3 HIGH-ORDER TIME-DISCRETIZATION SCHEMES

3.1 Introduction

The partial differential equation to be solved is of the general form
du = H(u) ’ (3.1)

where H is a differential operator generally nonlinear. With a view to application
to fluid dynamics, H is the sum of a nonlinear first-order term N(u) and a linear

second-order one L(u), that is
H(u) = N(u) + L{u) (3.2)

with

N(u)=—0,F(u), L(u)=vdu (v>0). (3.3)
When F is linear with constant coefficient, that is F(u) = Au, A = const., the resulting
equation is the advection-diffusion equation.

Three types of time-stepping may be used : (1) the fully explicit schemes, (2) the
semi-implicit schemes where the linear part L(u) is implicit and the nonlinear part
N{u) is explicit, and (3) the fully implicit. schemes whose solution requires either an
iterative procedure or a time-linearization technique like

H(u™) = H(u") + AtBH(u") = Hu") - 8, [F/(u") (v = u")] + 08, (u" ~ u”)
(3.4)

where u" is the approximation to u(z,t) at time t" = nAt, n = 0,1,... . In this
lecture, we shall discuss only the fully explicit and the semi-implicit schemes.

High-order accuracy can be obtained by considering schemes involving several time
levels. Thus, the discrete equation furnishing the solution ¥™*! contains the values
w9 with j = 0,..., k. Such a method is called a “multistep method”. Its truncation
error is generally O(A#*). Multistep methods, especially based on the Adams-Bashforth
technique (explicit schemes) or on a combination of Backward-Differentiation Formula
(BDF) and Adams-Bashforth discretization (explicit or semi-implicit schemes), will be
discussed in Section 3.2.

Another way to construct high-order methods is to consider only two levels of time
(n and n +1), the accuracy being obtained by dividing the time interval in a sequence
of intermediate stages, each of one furnishing an intermediate value. Accuracy of s-th
order is reached with s intermediate stages. This type of method is called a “one-
step method”, the main example being the Runge-Kutta schemes, which will make the
object of Section 3.3.

The stability of multistep and one-step methods will be studied in Section 3.4.
In case of an explicit method, it will be seen that the allowable time-step generally
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decreases when the number of time-levels of the Adams-Bashforth scheme increases.
On the other hand, the contrary occurs for the Runge-Kutta scheme : the allowable
time-step increases with the number of intermediate stages. However, in the same time,
the volume of calculations increases. Therefore, a comparison between multistep and
one-step methods must take this point into account.

Another important question arising when comparing the methods is connected to
the required storage. In general, the storage required by a multistep method is larger
than this needed by Runge-Kutta methods in their “low-storage” version.

Therefore, the choice between one-step and multistep methods resumes, as usual,
to a competition between computing time and storage, the decision being strongly
computer dependent.

For a more comprehensive study of time-discretization methods, we refer to clas-
sical books on the numerical solution of differential equations, for example : Henrici
[55], Gear [56], Lambert [57], Lapidus and Seinfeld [58], Hairer et al. [59] and Hairer
and Wanner [60].

3.2 Multistep method

3.2.1 Explicit methods
The commonly used high-order explicit schemes are the well known Adams-Bashforth
schemes. In these schemes, the time-derivative J;u is approximated with a two-level
finite-difference formula and the spatial term H is approximated with a linear combi-
nation of H evaluated at k time-levels, so that the resulting finite-difference equation’
has a truncation error of order Atf. Therefore, the general Adams-Bashforth (AB)
scheme is of the form : '
un—}-l —_—y

k=1 _
= Jgo b H (u") (3.5)

Another explicit multistep scheme consists of approximating 8;u with a high-order
finite-difference formula involving several time levels and H with an extrapolation
similar to the above one. Such a discretization is particularly convenient when some
part of H(u), especially L(u), is considered in an implicit way because it needs to be
considered at level n+ 1 only. This discretization (called “Backward Differentiation” or
“Backward-Euler”} will be discussed below in detail. For the moment, only the explicit
scheme (noted AB/BDE) is considered, it is of the general form

g DI S ] s, | :
Z._tzaju i = BEIWET). (3.6)
j=0 F=0
Therefore, scheme (3.5) enters in the general form (3.6) with ap = 1, a; = —1 and

a; =0forj > 1
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For the determination of the coefficients a; and b;, Taylor’s expansions around
(n+ 1)At are performed, let

k L
Z aj u”"'l_j s Z Atl .AI Bfu -+ O(AfL+1) ’ (37)

J=0 =0

where & is the I-th time-derivative of u and

k (_1)1 k r
AU:ZGJ" Agz—“—ZJGj, >0
j= i=
and
k-1 L1
S b Hu ™) = 3" At' B 8H + O(AtY) (3.8)
=0 =0
with

k-1 (~1)1 A
Bg:ij, B, = T Z(]+1)lbj, [>0.

