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Notations

General variables

x = x1 Downstream direction
y = x2 Transverse direction
z = x3 Cross direction
ui Velocity component along the direction i = 1 . . . 3
u Velocity vector
ai Lagrangian acceleration component along the direction i = 1 . . . 3
a Lagrangian acceleration vector
pm Modified pressure field
pi Modified pressure field gradient along the direction i = 1 . . . 3
Lx Domain size along the direction x
Ly Domain size along the direction y
Lz Domain size along the direction z
nx Number of nodes along the direction x
ny Number of nodes along the direction y
Lz Number of nodes along the direction z
∆x Spatial step along the direction x
∆y Spatial step along the direction y
∆z Spatial step along the direction z

Mean and RMS related variables

Ui Mean velocity component along the direction i = 1 . . . 3
ui RMS velocity component along the direction i = 1 . . . 3
uiuj Reynolds tensor components
k Turbulent Kinetic Energy

Hairpin flow related parameters

R Radius of the hemisphere
δ99 Thickness of the incoming boundary-layer
δ Displacement thickness of the boundary-layer
θ Momentum thickness of the boundary-layer
H = δ99

R Height ratio between the boundary-layer thickness and the hemisphere radius
U∞ velocity of the inlet above the boundary layer
Uτ velocity that would occur at the top of the hemisphere if the boundary layer was not perturbated
Re∞ = U∞R

ν Reynolds number defined using U∞
Reτ = Uτ R

ν Reynolds number defined using Uτ

Q Q-criterion value
f Frequency associated to the hairpins shedding
St = fR

U∞
Strouhal number associated to the hairpins shedding
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Chapter 1

Introduction

With fuel prices increasing greatly and the growing concern over global warming, the aeronautics industry
is required to reduce the fuel consumption and pollution levels drastically within ten years. If an important
part of these reductions can be achieved by improving the engines and managing better the global traffic,
it wil not be enough. Thus the drag reduction may be one of the remaining steps to reach these quality
criterions, and is expected to contribute to ten to twenty percents of the flight consumption reduction.

The aim of this study is to find a way to control hairpin structures using plasma forcing, as they are
supposed to contribute strongly to the friction term applied to the wall on a turbulent boundary layer. Plasma
actuators are a good candidate to control that kind of structures as they present the great advantage of being
non-intrusive. Moreover, some experiments have already been performed, for instance by [15], showing its
efficiency to delay the stall on wings. Here, the aim is not to change the physics of the flow, but rather to
find a way to control a certain kind of structures to reduce their drag contribution on a wall. Controlling
them means driving them away from the surface or reorganising them to make their ability to exert forces
on the surface reduced. In order to do so, their physics must be studied, which will be one of the objectives
of the present study. In a general turbulent boundary layer, hairpins are mixed and interacting with lots
of other coherent structures ([17]), and thus, in order to focus on them, simulations will be performed
to generate a flow where hairpins are easily identified, and as periodical and unperturbated by secondary
turbulent structures as possible.

The flow considered here is the flow around an hemisphere fixed on a flat plate. The incoming velocity
profile is a laminar boundary-layer Blasius profile. The velocity above the boundary layer is U∞. The
hemisphere then perturbates this laminar incoming flow to create a stable and strongly periodical street of
hairpins, at least for some boundary-layer height ratios H and Reynolds numbers Re which are the two
major parameters. The height ratio H between the boundary-layer thickness δ99 and the hemisphere radius
R, indicates the level of perturbation of the boundary-layer by the hemisphere, as illustrated in figure 1.1

Figure 1.1: Definition of the Height ratio H
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This rather simple flow has been designed and studied experimentaly by [1]. They argue that the hairpin
vortices play a key role in the developpement and sustaining of the turbulent process in the near wall
region of a turbulent boundary-layer. Their objectives were to determinate the shedding conditions and
detached characteristics as well as the formation and evolution of hairpin vortices, examine the secondary
structures generated and establish flow visualisations of the hairpins and these secondary structures. It will
provide experimental data, yet more qualitative than quantitative for the present study. The shedding and
the evolution of hairpin are also investigated in this study, as well as more numerical related parameters
like the effect of bockage and domain length. And once these parameters and their effects are studied to
define the best case for control in terms of hairpin quality and numerical efficiency, the plasma actuators are
introduced.

A Reynolds number Reτ above 1000 would cost too much calculation time1 and this value is sufficient
for control purposes. The Reynolds number investigated are thus between 100 and 1000, covering the
transition from steady to unsteady flow spotted at Re = 120 by [1] and the full regime above this value.
The second parameter is the height ratio. The lower this number is, the more the hairpins are perturbated, as
the obstacle covers more and more of the high strain zone of the incoming boundary-layer. It will be seen
that H = 2 provides a proper flow. A comparative case will be performed at lower H ratio to show how
the periodicity of the hairpin shedding is degenerated, and lead to more secondary structures. Figure 1.2
represents the domain that will be used as well as the boundary conditions applied, which will be detailed
in the first chapter.

Figure 1.2: Sketch of the domain considered as well as its associated lengths and boundary condi-
tions applied

Some alternative ways have ben used to generate simple hairpin vortices: [20] use a mixing plane, and [8]
use fluid injection techniques.

Few numerical simulations using this framework have been performed. [9] had quite different objectives
from the one for the present study. However, some visualisations of the hairpin vortices, as well as the
shedding Strouhal numbers St will be compared. Far more simulations have been performed for the slightly
simular study of the flow past a sphere, and can be found, for instance, in [10], [13] or [4]. These results
are briefly described here to present the type of numerical simulations realised as well as the mesh and the

1all the simulations are run on a workstation
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blockage ratio used. If the situation is not exactly similar, both the sphere and hemisphere can shed hairpins
around the same Reynolds number, and thus the study of these case is an efficient way to reduce the number
of simulations necessary create a proper mesh.
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Chapter 2

Numerical methods

Direct Numerical Simulations (DNS) are performed using the pseudo-spectral code Incompact3d ([12] and
[11]). The incompressible non-dimensionalised Navier Stokes equations are considered:

∂u
∂t

= −1
ρ
∇pm − ω × u + ν∇2u (2.1)

∇.u = 0 (2.2)

where ν is the constant kinematic viscosity, ρ the constant density, pm the modified pressure field, u and ω
being the velocity and vorticity fields. The modified pressure field is related to the pressure field by:

pm = p +
ρ

2
u.u (2.3)

Equations (2.1, 2.2) are directly solved on a cartesian grid. Sixth-order compact centered difference schemes
are used to evaluate all the spatial derivatives. Time integration is performed with a third-order low-storage
Runge-Kutta method.

