WSO2 Machine Learner 1.1.0 -Milestone Release 1

The first milestone release of WSO2 Machine Learner (ML) 1.1.0 contains two new feature additions, namely;

- 1. Anomaly detection algorithm support
- 2. The Predictive Model Markup Language (PMML) support

For general information on WSO2 Machine Learner 1.1.0-m1 release, please visit our documentation <u>https://docs.wso2.com/display/ML110/WSO2+Machine+Learner+Documentation</u>

Anomaly Detection Algorithm Steps for Building an Anomaly Detection Model using WSO2 ML Step 1 - Create an Analysis Step 2 - Algorithm Selection Step 3 - Hyper Parameters Step 4 - Model Building Step 5 - Model Summary Step 6 - Prediction Anomaly Detection for WSO2 ML - Samples Generating a Model Using the K Means Anomaly Detection Algorithm with unlabeled data Introduction **Prerequisites** Executing the sample Output of the sample Viewing the model Generating a Model Using the K Means Anomaly Detection Algorithm with labeled data Introduction Prerequisites Executing the sample Output of the sample Viewing the model Viewing the model prediction Generating a Tuned Model Using the K Means Anomaly Detection Algorithm with labeled data Introduction Prerequisites Executing the sample Output of the sample

Viewing the model summary Viewing the model prediction PMML Support PMML PMML Support in WSO2 ML Usage Downloading a model in PMML Format Method 1 Method 2 Publishing a model to Registry in PMML Format Method 1 Method 2 APIs Finding whether an algorithm supports an export type Overview Parameter description Sample cURL command Example Sample output **REST API response** Export a model Overview Parameter description Sample cURL command Example Sample output **REST API response** Publish a model Overview Parameter description Sample cURL command Example Sample output **REST API response** Samples

Anomaly Detection Algorithm

• First the dataset will be clustered using K means algorithm according to hyper parameters that user provided.

- In a real world scenario of anomaly detection, positive(anomaly) instances are very rare. Hence, we assume that those anomalies will be outside the clusters.
- So we can detect them by calculating the cluster boundaries. This is how we identify the cluster boundaries,
 - First calculate all the distances between data points and their respective cluster centers.
 - Then select the percentile value from distances of each clusters as their cluster boundaries.
- When a new data point comes, the closest cluster center will be calculated by K means predict function.
- Then the distance between new data point and Its cluster center will be calculated. If it is less than the percentile distance value it is considered as a normal data. If it is greater than the percentile distance value it is considered as an anomaly since it is in outside the cluster.

Steps for Building an Anomaly Detection Model using WSO2 ML

Step 1 - Create an Analysis

Upload the dataset and create a new project

As for the every model first you have to upload a dataset and create a new project. Then start a new analysis to build an anomaly detection model

WS A MACHINE LEARNER				admin 👤
PROJECTS V Select a dataset				
		↔ CREATE PROJECT		
🛇 wso2-ml-anomaly-detection-labe	led-data-sample-project	[created: 2015-11-17 18:20:47.783] 1 analysis available	COMPARE MODELS	DELETE PROJECT
This project tests ml workflow for k means anomaly detection with labeled data model	Analysis name 💿 e.g. myanalysis	← CREATE ANALYSIS		
	wso2-ml-anomaly-detectio	n-labeled-data-sample-analysis	Diview Diview Models (1) delete	

Step 2 - Algorithm Selection

In the Algorithm selection process there is a new category called Anomaly Detection. Under that category there are two algorithms. If your dataset is a labeled one you can select K Means Anomaly Detection with Labeled Data. Otherwise you can select K Means Anomaly Detection with Unlabeled Data. There are few model configurations that user have to input in this step.

K Means Anomaly Detection with Labeled Data

- Response variable
- Normal label(s) values
- Train data fraction
- Prediction Labels
- Normalization option

₩\$@2 ми	ACHINE LEARNER							admin 👤
PROJECTS \ wso2-	-ml-anomaly-detection-label	ed-data-sample-project \	wso2-ml-anomaly-detection	n-labeled-data-sample-analysis	CANCEL			NEXT ()
		Step 1 Preprocess	_{Step 2} Explore	_{Step 3} Algorithms	_{Step} 4 Parameters	_{Step 5} Model		
			Algorithm					
			Algorithm name *					
			K-MEANS WITH LABELE	D DATA		•		
			Response variable *			·		
			Normal label(s) values					
			Train data fraction *					
			0.7					
			Edit text of Prediction L Normal label * normal	abels				
			Anomaly label *					
			anomaly					
			🗑 Normalize data					