=0 =0

Bringing these expansions into (3.6) we obtain

k
i—iu + (A1 8 — BoH) + 3 At 87 (Aibou — Bi H) + O(AtF) = 0.
=2

For the AB schemes (3.5), we have 4y = 0, Ay =1 and 4; = (-1)"*/I! for I > 1.
The consistency condition is By = A4;, that is
k-1

Zb_-,:l

J=0
and the conditions for k-th order accuracy are
B4 = A A= e R

For the AB/BDE schemes (3.6), the time-derivative J,u and the spatial term H{u)
are required to be separately approximated to the order k. Therefore, we get the
consistency conditions Ay = 0, A; = 1 and By = 1, that is

k k k—1
Zaj=0, Zjaj=1, ijzl
5=0 7=0 j=0
Then, the conditions for k-th order accuracy are
AIIO, Bg_1=0, l=2,...,k.
For both family of schemes, the truncation error is
At* (Appr — By) 88w 4+ O(AEFHY). (3.9)

Table 3.1 gives the values of the coefficients for schemes up to the fourth-order.
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Scheme |order | ag a; a a3 as by by, b by
AB2 s i -1 § —1
3 1 2 2
AB/BDE2| 2 |3 -2 3 2 | -1
AB3 3 1 -1 ?E —E i
. 11 3 1 12 12 | 12
AB/BDE3 | 3 |+ -3 5 ~3 3| -3 |1
55 59 | 37 9
AB 4 |1 -1 S8 e B
& 95 4 1“ 24 24 1} 24 24
AB/BDEA4 4 — |-413 [—= =14 —6 4 -1
12 3|4 o \\W \.‘N\h
| th]‘\-\ | o e h N
Table 3.1. Coefficients of the Adams-Bashforth (AB) and

Adams-Bashforth /Backward Differentiation (AB/BDE) schemes

3.2.2 Semi-implicit methods

The constraint on the size of the time-step At due to stability requirements asso-
ciated with a fully explicit scheme (especially restrictive for second-order derivatives)
leads naturally to increase the degree of implicitness of a scheme. The semi-implicit
methods apply generally to nonlinear equations like (3.1)-(3.2) where the coefficients
of the linear operator are constant. This is the case, for example, of the Navier-Stokes
equations for incompressible fluids with constant viscosity. This linear term is consid-
ered implicitly and the nonlinear term is explicit, so that the resulting discrete operator
is time-independent and can be inverted or diagonalized in a preprocessing stage per-
formed before to start the time-integration. Such a time discretization is of common
use associated with Fourier and Chebyshev spatial approximations.

The most used second-order implicit schemes are the Adams-Bashforth/Crank-
Nicolson (AB/CN) scheme

TR T |

L =L ve) - N + g e o] 619

and the Adams-Bashforth/Backward-Differentiation (AB/BDI2) scheme

3un+1 — Ay™ + u-n—l
2At

also denoted AB2/2BE (Quazzani et al. [61]).

Concerning the stability, the scheme (3.11) damps the high frequencies better than
(3.10). For large viscosity the scheme (3.11) is more stable than (3.10) ; in particular, for
v/|A| larger than a critical value depending on the spatial approximation, the scheme

= 2N(u") — N@"!) + L{u**), (3.11)
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(3.11) is (linearly) unconditionally stable (see Ouazzani et ol [61] for the Chebyshev
approximation). On the other hand, when the viscosity is small the scheme (3.10) is
slightly more stable than (3.11). However, for zero viscosity, both schemes are (weakly)
unstable (see Section 3.4). Concerning the accuracy, it can be seen that the truncation
error of (3.11) applied to the diffusion equation is larger than the error of (3.10).
However, when applied to the incompressible Navier-Stokes equations associated with
the tau or collocation Chebyshev method, the scheme (3.11) has shown to be slightly
more accurate than (3.10), as experienced by Vanel et al. [62] and by Ehrenstein and
Peyret [63].

An advantage of the AB/BDI2 scheme is that it does not necessitate to calculate
L(u™). Extensions of AB/CN scheme (3.10) to higher order necessitates to consider
L{u) at several time-levels, therefore it is more expensive in terms of computing time
and storage.