The incompressibility condition is ensured via a fractional step method introducing a Poisson equation
for the pressure. This equation is directly solved in the framework of the modified spectral formalism,
using 3D Fast Fourier Transforms (FFT3D). The solver has been modified to process not only periodic/free
slip boundary conditions, but also Dirichlet conditions for velocity coupled with homogeneous Neumman
conditions for pressure. It allows the introduction of a grid stretching in one direction. [11] can be consulted
for a more detailed description of this solver.

2.1 Flow configuration

2.1.1 Domain dimensions

The dimensions chosen for the different cases performed can be found on table 2.1. The mesh is cartesian.
The idea of a Direct Numerical Simulation (DNS) is to solve all the turbulent scales. The only fixed
dimension is Ly = 10. The influence of the two others will be investigated in chapter 4. The length Lz will
be set to 5 and 10 to investigate the effect of the blockage ratio, while the length Lx will be set to 20 and 30
to investigate the effect of the outlet condition on the flow.

As far as H is concerned, three ratios are performed for a fixed Reynolds number Reτ in order to inves-
tigate the effect of this parameter.
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Case name Lx Ly Lz nx ny nz nclx ncly nclz Reτ H

1 20× 10× 5 20 10 5 361 121 90 2 2 0 1000 2
2 20× 10× 10 20 10 10 361 121 180 2 2 0 1000 2
3 30× 10× 5 30 10 5 541 121 90 2 2 0 1000 2
4 20× 10× 5−H = 1.5 20 10 5 361 121 90 2 2 0 1000 1.5
5 20× 10× 5−H = 1 20 10 5 361 121 90 2 2 0 1000 1
6 20× 10× 5− 750 20 10 5 361 121 90 2 2 0 750 2
7 20× 10× 5− 500 20 10 5 361 121 90 2 2 0 500 2
8 Inlet-validation 10 10 0.2 181 121 4 2 2 0 1000 2
9 2D-actuator 10 10 0.2 181 121 4 2 2 0 1000 2
10 Blasius forcing 10 10 0.2 181 121 4 2 2 0 1000 2
11 3D-actuator 8 10 5 145 121 90 2 2 0 1000 2
12 Hairpin forcing 8 10 5 145 121 90 2 2 0 1000 2

Table 2.1: Table of the simulations performed and their associated parameters

2.1.2 Mesh resolution

The table 2.1 provides the resolutions nx, ny and nz along the three directions of the mesh. In order to
avoid dealing with the effects of mesh modifications in the calculations, all the simulations, whatever the
value of the Reynolds number is, are performed on the most refined mesh defined for Reτ = 1000. Using
an height ratio H = 2 leads to a Reynolds number Re∞ = 1348 according to Blasius tables given in [18].

The principle of Direct Numerical Simulation is to solve all the scales. As the flow is initially laminar,
this does not provide a minimal cell size for the mesh. However, the laminar boundary layer will be
correctly described if the first layer of nodes is located around y+ = 1, y+ being the non-dimensionalised
distance to the wall. A refinement is used at the bottom, along the y direction. Above y = 2H , the flow
is only convected and is only meshed to avoid a too strong blockage. Thus a coarse mesh in this area
should not affect the physics of the flow. The mesh is set to get a y+ ≤ 1 all over the sphere, using the
length obtained in the floor for the boundary layer. As this latter is supposed to thicken downstream, the
most critical resolution is obtained right at the entrance of the domain for which the profile is completely
characterized by the inlet velocity. In order to find the minimal spatial step ∆y , one has to solve the Blasius
boundary-layer equation:

The Blasius boundary-layer is solution of the similarity problem defined by the following equation

ff ′′ + 2f ′′′ = 0 with u1 = U∞f ′(η) and η = y

√
U∞
νx

(2.4)

If the height ratio is set to H = 2, the associated distance x corresponding to the length of development of
the boundary-layer from the leading edge is defined by:

x =
(

H

4.916

)2
U

ν
with ν = (Re∞)−1 and U = 1 ⇒ x = 215.67 (2.5)

Then, using x, the wall shear stress can be defined:

τw = µ

(
∂u1

∂y

)
y=0

= αµU

√
U

νx
= 6.16× 10−4 with α = 0.33206 (2.6)

α is a numerical constant appearing when solving the Blasius equations. As ρ is set to 1, µ = ν. Then,
knowing τw, the reduced velocity uτ can be defined at the wall:

uτ =
√

τw

ρ
= 2.48× 10−2 (2.7)
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y+ = 1 ⇒ ymin =
ν

uτ
= 2.99× 10−2

Thus, the height of the first cell on the top of the sphere will be around 3 × 10−2 along the y direction.
The number of point is set to 121 points for Ly = 10 (cf. figure 1.2)with a growth parameter of 1 (the
definition of this growth parameter can be found in [11]). It leads to ∆ymin

= 2.4 × 10−2 at the wall
and ∆y = 3.05 × 10−2 at the top of the hemisphere. In the other two directions, the step is set to ∆x =
∆z = 5 × 10−2. This way, the aspect ratio is kept reasonneably low (below 2) and it reduces the number
of elements nx and nz . Because of the spectral resolution method used for the pressure, and the strong
decrease in FFT efficiency when the points are not equally spaced, it is not worthwhile to use a refinement
in more than a direction. So the mesh is uniform along x and z, respectively the stream and cross-stream
directions.
An a-posteriori validation of the mesh y+ on the floor can be found in figure 2.1. Figure 2.1 shows that

Figure 2.1: unsteady visualisation of the y+ on the floor for the 20× 10× 5 simulation

even though the value is not below 1 everywhere, it is below 2 behind the sphere. Only on the standing
vortex region does y+ reach 3, but in this region, the flow is still laminar and the increase is generated by
the compression imposed by this standing vortex. The resolution specified above will thus be kept for all
the other simulations.

2.2 Implementation and use of the Immersed Boundary Methods

In order to consider flows in presence of complex geometries, like an hemisphere in our case, the Immersed
Boundary Method is used. It has the great advantage of being appliable on a cartesian grid, and thus
avoiding the losses of accuracy and increases of computational costs that occur when using complex non-
structured grids. A rather exhaustive description of the different Immersed Boundary Methods can be found
in [7]. For the present code, a forcing method is considered. It consists in the imposition of a target velocity
u0(x, t) on the velocity field u(x, t) in the region of the obstacle. The objective is to verify the boundary
condition at the walls of the obstacle. A direct method is used to evaluate the forcing term during the
three sub-steps of the Runge-Kutta time advancement. A more detailed description of the implementation
and the problem encountered for a moving object can be found in [11] and [5]. In the following, only the
implementation of the target field evaluation will be considered.