K Means Anomaly Detection with Unlabeled Data

- Prediction Labels
- Normalization option

WS 2 MACHINE LEARNER						2	admin 👤
PROJECTS \ wso2-ml-anomaly-detection-lab	eled-data-sample-project \ v	vso2-ml-anomaly-detection	n-labeled-data-sample-analysis	(X) CANCEL			NEXT 🕥
	Step 1 Preprocess	_{Step 2} Explore	_{Step 3} Algorithms	_{Step} 4 Parameters	Step 5 Model		
		Algorithm					
		Algorithm name *					
		K-MEANS WITH UNLAE	ELED DATA				
		Edit text of Prediction	Labels				
		Normal label *					
		Anomaly label *					
		anomaly					
		👿 Normalize data					

If there are any categorical features exist on the dataset other than response variable you will be asked to drop them when you proceeds to next step.

Step 1 Preproce	step 2 SS Explore	Step 3 Algorithms	Step 4 Parameters	Step 5 Model	
	All input v	ariables for K-means algo	prithm should be numerica Back to Pre-processing	il.	
	Edit text of Predic	tion Labels			

Step 3 - Hyper Parameters

In the parameter selection step you have to input necessary hyper parameters for the model

- Maximum Iterations
- Number of Normal Clusters (Since this anomaly detection algorithm have implemented based on K means clustering you have to input the number of normal clusters should build in the model)

WS@2	MACHINE LEARNER						admin 👤
PROJECTS \	vso2-ml-anomaly-detection-lab	eled-data-sample-project \ w	so2-ml-anomaly-detection	i-labeled-data-sample-analysis	(X) CANCEL		PREVIOUS NEXT S
		_{Step 1} Preprocess	_{Step 2} Explore	^{Step 3} Algorithms		Step 5 Model	
			Parameters				
			Set Hyper-Parameters for LABELED DATA	Anomaly Detection\ K MEANS A	NOMALY DETECTION W	итн	
			Max Iterations 🔞				
			100				
			Num of Normal Clusters	0			
			5				

Step 4 - Model Building

Then after selecting the dataset version you can build the model.

WS A MACHINE LEARNER						admin 👤
PROJECTS \ wso2-ml-anomaly-detection-labeled	d-data-sample-project \ \	vso2-ml-anomaly-detection	n-labeled-data-sample-analysis	🗙 CANCEL		O PREVIOUS RUN 🕥
	Step 1 Preprocess	_{Step 2} Explore	_{Step 3} Algorithms	_{Step} 4 Parameters	Step 5 Model	
		Model				
		Dataset version				
		IndiansDiabetes-1.0.0			-	

Step 5 - Model Summary

After successfully build the model If you had labeled data you can view the model summary. In the summary you can get an overall idea about the build model. There will be very useful information about the model such as F1 score and some other important accuracy measures, confusion matrix, cluster diagram etc. So based on these information you will be able pick a better model.

Model is evaluated for range of percentile values that means for rage of cluster boundaries to pick the best one. There for in the model summary by default you will see the measures with respect to best percentile value. But you can see how measures are changing according to the percentile by moving the percentile slider. Based on that you can get an idea about the best percentile value to use for predictions. By default we use the percentile range as 80 - 100. But if you need a different range to evaluate the model you can change the range by input minPercentile and maxPercentile as system properties once you start the server. Keep in mind that you need to input values between 0 - 100 as percentiles. You can input system properties when you starting the server as below.

./wso2server.sh -DminPercentile=60 -DmaxPercentile=90

Step 6 - Prediction

This is where you can predict new data using built model. As a input you have to give feature values of new data point or you can give new data as a batch using csv or tsv file. Other than the data you should input the percentile value to identify the cluster boundaries. Default value is there. You can just keep it if you don't have a clear idea about that. If you had labeled data when building the model it will set the optimum value as the default value which obtained from the model evaluation. So after input those values you will get the predictions for new data.

