Skip to content
Permalink
Fetching contributors…
Cannot retrieve contributors at this time
48 lines (25 sloc) 8.1 KB

存储器的层次化结构

计算机存储设备可被粗略分为内存储器(Main Memory)与外存储器(External Memory)两大类,内存存取速度快,但容量小,价格昂贵,而且不能长期保存数据,在不通电情况下数据会消失;外存储器存取速度相对较慢,却可以吃持久化存储。如果进行更加细致地划分,每个计算机系统中的存储设备都被组织成了一个存储器层次结构,在这个层次结构中,从上至下,设备变得访问速度越来越慢、容量越来越大,并且每字节的造价也越来越便宜。

image

最上层的是寄存器,存取时间极快,但容量小。其次是高速缓存,存取时间次之,容量比寄存器大一些。再往下就是我们常见的内存、硬盘,存取速度递减,但容量越来越大。CPU 在访问数据时,数据一般在相邻两层之间复制传送,且总是从慢速存储器复制到快速存储器,通过这种方式保证 CPU 的速度和存储器的速度相匹配。寄存器的存取时间在 1ns 级别,存储容量小于 1KB,可看做就是 L1 的高速缓存。L1 等高速缓存的存取时间在 2ns 级别,存储容量为 4MB;L1 是 L2 的高速缓存,L2 是 L3 的高速缓存,L3 是主存的高速缓存。主存的存取时间在 10ns 级别,存储容量目前在 GB 级别;主存又是磁盘的高速缓存。磁盘的存取速度在 10ms 级别,存储容量可达 TB 级别,在某些具有分布式文件系统的网络系统中,本地磁盘就是存储在其他系统中磁盘上的数据的高速缓存。

主存

主存是一个临时存储设备,在处理器执行程序时,用来存放程序和程序处理的数据。从物理上来说,主存是由一组动态随机存取存储器(DRAM)芯片组成的。从逻辑上来说,存储器是一个线性的字节数组,每个字节都有其唯一的地址(即数组索引),这些地址是从零开始的。一般来说,组成程序的每条机器指令都由不同数量的字节构成。

现代 DRAM 的结构和存取原理比较复杂,这里抽象出一个十分简单的存取模型来说明 DRAM 的工作原理。从抽象角度看,主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元。

当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作。这里可以看出,主存存取的时间仅与存取次数呈线性关系,因为不存在机械操作,两次存取的数据的“距离”不会对时间有任何影响,例如,先取 A0 再取 A1 和先取 A0 再取 D3 的时间消耗是一样的。

寄存器与高速缓存

寄存器文件在层次结构中位于最顶部,也就是第 0 级或记为 L0。一个典型的寄存器文件只存储几百字节的信息,而主存里可存放几十亿字节。然而,处理器从寄存器文件中读数据的速度比从主存中读取几乎要快 100 倍。针对这种处理器与主存之间的差异,系统设计者采用了更小、更快的存储设备,即高速缓存存储器(简称高速缓存),作为暂时的集结区域,用来存放处理器近期可能会需要的信息。

image

L1 和 L2 高速缓存是用一种叫做静态随机访问存储器(SRAM)的硬件技术实现的。比较新的、处理能力更强大的系统甚至有三级高速缓存:L1、L2 和 L3。系统可以获得一个很大的存储器,同时访问速度也很快,原因是利用了高速缓存的局部性原理,即程序具有访问局部区域里的数据和代码的趋势。通过让高速缓存里存放可能经常访问的数据的方法,大部分的存储器操作都能在快速的高速缓存中完成。

磁盘

磁盘是一种直接存取的存储设备 (DASD)。它是以存取时间变化不大为特征的。可以直接存取任何字符组,且容量大、速度较其它外存设备更快。磁盘是一个扁平的圆盘(与电唱机的唱片类似),盘面上有许多称为磁道的圆圈,数据就记录在这些磁道上。磁盘可以是单片的,也可以是由若干盘片组成的盘组,每一盘片上有两个面。如下图中所示的 6 片盘组为例,除去最顶端和最底端的外侧面不存储数据之外,一共有 10 个面可以用来保存信息。

当磁盘驱动器执行读/写功能时。盘片装在一个主轴上,并绕主轴高速旋转,当磁道在读/写头(磁头)下通过时,就可以进行数据的读 / 写了。一般磁盘分为固定头盘 ( 磁头固定 ) 和活动头盘。固定头盘的每一个磁道上都有独立的磁头,它是固定不动的,专门负责这一磁道上数据的读 / 写。活动头盘 ( 如上图 ) 的磁头是可移动的。每一个盘面上只有一个磁头 ( 磁头是双向的,因此正反盘面都能读写 )。它可以从该面的一个磁道移动到另一个磁道。所有磁头都装 在同一个动臂上,因此不同盘面上的所有磁头都是同时移动的 ( 行动整齐划一 )。当盘片绕主轴旋转的时候,磁头与旋转的盘片形成一个圆柱体。各个盘面上半径相 同的磁道组成了一个圆柱面,我们称为柱面。因此,柱面的个数也就是盘面上的磁道数。

磁盘上数据必须用一个三维地址唯一标示:柱面号、盘面号、块号 ( 磁道上的盘块 )。读 / 写磁盘上某一指定数据需要下面 3 个步骤: (1) 首先移动臂根据柱面号使磁头移动到所需要的柱面上,这一过程被称为定位或查找。 (2) 如上图 11.3 中所示的 6 盘组示意图中,所有磁头都定位到了 10 个盘面的 10 条磁道上 ( 磁头都是双向的 )。这时根据盘面号来确定指定盘面上的磁道。 (3) 盘面确定以后,盘片开始旋转,将指定块号的磁道段移动至磁头下。经过上面三个步骤,指定数据的存储位置就被找到。这时就可以开始读 / 写操作了。访问某一具体信息,由 3 部分时间组成:

  • 查找时间 (seek time) Ts: 完成上述步骤 (1) 所需要的时间。这部分时间代价最高,最大可达到 0.1s 左右。
  • 等待时间 (latency time) Tl: 完成上述步骤 (3) 所需要的时间。由于盘片绕主轴旋转速度很快,一般为 7200 转 / 分 ( 电脑硬盘的性能指标之一 , 家用的普通硬盘的转速一般有 5400rpm( 笔记本 )、7200rpm 几种 )。因此一般旋转一圈大约 0.0083s。
  • 传输时间 (transmission time) Tt: 数据通过系统总线传送到内存的时间,一般传输一个字节 (byte) 大概 0.02us=2*10^(-8)s

磁盘读取数据是以盘块(block)为基本单位的。位于同一盘块中的所有数据都能被一次性全部读取出来。而磁盘 IO 代价主要花费在查找时间 Ts 上。因此我们应该尽量将相关信息存放在同一盘块,同一磁道中。或者至少放在同一柱面或相邻柱面上,以求在读/写信息时尽量减少磁头来回移动的次数,避免过多的查找时间Ts。所以,在大规模数据存储方面,大量数据存储在外存磁盘中,而在外存磁盘中读取 / 写入块 (block) 中某数据时,首先需要定位到磁盘中的某块,如何有效地查找磁盘中的数据,需要一种合理高效的外存数据结构。

链接

You can’t perform that action at this time.