.1 Lifecycle

e docker volume create

« docker volume rm

1.11.2 Info

e docker volume 1s

e docker volume inspect

Volumes are useful in situations where you can’t use links (which are TCP/IP only). For instance, if you
need to have two docker instances communicate by leaving stuff on the filesystem.

You can mount them in several docker containers at once, using docker run --volumes-from.

Because volumes are isolated filesystems, they are often used to store state from computations between
transient containers. That is, you can have a stateless and transient container run from a recipe, blow
it away, and then have a second instance of the transient container pick up from where the last one left
off.

See advanced volumes for more details. Container42 is also helpful.

wsargent 15

https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-service-discovery-and-distributed-configuration-stores
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-service-discovery-and-distributed-configuration-stores
https://docs.docker.com/engine/tutorials/dockervolumes/
https://medium.com/@ramangupta/why-docker-data-containers-are-good-589b3c6c749e
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
http://crosbymichael.com/advanced-docker-volumes.html
http://container42.com/2014/11/03/docker-indepth-volumes/

Docker Cheat Sheet

You can map MacOS host directories as docker volumes:

docker run -v /Users/wsargent/myapp/src:/src

You can use remote NFS volumes if you’re feeling brave.

You may also consider running data-only containers as described here to provide some data portabili-
ty.

Be aware that you can mount files as volumes.

1.12 Exposing ports

Exposing incoming ports through the host container is fiddly but doable.
This is done by mapping the container port to the host port (only using localhost interface) using —p:

docker run -p 127.0.0.1:$HOSTPORT:$CONTAINERPORT --name CONTAINER -t
someimage

You can tell Docker that the container listens on the specified network ports at runtime by using
EXPOSE:

EXPOSE <CONTAINERPORT>

Note that EXPOSE does not expose the port itself - only —p will do that. To expose the container’s port
on your localhost’s port:

iptables -t nat -A DOCKER -p tcp --dport <LOCALHOSTPORT> -j DNAT --to-
destination <CONTAINERIP>:<PORT>

If you’re running Docker in Virtualbox, you then need to forward the port there as well, using forwar-
ded_port. Define a range of ports in your Vagrantfile like this so you can dynamically map them:

Vagrant.configure (VAGRANTFILE_API_VERSION) do |config]|

(49000..49900) .each do |port|
config.vm.network :forwarded_port, :host => port, :guest => port
end

end

If you forget what you mapped the port to on the host container, use docker port to show it:

docker port CONTAINER SCONTAINERPORT

wsargent 16

https://docs.docker.com/engine/tutorials/dockervolumes/#mount-a-host-directory-as-a-data-volume
https://docs.docker.com/engine/tutorials/dockervolumes/#/mount-a-shared-storage-volume-as-a-data-volume
http://container42.com/2013/12/16/persistent-volumes-with-docker-container-as-volume-pattern/
https://docs.docker.com/engine/reference/run/#expose-incoming-ports
https://docs.docker.com/engine/reference/builder/#expose
https://docs.vagrantup.com/v2/networking/forwarded_ports.html
https://docs.vagrantup.com/v2/networking/forwarded_ports.html

Docker Cheat Sheet

1.13 Best Practices

This is where general Docker best practices and war stories go:

« The Rabbit Hole of Using Docker in Automated Tests
Bridget Kromhout has a useful blog post on running Docker in production at Dramafever.

There’s also a best practices blog post from Lyst.

Building a Development Environment With Docker

Discourse in a Docker Container

1.14 Docker-Compose

Compose is a tool for defining and running multi-container Docker applications. With Compose, you
use a YAML file to configure your application’s services. Then, with a single command, you create and
start all the services from your configuration. To learn more about all the features of Compose, see the
list of features.

By using the following command you can start up your application:

docker-compose -f <docker-compose-file> up

You can also run docker-compose in detached mode using -d flag, then you can stop it whenever
needed by the following command:

docker-compose stop

You can bring everything down, removing the containers entirely, with the down command. Pass
--volumes to also remove the data volume.

1.15 Security

This is where security tips about Docker go. The Docker security page goes into more detail.

First things first: Docker runs as root. If you are in the docker group, you effectively have root access.
If you expose the docker unix socket to a container, you are giving the container root access to the
host.

Docker should not be your only defense. You should secure and harden it.