Two different implementations are used. However, due to lack of time, the comparaison between these
two methods is not performed for all the configurations, and the first method (zero velocity inside the
obstacle) has been used in most of the simulations. However, sveral tests on the code have shown that if
the mesh is resolved enough, and for a fixed obstacle, the results provided by the two methods are strongly
similar.
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2.2.1 Zero-velocity inside the hemisphere

The first and simpliest way to implement the Immersed Boundary Method is to force the velocity equal to
zero for all the points inside the obstacle external surface which is defined in the case of a sphere by:

(x− c1)
2 + (y − c2)

2 + (z − c3)
2 = R (2.8)

where C = (c1, c2, c3) is the location of the hemisphere center. The process is strongly facilitated by the
fact that the equation 2.8 is really simple and that the normals can also be easily obtained.
The forcing is applied at every substep of the iteration. The velocity field obtained thus contains a zero
velocity inside the obstacle, and approximately zero on the surface. The only downsize of this method,
which is really simple and fast, is that it does not lead to a velocity of exactly zero at the surface. The
velocity field is forced at zero inside, but not all the points are at equal distance from the surface, which
mean that the zero velocity is more or less at the surface depending on the proximity of the first inside and
outside points, leading to a slightly deformed obstacle if this latter is defined as the zone of zero velocity.
An illustration of it can be found in figure 2.2 which shows the hemisphere superposed with the cartesian
mesh in a slice plance. A way to cope with this problem is to use the Mirror Flow technique.

Figure 2.2: Superposition of the cartesian mesh with the hemisphere

2.2.2 Mirror flow inside the hemisphere

In the Mirror flow approach, every internal point of the mesh has its distance to the surface evaluated. Then
its mirror relative to this surface is located. It usually does not correspond with a node of the mesh, so the
velocity vector is evaluated by bilinear interpolation of the neighbouring nodes. Then, the velocity at the
associated inner point is set to the opposite of the velocity vector obtained. This way, the velocity has to
change of sign when crossing the obstacle surface, and the zero should be located on it, or at least closer
than using the simple zero-inside approach. The figure 2.3 shows a simple example of this method in 2
dimensions

Figure 2.3: Mirror flow technique illustration in 2 dimensions
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2.3 Boundary conditions

Figure 1.2 shows the considered domain. The table 2.1 contains the boundary condition parameters for the
three directions nclx, ncly and nclz . ncl = 2 means that a Dirichlet condition is applied along the direction,
ncl = 1 is a Neumman condition, and ncl = 0 is a periodic condition.

• On the lateral faces, periodic conditions are applied, and thus nclz = 2 in all the cases.

• In the y direction, the velocities are prescribed, and thus ncly = 2.

– A no-slip condition is applied on the floor

– A free-slip condition is applied on the ceiling, meaning that the only non-zero component of
the velocity field is u1. It is considered that the ceiling is far enough from the obstacle to get a
convected flow along the direction x with u1 = U∞

• On the x direction, the velocities are also prescribed, and nclx = 2.

– The outflow boundary condition at x = Lx is deduced by solving a simplified convective
equation for the velocity components at the last nodes:

∂u
∂t

+ U∞
∂u
∂x

= 0 (2.9)

– At the inlet, the Blasius equation 2.4 is solved using a second-order Runge-Kutta method in
the code1 to provide u1(y) at x = 0. Both u2 and u3 are set to zero, and there is no noise
added unless precised otherwise.

2.3.1 Recycled inlet condition

For the domains used for the forcing cases, they are provided with an inlet condition extracted from a
iso − X = 12 (217th point along the x direction) plane of the 20 × 10 × 5 simulation, as used by [12].
Using the hypothesis of frozen turbulence, getting this plane at every time-step and introducing as an inlet
of a new simulation is equivalent to a complete resolution of the flow downstream while reducing strongly
the iteration time. But on top of this, the flow is considered as periodical enough to loop this condition over
the shedding period in order to create an hairpin alley. The principle of this method is to find an iso −X
plane for which the flow is periodical. We start recording this plane at each time-step at t = t0 = n0∆t,
and if after n1 time-steps, which corresponds to a shedding period, the plane for t = (n0 + n1) ∆t matches
the plane associated to t = t0, it is considered that the n1 succesive planes can be looped at the inlet. This
works in our case as the flow, although becoming turbulent, has almost only one spatial scale associated
with the hairpins. Moreover, the plane is set at the point of origin of the hairpins, a region for which the
creation of secondary scales should be rather limited. The periodicity of the inlet condition built is now
investigated. The error between two successive planes n1 and n is for which the three components of the
velocity field are given is considered as follows:

ε1(n) =

√√√√ ny∑
j=1

nz∑
k=1

3∑
i=1

(un
i (217, j, k)− u1

i (217, j, k))2 (2.10)

Let the first plane chosen (corresponding to the timestep 20550) be refered as 1. Figure 2.4 shows the
evolution of the error ε against the successive time-steps. It can be seen that the best match is for n = 406.
The error against the plane n = 406 is also plotted to show that the error compared to this plane has exactly
the same shape for the timesteps further than the error compared to the plane 1 at the beginning. It can also
be seen that there is a slight difference between the planes 1 and 406, and it may lead to a slight jump in
th divergence of the flow, as it has been pointed out during tests, but not enough to alter the shedding of
hairpins or to see any perturbation convected in the flow. The averaged flow for x = 12 to x = 20 for the

1the velocity will never reach 1 exactly as the boundary layer profile converges asymptotically to 1 without ever
reaching it. Some tries have been made using a connection to U1 = 1 above a certain value of y, but this leads to a
discontinuity in the velocity gradient, proven to generate a vortex sheet without physical meaning
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Figure 2.4: Evolution of the error between successive timesteps of the recycled inlet condition

case 1 and from x = 0 to x = 8 for the case 8 will be compared in the chapter 4. This inlet condition thus
provides a clean formation and shedding of hairpins while more than doubling the speed of the simulation,
which allowed much more tests on plasma actuators.