WS MACHINE LEARNER		admin <u>1</u>
PROJECTS \ wso2-ml-anomaly-detection-lab data-sample-analysis.Model.2015-11-17_	eled-data-sample-project \ wso2-ml-anomaly-detection-labeled-data-sample-analysis \ wso2-ml-anomaly-detection-labeled- 18-26-51	
	Predict	
	Prediction Source File	
	Data File (max size: 100MB) * Browse wdbc.csv	
	Data Format CSV	
	Column Header Available • Yes	
	Percentile Value * 96	
	Predict	

Anomaly Detection for WSO2 ML - Samples

Generating a Model Using the K Means Anomaly Detection Algorithm with unlabeled data

- Introduction
- Prerequisites
- Executing the sample
- Output of the sample

Introduction

This sample demonstrates how a model is generated out of a unlabeled data set using the k-means anomaly detection algorithm. The sample uses a data set to generate a model.

Prerequisites

Follow the steps below to set up the prerequisites before you start.

- 1. Download WSO2 Machine Learner, and start the server. For information on setting up and running WSO2 ML, see <u>Getting Started</u>.
- 2. Download and install jq (CLI JSON processor). For instructions, see jq Documentation.
- 3. If you are using Mac OS X, download and install GNU stream editor (sed). For instructions, see <u>GNU sed Documentation</u>.

Executing the sample

Follow the steps below to execute the sample.

- 1. Navigate to <ML_HOME>/samples/default/anomaly-detection-unlabeled-data/ directory using the CLI.
- 2. Execute the following command to execute the sample: ./model-generation.sh

Output of the sample

Once the sample is successfully executed, you can view the prediction of the model as described below.

lcon

By default, the sample generates the model in the <ML_HOME>/models/ directory of your machine. For example, the generated file is in the following format denoting the date and time when it was generated:

wso2-ml-anomaly-detection-unlabeled-data-sample-analysis.Model.2015-11-13_10-51-27

Viewing the model

You can view the summary of the built model using the ML UI as follows.

- 1. Log in to the ML UI from your Web browser using admin/admin credentials and the following URL: https://<ML_HOST>:<ML_PORT>/ml
- 2. Click the Projects button as shown below.

3. Click MODELS button of the new analysis which you created by executing the sample as shown below.

Swso2-ml-anomaly-detection-unl			COMPARE MODELS (n) DELETE PROJECT
This project tests ml workflow for k means anomaly	Analysis name 💿		
detection with unlabeled data model	e.g. myanalysis	CREATE ANALYSIS	
	🗐 wso2-ml-anomaly-det	ection-unlabeled-data-sample-analysis	(A) VIEW (A) MODELS (A) DELETE

4. You view the built new model as shown below.

wso2-ml-anomaly-detection-unlabeled-data-sample-analysis.Model.2015-11-13_10-51-27	🕞 PREDICT 🔔 DOWNLOAD 🔕 PUBLISH
	(n) DELETE MODEL

Viewing the model prediction

The sample executes the generated model on the <ML_HOME>/samples/default/k-means-with-unlabeled-data/prediction-test data set, and it prints
the value ["anomaly"] as the prediction result In the CLI logs.

Generating a Model Using the K Means Anomaly Detection Algorithm with labeled data

- Introduction
- Prerequisites

- Executing the sample
- Output of the sample

Introduction

This sample demonstrates how a model is generated out of a labeled data set using the k-means anomaly detection algorithm. The sample uses a data set to generate a model, which is divided into two sets for training and testing.

Prerequisites

Follow the steps below to set up the prerequisites before you start.

- 1. Download WSO2 Machine Learner, and start the server. For information on setting up and running WSO2 ML, see <u>Getting Started</u>.
- 2. Download and install jq (CLI JSON processor). For instructions, see jq Documentation.
- 3. If you are using Mac OS X, download and install GNU stream editor (sed). For instructions, see <u>GNU sed Documentation</u>.

Executing the sample

Follow the steps below to execute the sample.

- 1. Navigate to <ML_HOME>/samples/default/anomaly-detection-labeled-data/ directory using the CLI.
- 2. Execute the following command to execute the sample: ./model-generation.sh

Output of the sample

Once the sample is successfully executed, you can view the summary and the prediction of the model as described below.

Icon

By default, the sample generates the model in the <ML_HOME>/models/ directory of your machine. For example, the generated file is in the following format denoting the date and time when it was generated:

```
wso2-ml-anomaly-detection-labeled-data-sample-analysis.Model.2015-11-13_10-56-15
```

Viewing the model

You can view the summary of the built model using the ML UI as follows.

- 1. Log in to the ML UI from your Web browser using admin/admin credentials and the following URL: https://<ML_HOST>:<ML_PORT>/ml
- 2. Click the Projects button as shown below.