For an understanding of what containers leave exposed, you should read Understanding and Hardening
Linux Containers by Aaron Grattafiori. Thisis a complete and comprehensive guide to the issues involved
with containers, with a plethora of links and footnotes leading on to yet more useful content. The

wsargent 17

http://gregoryszorc.com/blog/2014/10/16/the-rabbit-hole-of-using-docker-in-automated-tests/
https://twitter.com/bridgetkromhout
http://sysadvent.blogspot.co.uk/2014/12/day-1-docker-in-production-reality-not.html
http://developers.lyst.com/devops/2014/12/08/docker/
https://tersesystems.com/2013/11/20/building-a-development-environment-with-docker/
https://samsaffron.com/archive/2013/11/07/discourse-in-a-docker-container
https://docs.docker.com/compose/overview/#features
https://docs.docker.com/engine/security/security/
https://web.archive.org/web/20161226211755/http://reventlov.com/advisories/using-the-docker-command-to-root-the-host
https://www.lvh.io/posts/dont-expose-the-docker-socket-not-even-to-a-container/
https://www.lvh.io/posts/dont-expose-the-docker-socket-not-even-to-a-container/
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://twitter.com/dyn___

Docker Cheat Sheet

security tips following are useful if you’ve already hardened containers in the past, but are not a
substitute for understanding.

1.15.1 Security Tips

For greatest security, you want to run Docker inside a virtual machine. This is straight from the Docker
Security Team Lead - slides / notes. Then, run with AppArmor / seccomp / SELinux / grsec etc to limit
the container permissions. See the Docker 1.10 security features for more details.

Docker image ids are sensitive information and should not be exposed to the outside world. Treat them
like passwords.

See the Docker Security Cheat Sheet by Thomas Sjogren: some good stuff about container hardening
in there.

Check out the docker bench security script, download the white papers.
Snyk’s 10 Docker Image Security Best Practices cheat sheet

You should start off by using a kernel with unstable patches for grsecurity / pax compiled in, such as
Alpine Linux. If you are using grsecurity in production, you should spring for commercial support for the
stable patches, same as you would do for RedHat. It’s $200 a month, which is nothing to your devops
budget.

Since docker 1.11 you can easily limit the number of active processes running inside a container to
prevent fork bombs. This requires a linux kernel >= 4.3 with CGROUP_PIDS=y to be in the kernel
configuration.

docker run --pids-limit=64

Also available since docker 1.11 is the ability to prevent processes from gaining new privileges. This

feature have been in the linux kernel since version 3.5. You can read more about it in this blog post.
docker run --security-opt=no-new-privileges

From the Docker Security Cheat Sheet (it’s in PDF which makes it hard to use, so copying below) by

Container Solutions:

Turn off interprocess communication with:

docker -d --icc=false --iptables

Set the container to be read-only:

docker run --read-only

wsargent 18

http://www.slideshare.net/jpetazzo/linux-containers-lxc-docker-and-security
http://www.projectatomic.io/blog/2014/08/is-it-safe-a-look-at-docker-and-security-from-linuxcon/
http://linux-audit.com/docker-security-best-practices-for-your-vessel-and-containers/
http://linux-audit.com/docker-security-best-practices-for-your-vessel-and-containers/
https://blog.docker.com/2016/02/docker-engine-1-10-security/
https://medium.com/@quayio/your-docker-image-ids-are-secrets-and-its-time-you-treated-them-that-way-f55e9f14c1a4
https://github.com/konstruktoid/Docker/blob/master/Security/CheatSheet.adoc
https://github.com/konstruktoid
https://github.com/docker/docker-bench-security
https://blog.docker.com/2015/05/understanding-docker-security-and-best-practices/
https://snyk.io/blog/10-docker-image-security-best-practices/
https://en.wikipedia.org/wiki/Alpine_Linux
https://grsecurity.net/business_support.php
https://grsecurity.net/announce.php
http://www.projectatomic.io/blog/2016/03/no-new-privs-docker/
http://container-solutions.com/content/uploads/2015/06/15.06.15_DockerCheatSheet_A2.pdf
http://container-solutions.com/is-docker-safe-for-production/

Docker Cheat Sheet

Verify images with a hashsum:

docker pull debian@sha256:a25306f3850e1bd44541976aa7b5fd0a29be

Set volumes to be read only:

docker run -v $(pwd)/secrets:/secrets:ro debian

Define and run a user in your Dockerfile so you don’t run as root inside the container:

RUN groupadd -r user && useradd -r -g user user
USER user

1.15.2 User Namespaces

There’s also work on user namespaces - it is in 1.10 but is not enabled by default.

To enable user namespaces (,remap the userns*) in Ubuntu 15.10, follow the blog example.

1.15.3 Security Videos

Using Docker Safely

Securing your applications using Docker
+ Container security: Do containers actually contain?

Linux Containers: Future or Fantasy?

1.15.4 Security Roadmap

The Docker roadmap talks about seccomp support. There is an AppArmor policy generator called bane,
and they’re working on security profiles.