For all these reasons, it is recommended to use high-order semi-implicit schemes of
type (3.11), that is schemes similar to (3.6) with addition of the implicit evaluation
of L(u). These schemes, (belonging to the family introduced by Crouzeix [64]), noted
here AB/BDI, are

k k—1
Aii T autt = 3 0N () + L™  (312)
7=0 =0

with coefficients a; and b; given in Table 3.1. The truncation error is again given by
the expression (3.9). The third-order {AB/BDI3) scheme of the family (3.12) has been
applied to the solution of the Navier-Stokes equations associated with various spatial
approximations : finite-element methods (Baker ef al. [65]), Chebyshev tau method
(Le Quéré [66]), Chebyshev collocation method (Botella [67], Botella and Peyret [68])
or spectral element method (Karniadakis et al. [69]).

3.2.3 Starting schemes
With a multistep scheme, there exists a difficulty for starting the solution since the

only known value is u® = u(f = 0) while the equation (3.6) needs the knowledge of
ul,...,u* for the calculation of u**!. The usual way to remove this difficulty is to use,
at the first time-cycles, an one-step scheme like the Runge-Kutta scheme described
in next Section. From the practical point of view, it is interesting to note that the
starting scheme may be of one order accuracy less than the general scheme. This
comes from classical error estimates (Gear [56]) showing that the approximation error
e(t) = O(At*) becomes O(At**!) when t is close to zero, that is t = mAt, with m
sufficiently small.
One can be easily convinced of this fact by considering the simple problem

diwu = Au (A = negative constant)
w(0) = up
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whose solution is u(t) = uge™. The equation is approximated with the first-order Euler

scheme
n+l _ u"

At

U
=™, Wl =y

whose solution is
y" = Ug (1 = )\At)-n .
Now, if ¢ = nAt is fixed (t < T), and At — 0, we easily find
e(t) = u" — u(t) = %AAte’“t + O(M2AL).

Therefore, the error is of first-order but it becomes of second-order if t = mAt, with

m sufficiently small.

An example of starting scheme used in association with a third-order multistep
scheme is the second-order Runge-Kutta/Crank-Nicolson family described in Section
3.3. In particular, the scheme

Mo o N+ L)
(3.13)
uttl —y; —u” 1 -

has been used by Botella [26] for the incompressible Navier-Stokes equations discretized
in time with the scheme AB/BDI3 and in space with a Chebyshev collocation approx-
imation.

3.3 One-step methods : Runge-Kutta schemes
3.3.1 General explicit Runge-Kutta schemes

In the one-step method of Runge-Kutta type, the calculation of the solution at
level n + 1 involves only the solution at level n. The accuracy is obtained through
the calculation of intermediate values at s stages. In general, the order accuracy k
of the scheme is equal to the number of stages s. But, for various reasons (e.g. low-
storage, stability), it may be useful to consider one more stage than necessary to get
the accuracy.

Considering the general equation (3.1) the general s-stage Runge-Kutta scheme is

Kl = H(u“)

i-1
Bl (“‘ K A*Z“i-ifff) Gt  (319)

j':]_ i

s
'u,"'H =u" -+ Atzijj .
i=1
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The sets of coefficients a;; and b; characterize the scheme. When H depends explicitly
on time, that is # = H(t,u), the quantity K; is defined by evaluating H at time
1" + ¢;At. These coeflicients ¢; which characterize the Intermediate time-levels satisfy

the consistency conditions
¢ = Zai,j s =, . 5 (3.15)

with ¢; = 0. It is convenient to preserve the coefficients ¢ even if H does not explicitly

depend on t.
Another way to write the general Runge-Kutta scheme (3.14) is

Uy = u"
1—1
w=tg+AtY ajnH(u), i=1,.,5~1 (3.16)
=0
s—1

'U;n+1 = Up -+ Atz bj.;_lH(UJ) :
j=0

Finally, a third form of Runge-Kutta schemes may be found in the literature, it is

T

Ug = U
i—-1
U; = U + AtZai,jH(uj) 5 1= 1, e, 8§—1 (3 17)
=0 )
s—1
yttl = U1 + At E ,BJH(UJ)
i=0

with
i = Qittj41 — Qigrr, t=2,.,8-1; j=0,..,i—2,

ailj=ai+1,j+1, ’l:=1,...,.5"-'1, j=3"—1,
ﬁj: j+1_'as,j+ls J=0:"':S_21

ﬁs—l = bs .
The truncation error is determined, as usual, from Taylor’s expansion. The consis-
tency (1st-order accuracy) requires

Sobhi=1. (3.18)



The Runge-Kutta scheme is second-order accurate if

= 1

i=1

For third-order accuracy the following conditions have to be added :