2.4 Evaluation of the Drag and Lift coefficients

The aerodynamical force FA applied by the flow on the body arises from the constraint vector T distribution
along the body surface SH :

FA =
∫

SH

TdS (2.11)

where the constraint vector is defined using the pressure field, the constraint tensor τ and n which is the
surfacic unit normal vector oriented towards the fluid:

T = τ .n (2.12)

where

τij = −pδij + dij = −pδij + 2µ

(
eij −

1
3
∆δij

)
= −pδij + 2µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.13)

Then, the lift and drag coefficients CL and CD are deduced, knowing that the force exerted by the flow on
the hemisphere is −FA:

CD =
4

ρU2
∞πR2

FA.eX (2.14)

CL =
4

ρU2
∞πR2

FA.eY (2.15)

with eX and eY being the unit vectors along the two directions x and y.
Given the use of Immersed Boundary Method to define the obstacle, there is no real mesh of its surface. It
is thus impossible to evaluate the surfacic integration of this vector on the hemisphere. Point values using
the same kind of techniques than for the Mirror-Flow approach may be evaluated, but the surface would
then have to be retriangulated to obtain the integral. A more suited approach is thus used.
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The idea here is to evaluate the drag using a volumic integration of the Navier Stokes equations on a
control volume V including the obstacle, with boundaries matching with the cartesian grid. In order to do
so, it is chosen to be the smallest box including the hemisphere and coinciding with the grid, as shown in
figure 2.5. The control volume V is closed by a surface S which is delimited into 7 separate surfaces as

Figure 2.5: box used for the volumic integration of the Navier Stokes equations in order to obtain
drag and lift coefficients

shown in figure 2.5
S = SI + SO + SC + SF + SL + SR + SH (2.16)

The Newton’s theorem is now applied under its global form in equation 2.17 on the control volume. For the
surfacic integrations below, the unit vectors on each surface are oriented towards the outside

D

Dt

∫
V

ρudV =
∂

∂t

∫
V

ρudV +
∫

V

ρu∇udV︸ ︷︷ ︸
A

=
∫

S

TdS (2.17)

Using the transport theorem, the term A can be transformed into a surfacic integration term:

A =
∫

S

ρu (u.n) dS (2.18)

Thus, the equation 2.17 becomes:∫
V

∂ρu
∂t

dV +
∫

S

ρu (u.n) dS︸ ︷︷ ︸
B

=
∫

S

TdS︸ ︷︷ ︸
C

(2.19)

There is only one volumic term, and all the rest of the equations consists of surfacic terms. The contributions
of the two terms B and C are now evaluated along the two principal axes, and the surfacic contributions
are decomposed into 7 the partitions of S given in equation 2.16:

B.eX = −
∫

SI

u2
1dS +

∫
SO

u2
1dS −

∫
SF

u1u2dS︸ ︷︷ ︸
=0

+
∫

SC

u1u2dS
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−
∫

SR

u1u3dS +
∫

SL

u1u3dS −
∫

SH

ρu1 (u.n) dS︸ ︷︷ ︸
=0

(2.20)

B.eY = −
∫

SI

u1u2dS +
∫

SO

u1u2dS −
∫

SF

u2
2dS︸ ︷︷ ︸

=0

+
∫

SC

u2
2dS

−
∫

SR

u2u3dS +
∫

SL

u2u3dS −
∫

SH

ρu2 (u.n) dS︸ ︷︷ ︸
=0

(2.21)

C.eX = −FD +
∫

SI

(
p− 2µ

∂u1

∂x

)
dS −

∫
SO

(
p− 2µ

∂u1

∂x

)
dS −

∫
SF

µ
∂u1

∂y
dS

+
∫

SC

µ

[
∂u1

∂y
+

∂u2

∂x

]
dS −

∫
SR

µ

[
∂u1

∂z
+

∂u3

∂x

]
dS +

∫
SL

µ

[
∂u1

∂z
+

∂u3

∂x

]
dS (2.22)

C.eY = −FL −
∫

SI

µ

[
∂u1

∂y
+

∂u2

∂x

]
dS +

∫
SO

µ

[
∂u1

∂y
+

∂u2

∂x

]
dS −

∫
SF

(
−p + 2µ

∂u2

∂y

)
dS

+
∫

SC

(
−p + µ

∂u2

∂y

)
dS −

∫
SR

µ

[
∂u2

∂z
+

∂u3

∂y

]
dS +

∫
SL

µ

[
∂u2

∂z
+

∂u3

∂y

]
dS (2.23)

There is a minus sign in front of FD and FL in the equations 2.22 and 2.23 as the unit normal vectors n are
oriented here towards the hemisphere. Then, replacing the relations obtained in equations 2.20, 2.21, 2.22
and 2.23 into the equation 2.19:

FD = −
∫

V

∂

∂t
(ρu1) dV +

∫
SI

u2
1dS −

∫
SO

u2
1dS −

∫
SC

u1u2dS +
∫

SR

u1u3dS

−
∫

SL

u1u3dS +
∫

SI

(
−p + 2µ

∂u1

∂x

)
dS −

∫
SO

(
−p + 2µ

∂u1

∂x

)
dS +

∫
SF

µ
∂u1

∂y
dS

−
∫

SC

µ

[
∂u1

∂y
+

∂u2

∂x

]
dS +

∫
SR

µ

[
∂u1

∂z
+

∂u3

∂x

]
dS −

∫
SL

µ

[
∂u1

∂z
+

∂u3

∂x

]
dS (2.24)

FL = −
∫

V

∂

∂t
(ρu2) dV +

∫
SI

u1u2dS −
∫

SO

u1u2dS −
∫

SC

u2
2dS +

∫
SR

u2u3dS

−
∫

SL

u2u3dS +
∫

SI

µ

[
∂u1

∂y
+

∂u2

∂x

]
dS −

∫
SO

µ

[
∂u1

∂y
+

∂u2

∂x

]
dS +

∫
SF

(
−p + 2µ

∂u2

∂y

)
dS

−
∫

SC

(
−p + µ

∂u2

∂y

)
dS +

∫
SR

µ

[
∂u2

∂z
+

∂u3

∂y

]
dS −

∫
SL

µ

[
∂u2

∂z
+

∂u3

∂y

]
dS (2.25)

For each of the surfacic integrals in equations 2.25 and 2.24, in order to avoid overlaps of the nodes contri-
butions, the integration is done surfacic cell by surfacic cell. Given a rectangular cell with four nodes (1 to
4) and two lengths a and b over its two directions (all the cells are rectangular as the mesh is cartesian), and
using bilinear interpolation along the element:∫

cell

fdS =
f1 + f2 + f3 + f4

4
ab (2.26)

The only remaining term to evaluate the lift and the drag is thus the contribution of the eulerian acceleration
terms

Evaluation of the contribution of the eulerian acceleration terms

As for the surfacic integration, the evaluation is done element by element. It is only problematic when the
considered cell is partially cut by the virtual boundary of the obstacle.
When the cells are far enough to be completely in the flow zone, the contribution of the element is easily
evaluated: considering an 8 nodes parallelepiped cell with lengths a, b and c along the three directions, and
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using bilinear interpolation inside the element, we get:∫
V

fdV =
abc

8

8∑
i=1

fi

But it is far more complicated when the surface intersects the element. The first step of the method is thus
to distinguish these two families of elements. For that, the radius for each node of the considered element
is compared to the radius of the sphere.

• If all the nodes are outside, it is considered that the element is completely outside the obstacle (it
may not be true on top of the sphere, for instance, if the mesh is too coarse, but the meshes involved
here are considered refined enough to neglect that kind of cases)

• If at least 7 nodes are in the obstacle, the contribution of the element is neglected.