1.16 Tips

Sources:

+ 15 Docker Tips in 5 minutes
+ CodeFresh Everyday Hacks Docker

wsargent 19

https://s3hh.wordpress.com/2013/07/19/creating-and-using-containers-without-privilege/
https://raesene.github.io/blog/2016/02/04/Docker-User-Namespaces/
https://youtu.be/04LOuMgNj9U
https://youtu.be/KmxOXmPhZbk
https://youtu.be/a9lE9Urr6AQ
https://www.youtube.com/watch?v=iN6QbszB1R8
https://github.com/docker/docker/blob/master/ROADMAP.md#11-security
https://github.com/jfrazelle/bane
https://github.com/docker/docker/issues/17142
http://sssslide.com/speakerdeck.com/bmorearty/15-docker-tips-in-5-minutes
https://codefresh.io/blog/everyday-hacks-docker/

Docker Cheat Sheet

1.16.1 Prune

The new Data Management Commands have landed as of Docker 1.13:

e docker system prune

e docker volume prune

« docker network prune

« docker container prune

« docker 1image prune

1.16.2 df

docker system df presentsasummary of the space currently used by different docker objects.

1.16.3 Heredoc Docker Container

docker build -t htop - << EOF
FROM alpine

RUN apk --no-cache add htop
EOF

1.16.4 Lastlds

alias dl='docker ps -1 —-q'
docker run ubuntu echo hello world
docker commit $(dl) helloworld

1.16.5 Commit with command (needs Dockerfile)

docker commit -run='{"Cmd":["postgres", "-too -many -opts"]}' $(dl)
postgres

1.16.6 Get IP address

docker inspect $(dl) | grep -wml IPAddress | cut -d '"' -f 4

or with jq installed:

docker dinspect $(dl) | jqg -r '.[0].NetworkSettings.IPAddress'

wsargent 20

https://github.com/docker/docker/pull/26108
https://stedolan.github.io/jq/

Docker Cheat Sheet

or using a go template:

docker dinspect -f '{{ .NetworkSettings.IPAddress }}' <container_name>

or when building an image from Dockerfile, when you want to pass in a build argument:

DOCKER_HOST_IP="1ifconfig | grep -E "([0-9]{1,3}\.){3}[0-9]1{1,3}" | grep
-v 127.0.0.1 | awk '{ print $2 }' | cut -f2 -d: | head -nl1°
echo DOCKER_HOST_IP = S$DOCKER_HOST_IP
docker build \
--build-arg ARTIFACTORY_ADDRESS=$DOCKER_HOST_IP
-t sometag \
some-directory/

1.16.7 Get port mapping

docker dinspect -f '{{range S$p, Sconf := .NetworkSettings.Ports}} {{Sp}}
-> {{(index $conf 0).HostPort}} {{end}}' <containername>

1.16.8 Find containers by regular expression

for i in $(docker ps -a | grep "REGEXP_PATTERN" | cut -f1 -d" "); do
echo $1i; done

1.16.9 Get Environment Settings

docker run --rm ubuntu env

1.16.10 Kill running containers

docker kill $(docker ps -q)

1.16.11 Delete all containers (force!! running or stopped containers)

docker rm -f $(docker ps -qa)

wsargent 21

https://docs.docker.com/engine/reference/commandline/inspect

Docker Cheat Sheet

1.16.12 Delete old containers

docker ps -a | grep 'weeks ago' | awk '{print $1}' | xargs docker rm

1.16.13 Delete stopped containers

docker rm -v $(docker ps -a -q -f status=exited)

1.16.14 Delete containers after stopping

docker stop $(docker ps -aq) && docker rm -v $(docker ps -aq)

1.16.15 Delete dangling images

docker rmi $(docker images -q -f dangling=true)

1.16.16 Delete allimages

docker rmi $(docker images -q)

1.16.17 Delete dangling volumes

As of Docker 1.9:

docker volume rm $(docker volume ls -q -f dangling=true)

In1.9.0, the filter dangling=Ffalse does not work - it is ignored and will list all volumes.

1.16.18 Show image dependencies

docker images -viz | dot -Tpng -o docker.png

1.16.19 Slimming down Docker containers

+ Cleaning APT in a RUN layer

wsargent

22

Docker Cheat Sheet

This should be done in the same layer as other apt commands. Otherwise, the previous layers still
persist the original information and your images will still be fat.