1o, , 1 ¢ 1

-2— ; bz-c,- = '6- : idgl b,a,,jcj = 6 5 (320)
In case of a 3-stage scheme (s = 3), the conditions (3.18)-(3.20) give a system of 4

equations for 6 coefficients. Therefore, two of them can be chosen according to various

criteria : accuracy, low-storage (Williamson [70]) or TVD (Shu and Osher [71], Shu

[38), Gottlieb and Shu [72]). For example, the optimal third-order TVD scheme, often

used with ENO method, is obtained for

1 el 2
a1 =1, @31=032=7; bl=b2=6, bz=§-
Note that this scheme may be written under the form
Uy = u™ -+ AtH(u’"‘)
3.1 1
Uy = Z’u -+ :lul -+ ZAfH(Ul) (321)

1 2 2
n+l — " e ZAt
urtt=gu +3u2+3A H{u,)

which presents the advantage to necessitate only one evaluation of H at each stage.
Such a scheme, however, is not “Jow-storage” in the sense which will be discussed in
next Section.
Fourth-order accuracy requires, besides (3.18)-(3.20), the following equations to be
satisfied : o 1 \ _1
“Sobd=—, bic;aiiCi ==
6_; 2 2—; G =g

PP SR 1

_sza"ljc 3 i Ak CE = 5 -
g o AR ,@ 24
The classic four-stage fourth-order Runge-Kutta scheme is defined by the following

parameters :

(3.22)

1
a1 = 01 as 1 = 55 a3.1 =O) dzz =
(3.23)



The conditions (3.22) as well as those ensuring fifth-order accuracy are given by Car-
penter and Kennedy |73].

For further purpose it is interesting to write down the Taylor expansion to the
fifth-order for the case where H is linear (with constant coefficients) : '

5 ] 5
umtl = y® 4+ At (Z bl-) H{u™) +At? (Z bic,-) H?(u™) + At (Z b,'ai,jcj) H3(u™)
i=1 i=1 ij=1
+ At ( Z bia.i,jaj!kck) H4(u”) -+ O(Ats)
i,7,k=1
(3.24)
which is useful for the analysis of stability.

To close this Section, we mention the loss of accuracy in time for first-order hy-
perbolic equations when the boundary conditions are time-dependent, for example
u(0,t) = g(t). It is shown by Carpenter et al. [74] that the conventional method of
imposing boundary conditions, that is (0, t) = g(t + c;At) at stage ¢ in Eq.(3.16),
reduces the truncation error near the boundary to first-order, leading to a global accu-
racy of second-order only, whatever the order of the considered Runge-Kutta scheme.
Procedures for reducing this loss of accuracy is given by the quoted authors.

3.3.2 Low-storage explicit Runge-Kutta schemes

One property that can be required to a time-discretization scheme is to necessitate
the less storage possible. This requirement may be primordial especially for turbulent
flow calculations which generally need a very large number of degrees of freedom.
Therefore, a significant effort is continuing to be devoted to reduce the storage needed
by the Runge-Kutta schemes. :

Assuming the spatial discretization of H () to involve N degrees of freedom (modes
or grid values). A Runge-Kutta scheme requiring 2N memory locations is called a 2N-
storage scheme, 3N-stage scheme if it requires 3N locations ... Note that 2N is the
storage required by the usual first-order Euler scheme.

Williamson [70] has shown that all second-order schemés can be cast in 2N-storage
form. On the other hand, only some three-stage third-order schemes can be cast into a
2N-storage version. For four-stage fourth-order schemes it has been shown (Fyfe [75])
that all of them can be 3N-storage but only very special schemes (not commonly used)
can be cast in the 2N-storage form.

In the present Section, after a presentation of the general 2N-storage scheme, we
shall present the three-stage third-order scheme proposed by Williamson [70] and which
is broadly used in high-order CFD. Then, we shall discuss the four-stage, third-order,
2N-storage scheme proposed recently by Carpenter and Kennedy {73], in which the
additional stage is used to improve the stability properties. Finally, fourth-order 3N-
and 2N-storage schemes will be described.
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a) General 2N-storage scheme

e
The algorithm is of the form /_/E .
) :_% (Y]
Y AR

UQ ¥
g2 )"{‘?E, Qj-1 + AtH (uj-1) :
% A é\ + J'-b(-l Q J=1 3_1 (325)
M(&\—ﬂ-()-\- P)Xq() Z‘Z“;E;th Q5 1=h..8

with 4, = 0. Williamson [70] gives the expression of A; and B; in terms of the
coefficients of the general Runge-Kutta scheme (3.14). ThlS can be done only if these
coefficients have certain ratios to each other. This is the reason why all the Runge-
Kutta schemes cannot be put in the 9N-storage form. The expressions are :