• Between 1 and 6 nodes, the cell is considered as partially immerged, and its volume is approximated
as described below

When a cell is partially immerged, the procedure to evaluate its contribution is the following

1. Find all the edges that are cut by the surface by comparing the sign of r − R (r the local radius and
R the radius of the hemisphere) at their two extremities.

(a) if the edge is cut, the length between the extern extremity and the hemisphere over this edge is
evaluated as the length associated to the edge

(b) otherwise, the associated length is set to the length of the edge

2. For the 4 edges on the same direction, the max and min are evaluated

3. The volume of the element is equal to

1
8
× (maxx + minx)× (maxy + miny)× (maxz + minz)

This expression is more or less accurate considering the way the cell is cut and is far from being
optimal, but is simple and accurate enough considering that the acceleration will tend to zero at the
boundary, and that most of the cells of the domain are either completely immerged or not.

4. Once the volume evaluated, it is multiplied by the sum of all the accelerations at the nodes of the
element that are outside the hemisphere and divided by 8, the usual number of nodes on an element.

This loop is done over all the cells inside the domain.

2.5 Evaluation of the unsteady Lagrangian acceleration

In order to study locally the zones of dissipation and production associated to the flow, using Newton’s
theorem defined in equation 2.17, the Lagrangian accelaration has to be evaluated. As far as the Eulerian
part is concerned, as simple first-order finite difference approximation is performed, using the velocity fields
at the beginning of the time step and the velocity computed after the three sub-steps performed:

∂U
∂t

≈ Ui+1 −Ui

∆t

It is not consistent with the finite-difference schemes used for spatial derivation, which are sixth-order, but
increasing the order would lead to the storage of the complete velocity field for the several previous time-
steps, and the first order is a way to get a good approximation while maintaining low storage. Moreover, the
convective part of the acceleration should dominate in our case. The convective term is evaluated at each
sub-step, and the latest approximation is used to obtain the remaining part of the acceleration field.
The pressure gradients also have to be exported as the ratio of this terms by the acceleration field is a
pertinent indicator of the local nature of the flow (its dissipation rate, for instance).
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2.6 Statistics

2.6.1 Mean and RMS quantity evaluations

The mean quantities for every variable will be refered using capital letters. For each simulation performed,
the mean velocities Ui and Lagrangian accelerations Ai are evaluated, as well as the components of the
Reynolds tensor uiuj . Using these components, two other physical quantities relative to turbulence are
evaluated: the turbulent kinetic energy (TKE) k and the turbulent production Pk:

k =
1
2

(
u2

1 + u2
2 + u2

3

)
(2.27)

Pk = −u1u2
∂u1

∂y
(2.28)

For the simulation 20 × 10 × 5, the first and second order moments are also evaluated for the pressure
gradient. The table 2.6.1 provides for each simulations where statistics has been performed the starting time-
step for time averaging, the averaging time, and the values evaluated. The time step for all the simulations
is set to ∆t = 1× 10−2 The usual averaging time is 4000∆t = 40, which has been tested to be enough to

Case name Ui uiuj Ai Pi pipj Probes Probe Averaging Averaging
time(ts) start(ts) time(ts)

1 20× 10× 5 × × × × × × 10000 16550 4000
2 20× 10× 10 × × × × 12000 18550 4000
3 30× 10× 5 × × × 8000 4000
4 20× 10× 5−H = 1.5 × × × × × × 8000 4000 6000
5 20× 10× 5−H = 1
6 20× 10× 5− 750
7 20× 10× 5− 500
8 Inlet-validation × × × 4000 4000
9 2D-actuator × × 4000 4000
10 Blasius forcing × × 4000 4000
11 3D-actuator × × × 6000 4000
12 Hairpin forcing × × × 6000 4000

Table 2.2: Table of the statistics performed and their associated parameters

get convergence of the first and second order moments. The two first cases have been run for much longer
than the others as they will be the cases on which most of the dynamical studies will be performed.

2.6.2 Boundary layer related statistics

In order to characterize the transition of the boundary-layer from laminar to turbulent, some other quantities
are evaluated: the displacement and momentum thickness as well as their ratio:

δ =
∫ ∞

0

(
1− U1

U∞

)
dy (2.29)

θ =
∫ ∞

0

U1

U∞

(
1− U1

U∞

)
dy (2.30)

(2.31)

The ratio δ/θ is an indicator of the nature of the boundary-layer. A value around 2.4 is typical of a laminar
boundary layer while a value of 1.5 indicates a turbulent boundary-layer. It also has to be pointed out that
this ratio will diverge in case of a separation or reattachement line.
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2.6.3 Export of probes

An routine has been added to the code in order to be able to export unsteady values at different locations of
the flow. So, at every time-step, the three components of the velocity, acceleration and pressure gradients are
exported in 444 locations of the flow2. The figure 2.6 gives two views in both iso-X and iso-Z planes of the
position of all the probes as well as the mean U1-velocity in the corresponding slice plans (X = 7, middle
of the sphere, and Z = 0, symmetry plane). This probes will also be used to study the dynamics of the flow
and evaluate, for instance, the Strouhal number associated to the hairpin shedding using autocorrelations, as
well as the convection speed of the hairpins using spatial intercorrelation. The recirculation zone is strongly

(a) (b)

Figure 2.6: Views of the position of all the probes as well as the mean U-velocity in the corre-
sponding slice plans in both iso-X (a) (X = 7) and iso-Z planes (b) (Z = 0)

discretized as it should be the most perturbated zone of the flow. Then lines of probes are defined along the
three directions. It is thus possible to follow the path of the hairpins and to realise spatial correlations. As
the hairpins are supposed to move upwards when being convected, probes are set at a maximum height of
2. Only half of the domain is covered along the cross-stream direction (z), given the strong symmetry of
the flow. A validation of this symmetry has been performed by taking the difference between left and right
sides of the median plane for a given time-step, leading to a zero close to machine accuracy.

2in order to avoid slowing down the code, the export to files is only made every 100 timesteps
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Chapter 3

Flow around hemispheres

3.1 Generation of hairpin vortices

According to [1], the hairpin are generated by the accumulation of vortex sheet lines in front and on the
sides of the hemisphere. The figure 3.1.(a) is a sketch extracted from their articles illustrating the formation
process, while the figure 3.1.(b) shows an unsteady visualisation of the standing vortex and a shed hairpin,
using isosurfaces of the Q criterion.