RUN {apt commands} \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

+ Flatten animage

ID=$(docker run -d image-name /bin/bash)
docker export $ID | docker dimport - flat-image-name

+ For backup
ID=$(docker run -d image-name /bin/bash)

(docker export $ID | gzip -c > image.tgz)
gzip -dc image.tgz | docker {dimport - flat-image-name

1.16.20 Monitor system resource utilization for running containers
To check the CPU, memory, and network 1/0 usage of a single container, you can use:
docker stats <container>

For all containers listed by id:

docker stats $(docker ps -q)

For all containers listed by name:

docker stats $(docker ps --format '{{.Names}}')

For all containers listed by image:

docker ps -a -f ancestor=ubuntu

Remove all untagged images:

docker rmi $(docker images | grep “*” | awk '{split($0,a," "); print a

[31}")

Remove container by a regular expression:

docker ps -a | grep wildfly | awk '{print $1}' | xargs docker rm -f

Remove all exited containers:

wsargent 23

Docker Cheat Sheet

docker rm -f $(docker ps -a | grep Exit | awk '{ print $1 }')

1.16.21 Volumes can be files

Be aware that you can mount files as volumes. For example you can inject a configuration file like
this:
copy file from container
docker run --rm httpd cat /usr/local/apache2/conf/httpd.conf > httpd.
conf

edit file
vim httpd.conf

start container with modified configuration
docker run --rm -it -v "$PWD/httpd.conf:/usr/local/apache2/conf/httpd.
conf:ro" -p "80:80" httpd

1.17 Contributing

Here’s how to contribute to this cheat sheet.

1.17.1 Open README.md

Click README.md <~ this link

ﬂ wsargent Make changes in bold to "help out” blurb

| zh-cn Merge pull request #80 from spacewander/update-link
E| .gitignore Add some introductory material for machine, swarm and compose
£ .travis.yml [travis] create yml file

[E] README.md wngec",& +;~th~|w nut" blurb

README.md

Abbildung 1: Click This

wsargent 24

https://github.com/wsargent/docker-cheat-sheet/blob/master/README.md

Docker Cheat Sheet

1.17.2 Edit Page

Raw Blame History [_§} /#

=

Edit

Abbildung 2: Edit This

1.17.3 Make Changes and Commit

14
12 Make your changes: * Edit document in Markdown

17 ! [Change Thisl({change.png)

18

19 Commit the page:

20

21 ![Commit]{commit.png)

22

23~ #% Table of Contents

24

25 =% [Why] {#why)

26 % [Prerequisites]{#prerequisites) Add helpful title

27« [Installation](#installation)

ﬂ Commit changes /

Add sections and pictures to Editing section

Add an optional extended description...

*) -o- Commit directly to the master branch

© 1 Create a new branch for this commit and start a pull request. Learn more about pull requests.

l add-pictures-to-editing| l Cre_a_t_e pu” req uest

cfm— Ciick button

Abbildung 3: Change This

wsargent

25

Docker Cheat Sheet

Open a pull request

The change you just made was written 1o a new branch named add-pictures—to-editing . Create a pull request

i:,'], base: master ~ ... compare: add-pictures-to-editing = + Able to merge. These branches can be autor
n Add sections and pictures to Editing section
Write = Preview M~ B | (€ O =EvYs @ H

Step by step instructions with pictures to walk you through contributing for the first time.

Push button

Attach files by dragging & dropping, selecting them, or pasting from the clipboard.

LI Styling with Markdown is supported Create pull request

Abbildung 4: Commit

wsargent 26

	Docker Cheat Sheet
	Why Docker
	Prerequisites
	Linux
	MacOS
	Windows 10
	Windows Server

	Installation
	Linux
	macOS
	Windows 10
	Windows Server 2016 / 2019
	Check Version

	Containers
	Lifecycle
	Starting and Stopping
	Info
	Import / Export
	Executing Commands

	Images
	Lifecycle
	Info
	Cleaning up
	Load/Save image
	Import/Export container
	Difference between loading a saved image and importing an exported container as an image

	Networks
	Lifecycle
	Info
	Connection

	Registry & Repository
	Run local registry

	Dockerfile
	Instructions
	Tutorial
	Examples

	Layers
	Links
	Volumes
	Lifecycle
	Info

	Exposing ports
	Best Practices
	Docker-Compose
	Security
	Security Tips
	User Namespaces
	Security Videos
	Security Roadmap

	Tips
	Prune
	df
	Heredoc Docker Container
	Last Ids
	Commit with command (needs Dockerfile)
	Get IP address
	Get port mapping
	Find containers by regular expression
	Get Environment Settings
	Kill running containers
	Delete all containers (force!! running or stopped containers)
	Delete old containers
	Delete stopped containers
	Delete containers after stopping
	Delete dangling images
	Delete all images
	Delete dangling volumes
	Show image dependencies
	Slimming down Docker containers
	Monitor system resource utilization for running containers
	Volumes can be files

	Contributing
	Open README.md
	Edit Page
	Make Changes and Commit