B'=a'3+1,]7 J?és

Aj—

&

bj._l -1 .
= " j#FL, b #0 (3.26)

Aj=“____——i+1-J§;'cj, j#1, bj=0.

b) Third-order schemes
The three-stage third-order scheme proposed by Williamson [70] is defined by the

values 5 153
A1=0, A2=—.§’ A3=—ﬁ'§
. - 8 (3.27)
B, = 3 By = e Bs T
and can be read as : :
Uy = u"
= Atﬂ(“o)
u; = Up + 3Q1
\ ?3..
Q2 = ‘-'-Q1 + AtH(ul)
ug = U+ EQz _ - (3.28)

Qs = *T—SQz -+ AtH('u,z)

'U3='U2+—"Q3 :
\Q)'b

u’n+1 = u3.
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This scheme is often used in association with spectral approximations for solving the
compressible Navier-Stokes equations (see e.g. Guillard et ol. [76]).

It will be shown in Section 3.4 that the allowable time-step required for (linear) sta-
bility increases with the order of accuracy. Taking advantage of this property, Carpen-
ter and Kennedy [73] have devised a 2N-storage, four-stage, third-order accurate scheme
possessing the same stability constraint that the four-stage, fourth-order scheme. More
precisely, thanks to supplementary coefficients introduced by the additional stage, it is
possible to have an amplification factor of fourth-order type, that is the amplification
factor associated with (3.24). Incidentally, it is interesting to observe that the above
property makes the considered third-order scheme of fourth-order accuracy in the linear
case.

The requirement on the amplification factor is not sufficient to determine all the
coefficients. Therefore, the remaining freedom is exploited by imposing the coefficients
to be rational and to minimize the main part of the truncation error.

The four-stage third-order scheme constructed on the above described requirements

is defined by the set :

205 943 2
A= 0 A= e A= o A4S g
19 27 2 1 (3.29)
By = 3 By = T By = 3 By= -.

¢) Fourth-order scheme
The classic four-stage scheme defined by the coefficients (3.23) can be written (Blum

[77]) in the following 3N-storage form

Ug = u"

P() b 0

Go = u"

Pj = Aj Pj_l + Bj Qj_l (330)

Q5 = C; Q-1+ H(uj-1)
'tLjZUj...l-l-At(DJ‘P}-FEij) i=1..,8=4
ut =y

with coeflicients given in Table 3.2

Like for the third-order scheme, Carpenter and Kennedy |73] have considered fourth-
order schemes with five-stage. By increasing the number of stages, that is the number of
arbitrary coefficients, they constructed a scheme according to the following properties:
(1) 2N-storage, (2) large domain of stability, (3) small truncation error.
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jl4; B C; D; E
110 1 0 0 %
210 1 0 -—-l -1—
N S

6 2 1
411 -1 2 1 5

Table 3.2. Coefficients of the classic four-stage fourth-order 3N-storage Runge-Kutta
scheme

The values of the coefficients A; and B; of equations (3.25)-(3.26) are

A =0 B, = 0.1028639988105
A, = —0.4801594388478 B, = 0.7408540575767
Ag = —1.4042471952 B, = 0.7426530946684 (3.31)

Ay = —92.016477077503 By = 0.4694937902358
As = —1.056444269767 B; = 0.1881733382888

A rational form of these coefficients is given by Carpenter and Kennedy [73]-

The above scheme has been used for the study of the interaction shock-vortex by
means of the solution of the compressible Euler equations with ENO method (Er-
lebacher et al. {78]). These authors report that this scheme is more efficient than
Williamson’s third-order 2N-storage scheme (3.28) because of the larger allowable time-
step (higher by a factor of 1.9). The 2N-storage third-order and fourth-order schemes
respectively defined by (3.29) and (3.31) were recently applied (Wilson et al. [79]) to
the incompressible Navier-Stokes equations in association with fourth-order and sixth-
order Hermitian finite-difference approximations.

3.3.3 Semi-implicit Runge-Kutta schemes

As already explained, the constraint on the time-step due to the explicit nature of a
scheme can be reduced by considering a semi-implicit time-discretization. The viscous
terms L(u) (generally linear) which lead to a very restrictive time-step (for moderate
viscosity) are treated in an implicit way. The convective (generally nonlinear) terms
N(u) are evaluated explicitly.

In this Section, we present a family of two-stage second-order schemes and, then, a
2N-storage three-stage scheme whose accuracy is third-order for the explicit term and
second-order for the implicit one.
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