(a) (b)

Figure 3.1: (a): Formation of hairpin vortices and standing vortices due to the concentration of
vortex lines, extracted from [1]. (b):visualisation of the unsteady Q = 1.5 criterion isosurface for
Reτ = 1000 and H = 2

The representation 3.1.(a) has been obtained by analyzing the hydrogen bubble injection visualisations
and is in good agreement with the unsteady visualisation provided in figure 3.1.b. According to [1], the
accumulation of vortex lines leads to the creation of hairpin vortices as well as a standing vortex which
surrounds the hemisphere. One may also wonder what may be the role played by the pressure and vorticity
fields, especially in the wake in this shedding. And apart from the fact that the so-called standing vortex
is always present around the hemisphere, one may wonder if this structure is fluctuating in time, and thus
playing a role in the shedding mechanism.

Shedding frequency evolution with Re

[1] have studied the evolution of the shedding frequency with the Reynolds number, using several incoming
speeds, three different sphere radius, and three different downstream localisations (it modifies the height
ratio H) in order to cover a broad set of Reynolds number (30 ≤ Re ≤ 3400). Below the value of 120,
the flow is steady, and the shedding becomes unstable over 3400. The evolution of the shedding frequency
with the Reynolds number may come with some regime changes. It has not been clearly documented for
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the hemisphere on a flate plate, but the transition from steady to unsteady flow has been described on the
sphere by [19]. The figure 3.2 shows three successive isosurfaces of streamwise vorticity for Reynolds
numbers below and above the transition number, an equivalent study for the hemisphere will be tried to
locate the more accurately possible the transition of the flow. Below the transition, the sphere generates two

(a) Re = 250

(b) Re = 300

(c) Re = 500

Figure 3.2: Evolution of the streamwise vorticity isosurfaces characterizing the shedding regimes
around the transition from steady to unsteady, extracted from [19]

kinds of steady streamwise vortices, and above, the hairpin shedding process starts. Given the presence of
a stabilizing standing vortex around the hemisphere, this transition may occur later, as it will be shown in
the next sections.
[1] found that the hairpin shedding starts around Re = 120 and becomes unstable for Re = 3400. As
Direct Numerical Simulations are performed, reaching Reτ = 1000 is sufficient. [9], for instance, do not
go further than Re∞ = 750 with H = 1.2, leading to a Reynolds number Reτ = 725.

The Strouhal number associated to this shedding process has been systematically measured for all the
configurations and the results can be seen on figure 3.3.(a)-(b), as well as a similar evolution obtained
numericaly by [9] for Re∞ ∈ [400, 700] (Reτ ∈ [387, 677] with H = 1.2). Even though [1] is rather qual-
itative, the insights given on the shedding/generation process offer a lot of data that will be used to validate
our flow before trying any control process. Figure 3.3.(c) is more accurate for the domain concerned, but
in the study performed here, the height ratios are usually higher than 1.2 leading to too many secondary
structures generated by the hairpins at higher Reynolds number.

3.1.1 Link between successive hairpins

The relation between consecutive hairpins is now investigated. The figure 3.4.a shows a scheme of the
interaction between these consecutive hairpins and the way they coalesce by [1], while the figure 3.4.b
shows an unsteady visualisation of this same relation between two successive hairpins extracted from [9]
The head shapes implies that it contains both streamwise and transverse vorticity, while the leg is more
dominated by streamwise vorticity. The figure 3.4 shows that the legs of the older loops are caught in the
deforming layers of the previous ones. But as the shedding frequency varies with Re, it may be possible to
get regime with a stronger separation of consecutive vortices and prevent them from coalescing. The fact
that the legs get away from the symmetry plane in the end seems to be caused by the down-flow generated
by the head of the following hairpin.
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(a) (b) (c)

Figure 3.3: Evolution of the shedding Strouhal Number S with Re and H , extracted from [1] (a
and b, for several different height ratios H), and from [9](H = 1.2).

(a) (b)

Figure 3.4: Scheme (a, from [1]) and unsteady visualisation (b, from [9], with Re = 670, and
λ2 = −1) of the relation between consecutive hairpins

The visualisation in fig. 3.4.b shows that the leg of the hairpin seems to be disconnected from the part
included in the following hairpin, called here the spikes. According to the scheme in fig. 3.4.a, these
”spikes” are connected to the legs, but [9] quote that they appear simultaneously without link, and are thus
separated structures, but one may wonder if it is not just a treshold problem in the definition of the isosurface
leading to this separation, as the separation zone is where the effect of the next hairpin tail is maximal. This
question will be investigated in the next section. Moreover, a ”vortex bridge” can be seen on the right-side
of the picture, showing a reconnection between the two legs of the hairpin. This structure is said to have a
very short life length and to be a common form of vortex reconnection in viscous flows according to [9]. It
will however not be noticed in our simulations, and thus might only occur at lower height ratios than those
investigated in the present study.

The relation between consecutive vortices as well as their evolution with the Reynolds number will be
briefly investigated in the next sections of this study.
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Chapter 4

Results

The mesh resolution has been defined in the last chapter. The length of the domain along the y direction
is fixed to Ly = 10 and will not be modified. As this is the direction where the mesh is coarsened, it is
the most cost effective way to lower the blockage ratio. The variables left are the width Lz , which will
characterise the effect of the blockage ratio on the flow, the length Lx to determine the effect of the outlet
condition on the flow, the Reynolds number Reτ and the aspect ratio H . The idea of this parametric study
is to evaluate the effect of this different parameters on the physics of the flow.

The blockage ratio as well as the length of the domain may have an effect in the way the boundary-layer
recovers from this shedding and on the way the transition to a turbulent boundary layer may occur. The
perturbation of an initially laminar boundary layer results, for given Reynolds numbers and heigth ratio,
in the creation of a kind of structures that is present on fully turbulent boundary layers, and it may be
interesting to see if this add is enough to generate a transition towards a turbulent boundary layer, and to
what extent the different parameters chosen have an effect on this supposed transition.

As far as the shedding process is concerned, [9] and [1] have already exhibited the modification of the
Strouhal number with the Reynolds number, and changing the heigth ratio or the blockage ratio, generating
higher velocities around the hemisphere, should also imply Strouhal modification. The way the shedding
process is modified is also to be investigated. Does a change in the blockage ratio lead to less periodical
shedding, and lower first peak autocorrelation values? [1] have also pointed out the progressive apparition
of secondary structures when increasing the Reynolds number, and finding out if a similar effect occur when
the heigth ratio is modified may also be of interest.

And in order to test the plasma actuators, the nature of the flow and its variations with the parameters
above must be investigated in order to define a proper benchmark case.

4.1 Effect of the blockage ratio

In this section, the 20 × 10 × 5 and 20 × 10 × 10 simulation results are compared (1 and 2, or high and
low blockage respectively). The blockage ratios for these two domains as well as previous experiments and
simulations are summed up in table 4.1

4.1.1 Comparaison of snapshots

This first subsection is highly qualitative. Figure 4.1 shows for the two cases the isosurfaces of the Q
criterion for a treshold value of 1.5 representing the hairpins. This two snapshots are not time-correlated1,
and the only information that can be gathered from this configuration concerns the shape of the hairpins.