Projects 🕥	
Project is a logical grouping of machine learning analyses, which are performed on a dataset. To analyze multiple datasets, you need to create multiple projects.	
You have (1) Projects ADD PROJECT	

3. Click MODELS button of the new analysis which you created by executing the sample as shown below.

🛇 wso2-ml-anomaly-detection-labele	d-data-sample-project			COMPARE MODELS	DELETE PROJECT
This project tests ml workflow for k means anomaly	Analysis name 🔞				
detection with labeled data model	e.g. myanalysis	CREATE ANALYSIS			
	wso2-ml-anomaly-detection	on-labeled-data-sample-analysis	(VIEW R MODELS (DELETE	
	wso2-ml-anomaly-detection	on-labeled-data-sample-analysis	([) view 🚯 models 💼 delete	

4. Click VIEW of the built new model as shown below.

You view the summary of the built model as shown below.

leasures Measure Value (%) Precision 66.18 Recall 96.48 Accuracy 65.91	Cluster Diagram	m	anon norr	naly nal		ar - -	nomaly 137 70		•		rmal 5 B	
leasures Measure Value (%) Precision 66.18 Recall 96.48 Accuracy 65.91	Cluster Diagram	m	anon norr	naly nal		•	137 70 .		•		8	
leasures Measure Value (%) Precision 66.18 Recall 96.48 Accuracy 65.91	Cluster Diagram	m .	norr	nal		:	70		•		8	
Measure Value (%) Precision 66.18 Recall 96.48 Accuracy 65.91	Cluster Diagram	m	. :	:	•		•		•			
MeasureValue (%)Precision66.18Recall96.48Accuracy65.91	- 180 - 160 - 140 - 120		• •	:	•	•	•		•			
Precision 66.18 Recall 96.48 Accuracy 65.91	160 - 140 - 120 -		:	:	;							
Recall 96.48 Accuracy 65.91	140 -	: :	: 1									
Accuracy 65.91	120 -		· 1			-			:		•	
				1		-	:	:				
	80-			:	1	2	:	•			•	
	60 -						•		•			
	40 -											
	20 -											
	0.0 1.0 - 2 +	2.0 3.	8.0 4.0	5.0	6.0	7.0	8.0	9.0	10	11 Numi	12 Pregnan	cies
	X-Axis				Y	-Axis	D					

Model Summary [F1 Score: 0.7851]

Viewing the model prediction

The sample executes the generated model on the

<ML_HOME>/samples/default/k-means-with-labeled-data/prediction-test data set, and it prints the value ["anomaly"] as the prediction result In the CLI logs.

idmin 👤

Generating a Tuned Model Using the K Means Anomaly Detection Algorithm with labeled data

- Introduction
- Prerequisites
- Executing the sample
- Output of the sample

Introduction

This sample demonstrates how a model is generated out of a dataset using the k-means anomaly detection algorithm using <u>tuned hyper parameter values</u>. You can find these parameter values in the <ML_HOME>/samples/tuned/k-means-with-labeled-data/hyper-parameters file. The sample uses a data set to generate a model, which is divided into two sets for training and testing.

Prerequisites

Follow the steps below to set up the prerequisites before you start.

- 1. Download WSO2 Machine Learner, and start the server. For information on setting up and running WSO2 ML, see <u>Getting Started</u>.
- 2. Download and install jq (CLI JSON processor). For instructions, see jq Documentation.
- 3. If you are using Mac OS X, download and install GNU stream editor (sed). For instructions, see <u>GNU sed Documentation</u>.

Executing the sample

Follow the steps below to execute the sample.

- 1. Navigate to <ML_HOME>/samples/tuned/anomaly-detection-labeled-data/ directory using the CLI.
- 2. Execute the following command to execute the sample: ./model-generation.sh

Output of the sample

Once the sample is successfully executed, you can view the summary and the prediction of the model as described below.

Icon

By default, the sample generates the model in the <ML_HOME>/models/ directory of your machine. For example, the generated file is in the following format denoting the date and time when it was generated:

wso2-ml-anomaly-detection-labeled-data-tuned-sample-analysis.Model.2015-11-13_11-00-21

Viewing the model summary

You can view the summary of the built model using the ML UI as follows.

- 1. Log in to the ML UI from your Web browser using admin/admin credentials and the following URL: https://<ML_HOST>:<ML_PORT>/ml
- 2. Click the Projects button as shown below.

