diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c index 6266a706bff7d..044d584c3467c 100644 --- a/fs/btrfs/inode.c +++ b/fs/btrfs/inode.c @@ -7961,6 +7961,34 @@ static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, } len = min(len, em->len - (start - em->start)); + + /* + * If we have a NOWAIT request and the range contains multiple extents + * (or a mix of extents and holes), then we return -EAGAIN to make the + * caller fallback to a context where it can do a blocking (without + * NOWAIT) request. This way we avoid doing partial IO and returning + * success to the caller, which is not optimal for writes and for reads + * it can result in unexpected behaviour for an application. + * + * When doing a read, because we use IOMAP_DIO_PARTIAL when calling + * iomap_dio_rw(), we can end up returning less data then what the caller + * asked for, resulting in an unexpected, and incorrect, short read. + * That is, the caller asked to read N bytes and we return less than that, + * which is wrong unless we are crossing EOF. This happens if we get a + * page fault error when trying to fault in pages for the buffer that is + * associated to the struct iov_iter passed to iomap_dio_rw(), and we + * have previously submitted bios for other extents in the range, in + * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of + * those bios have completed by the time we get the page fault error, + * which we return back to our caller - we should only return EIOCBQUEUED + * after we have submitted bios for all the extents in the range. + */ + if ((flags & IOMAP_NOWAIT) && len < length) { + free_extent_map(em); + ret = -EAGAIN; + goto unlock_err; + } + if (write) { ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, start, len);