1it will be seen further that the two cases have not the same Strouhal number, leading to a loss of correlation
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Associated article Radius Domain size Domain size Blockage
(cartesian) (cylindrical)

Experiments
[1] ≤ 18mm 2.5× 0.85× 0.25m ≤ 0.24%

Simulations
[19] 1 18× 9 1.%

[9] (coarse) 1 38.4× 12.8× 6.5 1.9%
[9] (fine) 1 40× 16.8× 8 1.15%

Actual simulation (1) 1 20× 10× 5 3.14%
Actual simulation (2) 1 20× 10× 10 1.57%

Table 4.1: Blockage ratio for several experiments and simulations around a sphere or an hemi-
sphere

(a) 20x10x5 lateral

(b) 20x10x10 lateral

(c) 20x10x5 top

(d) 20x10x10 top

Figure 4.1: Lateral and top screenshots of the hairpins using (Q = 1.5) for both cases along the
cross-flow direction. The isosurfaces are colored using the x-velocity

It appears that the hairpins are more similar to one another in the low-blockage case street. Each hairpin
seems to the growth of the previous one, unlike the high-blockage case where some hairpins have no leg for
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this level of Q. Moreover, some secondary structures appear on figure 4.1.(a) and (c) (for instance, a cross
stream structure above the legs of the second hairpin). The distance between two successive hairpin heads
also seems to be more constant for the case 2. Finally, the shedding frequency appears to be a little lower
for the low-blockage case.
One can also point out the presence of secondary structures refered as ”‘spikes”’ by [9], which are in the
continuity of the legs and appear under the head of the following hairpin. They do not seem yet to be in the
same plane as the end of the legs, and thus seem to be separated as supposed by [9].
Finally, the progression of the hairpin upwards is almost linear along the streamwise direction for the low-
blockage case, while the high-blockage does only get a linear progression for the first three hairpins. One
may though wonder if it is not a consequence of the outlet boundary condition. The informations gathered
here are highly dependant on the snapshot chosen, and thus, the statistics of the flow will now be compared.

4.1.2 Comparaison of the two simulations statistics

Comparaison of the mean velocities

In order to characterize the hairpins street as well as, for instance, the size of the recirculation bubble, most
of the comparaisons will be performed on the median plane. Figure 4.2 gives successive U1 profiles for
different x positions in the median wake of the hemisphere.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: U1 profiles for x = {9, 10, 11, 13, 15, 19} in the median wake of the hemisphere

• Figures 4.2.(a)-(f) show that the 20 × 10 × 5 velocities are always higher when getting out of the
boundary-layer, around y = 2.

• Figure 4.2.(a) shows that both results appear highly identical in the near wake, with the presence of
a recirculation zone for y < 1.1. This recirculation height is the same in figure 4.2.(b), although the
20×10×10 profile starts to exhibit positive values in the wake. As both profiles are strictly positive
in figure 4.2.(c), the recirculation length seems to be a little shorter in the 20 × 10 × 10 case, and
both of them are between x = 10 and x = 11
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• Figures 4.2.(a)-(b) also show that the profiles have two minimums, one close to the wall and the
other close to 1 and a maximum around y = 0.5 which is not the typical form for a recirculation
bubble. It seems that the secondary maximum for y = 1 is linked to the hairpin heads: the clockwise
rotation along the crosstream direction should lead to the presence of a minimum of velocity, then
a maximum, which seems to be hidden by the increase of velocity due to the boundary layer. It
explains why the recirculation bubble has not the typical shape that could occur, for instance, behind
a step.

• Figures 4.2.(b)-(f) show that the hairpin-head associated minimum of velocity for the 20× 10× 10
case is getting away from its 20 × 10 × 5 equivalent by moving upwards faster. It can also be
noticed that it spreads into a smooth minimum with x while its equivalent for the high-blockage ratio
remains sharper. It seems that the high-blockage case generates stronger boundary-layer associated
U1 velocities that tend to hide this minimum which is almost invisible in figure 4.2.(f). It also explains
why in figure 4.1.(a), the hairpins are less visible close to the end of the domain. It thus seems that
in the high-blockage simulation, the flow goes back faster to a boundary-layer-like profile.

• Figures 4.2.(c)-(f) also exhibit for both simulations the presence of a strong linear shear for y < 0.1,
as if a new boundary layer was created at the exit of the recirculation bubble.

The U1 velocity is now plotted along the y direction in the median wake of the hemisphere in figure 4.3:
It can be seen on figures 4.3.(a)-(b) that the recirculation length is shorter for the 20× 10× 10 case, while

(a) (b) (c)

Figure 4.3: U1 profiles for for y = {0.25, 0.75, 1.25} in the median wake of the hemisphere

the figure 4.3.(c) shows that although the flow is similar for x < 11, the higher velocities generated by a
more blocked boundary-layer around the hemisphere lead to a strong difference below that point, even if
this error decreases with y for y > 1.5.

Comparaison of the second order moments

Figure 4.4 shows the contours of turbulent kinetic energy k on the median plane for both simulations. The
path used by the hairpin heads leads to turbulent kinetic energy as it is the region where u1 and u2 will get
the stronger oscillations.

• The beginning of non-zero k values occurs before for the 20× 10× 5 case, around x = 11 while it
starts at x = 12 for the low-blockage grid. In both case, the first non-zero value is around y = 1.1

• Similarly, the maximum value occurs further downstream at x = 15.7 for the low-blockqge mesh
compared to the x = 13.4 when there is an high-blockage. It may be due to the fact that the growing
absolute instability generated by the hemisphere is fed with more energy due to higher velocities
on top of the hemisphere for the high-blockage ratio, leading to an earlier setting of the resulting
hairpins.
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(a)

(b)

Figure 4.4: Contours of k in the median plane for the 20× 10× 5 (a) and 20× 10× 10 (b)

• It can also be seen that the spreading of TKE starting from the hairpin heads pathline is stronger for
the high-blockage case, with stronger maximum values too, while the pathline grows almost linearly
and symmetrically above and below for the low-blockage mesh.

• Close to the outlet, the TKE peak has almost disappeared in figure 4.4.(a), being almost totally
diffused, while the thickness of the non-zero contours keeps increasing in figure 4.4.(b)

• In both cases, the hairpin heads characterised by the maximum of k follow a linear upwards line, as
exhibited by [1].

• One can also point out for both cases the presence of a secondary maximum for y ≈ 1 and x > 17.

In order to study more closely the evolution of the TKE peak and its spreading, figure 4.5 shows for both
cases a serie of profiles of k for different x locations.