3. Click MODELS button of the new analysis which you created by executing the sample as shown below.

🛇 wso2-ml-anomaly-detection-label	ed-data-tuned-sample-project [created: 2015-11-13 10:59:58.813] 1 analysis available	COMPARE MODELS () DELETE PROJECT
This project tests ml workflow for k means anomaly detection with labeled data model with tuned hyper- parameters	Analysis name • e.g. myanalysis • CREATE ANALYSIS	
	so2-ml-anomaly-detection-labeled-data-tuned-sample-analysis	(a) VIEW (b) MODELS (a) DELETE

4. Click VIEW of the built new model as shown below.

You view the summary of the built model as shown below.

Viewing the model prediction

The sample executes the generated model on the

<ML_HOME>/samples/tuned/k-means-with-labeled-data/prediction-test data set, and it prints the value ["positive"] as the prediction result In the CLI logs.

PMML Support

PMML

The Predictive Model Markup Language (PMML) is an XML-based file format developed by the Data Mining Group to provide a way for applications to describe and exchange models produced by data mining and machine learning algorithms. It supports common models such as logistic regression and feedforward neural networks.

Since PMML is an XML-based standard, the specification comes in the form of an XML schema.

PMML Support in WSO2 ML

WSO2 Machine Learner supports PMML export and publish functionality. Prior to this WSO2 ML was able to generate the serialized model only. From this release onwards a user could use that serialized model to export(download) or publish into PMML format. In order to generate the PMML model the user should already have the serialized model generated within the Machine Learner. If the user already has the serialized model, by passing that specific model's modelld into the export or publish APIs, the PMML model could be generated.

Usage

PMML export feature is used to export a serialized model created by WSO2 Machine Learner to PMML format. Currently the following model types can be exported as PMML.

- Linear Regression
- Logistic Regression
- Ridge Regression
- Lasso Regression
- SVM

• K-Means

PMML export for other model types can be expected in future releases. Apart from being able to export those models users can also publish them to the WSO2 registry.

Downloading a model in PMML Format

Method 1

After creating an analysis and generating a model click on "MODELS" button. The resulting page will be as follows. Click on "DOWNLOAD" button.

wso2-ml-linear-regression-sample-analysis.Model.2015-11-16_14-47-14 [Greated 2015-11-16/14-47.14.007]

In the resulting dialog box choose "PMML" as download type.

Please select download type	
Serialized PMML	

Method 2

After creating an analysis and generating a model click on "COMPARE MODELS" button. The resulting page will be as follows. Click on "DOWNLOAD" button.

Model Comparison		
Classification Numerical Prediction Clustering		
wso2-ml-linear-regression-sample-analysis.Model.2015-11-16_14-47-14 [Algorithm: LINEAR REGRESSION] [Mean squared error: 1.014+2]		
Show 10 •		1

In the resulting dialog box choose "PMML" as download type.

Please select download type	
Serialized PMML	

Publishing a model to Registry in PMML Format

Method 1

After creating an analysis and generating a model click on "MODELS" button. The resulting page will be as follows. Click on "PUBLISH" button.

wso2-ml-linear-regression-sample-analysis.Model.2015-11-16 14-47-14	

In the resulting dialog box choose "PMML" as publish type.

Method 2

After creating an analysis and generating a model click on "COMPARE MODELS" button. The resulting page will be as follows. Click on "PUBLISH" button.

Model Comparison	
Classification Numerical Prediction Clustering	
wso2-ml-linear-regression-sample-analysis.Model.2015-11-16_14-47-14 [Agonthm: LINEAR REGRESSION] [Mean squared error: 1.01e+2]	
Show 10 •	1

In the resulting dialog box choose "PMML" as publish type.

Please select model type to publish	
Sertalized PMMIL	

APIs

Finding whether an algorithm supports an export type

Overview

Description	Retrieve information whether a given algorithm supports an export type	
Resource Path	<pre>/api/configs/algorithms/{algorithmName}/expo rtable?format={exportFormat}</pre>	
HTTP Method	GET	
Request/Response Format	application/json	

Parameter description

Parameter	Description
{algorithmName}	Name of the algorithm which needs to be queried on a specific export type
{exportFormat}	The export format

Sample cURL command

```
curl -H "Content-Type: application/json" -H "Authorization: Basic
YWRtaW46YWRtaW4="
https://localhost:9443/api/configs/algorithms/LINEAR_REGRESSION/expo
rtable?format=pmml -v -k
```

Example

GET

https://localhost:9443/api/configs/algorithms/{algorithmName}/?format={ex
portFormat}

Sample output

HTTP/1.1 200 OK

REST API response

HTTP status	200, 404 or 400.
code	
	For descriptions of the HTTP status codes, see HTTP Status
	Codes.

