Skip to content

wsh312/S2Dnet

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S2Dnet

Specular-to-Diffuse Translation for Multi-View Reconstruction
Shihao Wu 1, Hui Huang 2, Tiziano Portenier 1, Matan Sela 3, Daniel Cohen-Or 4, Ron Kimmel 3, and Matthias Zwicker 5    
1 University of Bern, 2 Shenzhen University, 3 Technion - Israel Institute of Technology, 4 Tel Aviv University, 5 University of Maryland
European Conference on Computer Vision (ECCV), 2018



Dependencies

Update 10/April/2019: The code has been updated to pytorch 0.4. A single-view synthetic dataset (75 GB) is provided, one can train pix2pix or cycleGAN on it.

To-do list:

  • Implement a single-view translation network (with multi-scale discriminator, re-convolution and pixel-normalization) and provide a testing script.

Downloading (Dropbox links)

Training example

$ python train_multi_view.py --dataroot ../huge_uni_render_rnn --logroot ./logs/job101CP --name job_submit_101C_re1_pixel --model cycle_gan --no_dropout --loadSize 512 --fineSize 512 --patchSize 256 --which_model_netG unet_512_Re1 --which_model_netD patch_512_256_multi_new --lambda_A 10 --lambda_B 10 --lambda_vgg 5 --norm pixel

Testing

Please refer to "./useful_scripts/evaluation/"

Scripts of SIFT, SMVS, and rendering are in "./useful_scripts/".

Please contact the author for more information about the code and data.

About

Specular-to-Diffuse Translation for Multi-View Reconstruction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published