Export a model

Overview

Description	Export a serialized model in either PMML or serialized formats	
Resource Path	<pre>api/models/{modelId}/export?mode={exportType }</pre>	
HTTP Method	GET	
Request/Response Format	application/json	

Parameter description

Parameter	Description
{modelId}	model ID of the model to be exported
{exportType}	The export type

Sample cURL command

```
curl -H "Content-Type: application/json" -H "Authorization: Basic
YWRtaW46YWRtaW4=" -v
https://localhost:9443/api/models/1/export?mode=pmml -k
```

Example

GET

```
https://localhost:9443/api/models/{modelId}/export?mode={exportFormat}
```

Sample output

```
<?xml version="1.0" encoding="UTF-8"?><PMML xmlns="http://www.dmg.org/PMML-4_2"
version="4.2">
   <Header description="linear regression">
       <Application name="Apache Spark MLlib"/>
        <Timestamp>2015-11-18T18:02:50</Timestamp>
   </Header>
    <DataDictionary numberOfFields="9">
        <DataField dataType="double" name="field_0" optype="continuous"/>
       <DataField dataType="double" name="field_1" optype="continuous"/>
       <DataField dataType="double" name="field_2" optype="continuous"/>
        <DataField dataType="double" name="field 3" optype="continuous"/>
       <DataField dataType="double" name="field_4" optype="continuous"/>
       <DataField dataType="double" name="field 5" optype="continuous"/>
       <DataField dataType="double" name="field_6" optype="continuous"/>
       <DataField dataType="double" name="field_7" optype="continuous"/>
        <DataField dataType="double" name="target" optype="continuous"/>
    </DataDictionary>
    <RegressionModel functionName="regression" modelName="linear regression">
        <MiningSchema>
            <MiningField name="field_0" usageType="active"/>
            <MiningField name="field_1" usageType="active"/>
            <MiningField name="field_2" usageType="active"/>
            <MiningField name="field 3" usageType="active"/>
            <MiningField name="field_4" usageType="active"/>
            <MiningField name="field 5" usageType="active"/>
            <MiningField name="field_6" usageType="active"/>
            <MiningField name="field_7" usageType="active"/>
            <MiningField name="target" usageType="target"/>
```

```
</MiningSchema>

<RegressionTable intercept="0.0">

<NumericPredictor coefficient="0.18637180966084266" name="field_0"/>

<NumericPredictor coefficient="0.09860314154841378" name="field_1"/>

<NumericPredictor coefficient="0.07703949089962057" name="field_2"/>

<NumericPredictor coefficient="0.02658539142216247" name="field_3"/>

<NumericPredictor coefficient="0.1661298483263787" name="field_4"/>

<NumericPredictor coefficient="0.0707509545901941" name="field_5"/>

<NumericPredictor coefficient="0.03607354242895441" name="field_6"/>

<NumericPredictor coefficient="0.04851007262677507" name="field_7"/>

</RegressionTable>

</PMML>
```

REST API response

HTTP status	200, 400, 404 or 500.
Coue	For descriptions of the HTTP status codes, see HTTP Status Codes.

Publish a model

Overview

Description	Publish a model
Resource Path	api/models/{modelId}/publish?mode={publishTy pe}
HTTP Method	POST

Request/Response	application/json
Format	

Parameter description

Parameter	Description
{modelld}	model ID of the model to be published
{publishType}	The model type to be published

Sample cURL command

curl -X POST -H "Content-Type: application/json" -H "Authorization: Basic YWRtaW46YWRtaW4=" -v https://localhost:9443/api/models/1/publish?mode=pmml -k -v

Example

GET

https://localhost:9443/api/models/{modelId}/publish?mode={publishType}

Sample output

HTTP/1.1 200 OK

REST API response

HTTP status code	200, 400, 404 or 500.
	For descriptions of the HTTP status codes, see HTTP Status Codes.

Samples

Each generic sample which supports PMML export is extended with exporting the model to PMML format. Once the PMML model is generated it will be printed in the client's console.

e.g

{ML_HOME}/samples/default/linear-regression/.model-generation.sh