• Figure 4.5.(a) shows that the k peak is maximal for x = 13 then decays while spreading in an
unsymmetric way, with a slower decrease on the floor side that in the ceil side, as seen in figure
4.4.(a). Oppositely, for the low-blockage case, the maximum is to be found for the x = 17 profile.
The peak first grows till this value, keeping the same slope, then starts spreading for the last profile
x = 19. It thus appear that, as expected earlier, there is a spatial delay between the behaviour of the
two cases with a later maximum leading to a later decrease and spreading in the low-blockage case.

• Figure 4.5.(a)-(b) also show that the maximum level of k in the last profiles is twice lower for the
high-blockage case. It corresponds to the supposition made earlier according to which the transition
from a laminar flow with an unique scale-length associated to the hairpin shedding to a boundary-
layer which is a good model for a turbulent boundary-layer is occuring further upstream for the
high-blockage case, due to higher velocities around the hemisphere.

In order to study the reason why the two k peaks are differents, profiles of the production term Pk =
−u1u2

∂U1
∂y are now exhibited in figure 4.6 Figure 4.6 shows that for every position x, the 20 × 10 × 10

grid is associated with higher (though sharper) peaks of Pk, with an higher integral value over the profile.
It thus shows that even though the transition towards a turbulent boundary-layer seems to appear earlier for
high blockage ratios, the transition speed should be faster for the 20× 10× 10 case.
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(a) (b)

Figure 4.5: k profiles for x = {13, 15, 17, 19} in the median wake of the hemisphere for the high
(a) and low (b) blockage grids

(a) (b)

Figure 4.6: Pk = −u1u2
∂U1
∂y profiles for x = {13, 15, 17, 19} in the median wake of the hemi-

sphere for the high (a) and low (b) blockage grids

Comparaison of boundary-layer related statistics

Figure 4.7 shows the evolution of the displacement and momentum thickness as well as their ratios on the
median plane for both cases. Figure 4.7.(c) shows that the transition to turbulence is first faster for the high-
blockage grid, and goes below 2.4 faster, which indicates that the boundary layer is no longer laminar. But
it then converges to a value of 1.8, which corresponds only to a partial transition, while the progression of
the ratio δ

θ does not lead to convergence, and even to lower values x > 18 with a low-blockage gird. It thus
appear that the blockage ratio makes the transformation towards a turbulent-like boundary layer start earlier,
but does not lead to a complete transition while the low-blockqge has a smoother transition but ending up
more advanced at the end of the domain, which is consistent with the profiles shown on figures 4.6.(a)-(b)
or the median k contours in figures 4.4.(a)-(b) showing that the production stops and that the production of
TKE slows down approaching the outlfow for the high-blockage case when it continues to increase for the
low blockage.

It has thus been exhibited that the blockage ratio has a key role on the way a laminar boundary-layer
perturbated by single-scale hairpin street turns to become a turbulent-like boundary-layer.
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(a) (b) (c)

Figure 4.7: Evolution of δ (a), θ (b) and δ
θ (c) for the high and low blockage grids in the median

wake of the hemisphere

4.1.3 Comparaison of the autocorrelations and spatial intercorrelations: effect on
the Strouhal number

Autocorrelations

The autocorrelations of the u1 signal are compared for the probe 440 which is located at the outlet, for
y = 2 in the median plane. This points belongs to the path of hairpin heads in both cases. Figure 4.8 shows
the associated plot. Both autocorrelations have been performed over 8000 timesteps, with a constant length
of 6000ts for the time integration, and for a delay τ between 0 and 2000ts

Figure 4.8: Autocorrelation of u1 for a probe located at x = 20, y = 2 in the median plane for
both low and high blockage grids

• Figure 4.8 shows that both signals are non-symmetrical as the anticorrelations are associated to lower
levels than the correlations.

• The corelation levels are quite high with the three first peaks above 0.8 for the high-blockage grid,
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and above 0.65 for the high-blockage grid.

• Figure 4.8 shows that the loss of correlation between two successive peaks is higher for the low
blockage grid. It may either mean that there is a slight uncertainty on the period, that the convergence
is less complete than for the high-blockage ratio, or that it can be assimilated to a behaviour closer
to a turbulent flow than the high blockage grid.

• Although the first peak is fairly similar for both simulations, it appears from the second and third
peaks that the period of oscillation is slightly lower for the 20× 10× 5 case.

The Strouhal number is evaluated by measuring the time delay associated to the third correlation peak and
dividing it by 3. The table 4.1.3 gives the values obtained for both cases: The error is quite low though

20× 10× 5 20× 10× 10
St 0.247 0.251

Table 4.2: Strouhal number comparaison for both simulations

considering that the timestep is 0.01. The difference between the position of the first peak is only of 7
timesteps. However, this difference becomes more and more visible on the next peaks. As announced when
looking at the snapshots, the shedding frequency is thus higher when the blockage is higher.

Spatial intercorrelations

In order to evaluate the hairpin convection velocities, the intercorrelation of the u1 signal between two
consecutive probes is performed for both simulations: the probes, both in the median plane, are located
respectively at (x, y) = (18, 2) and (x, y) = (20, 2). The figure 4.9 shows the intercorrelation signals for
both grids The first peak is located almost exactly at the same position for both simulations. It leads to a

Figure 4.9: Intercorrelation of u1 for two successive probes located at (x, y) = (18, 2) and
(x, y) = (20, 2) in the median plane for both low and high blockage grids

convection velocity along the direction x of 0.85, although given the fact that y = 2, we are over δ99. This
velocity does not seem to be sensitive to the blockage ratio.
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4.2 Effect of the height ratio H

The simulations 1 and 4 (table 2.1) are compared and will be refered as 20×10×5 and 20×10×5H = 1.5
respetively. The first one has an height ratio H = 2 while the second corresponds to a height ratio H = 1.5.
The Reynolds number Reτ is the same in both cases, and equal to 1000, but the Reynolds number Re∞ is
respectively equal to 1348 and 1128 as the velocity on top of the sphere decrease with H .

4.2.1 Comparaison of the simulation statistics

4.2.2 Comparaison of the second order moments

Figure 4.10 shows the contours of k in the median plane for both heigth ratios.

(a)

(b)

Figure 4.10: Contours of k in the median plane for 20× 10× 5H = 1.5 (a) and 20× 10× 5 (b)

• It can be seen that H = 1.5 leads to higher values of k as well as the presence of a second zone of
maxima below the one associated to the hairpin heads.

• There is also an earlier shedding for the lower heigth ratio of at least an unit along the x direction.

Comparaison of the boundary-layer associated statistics

Figure 4.11 shows the plot of the ratio δ/θ for both simulations in the median wake of the flow. Figure 4.11
shows that the value in the all wake domain is lower for H = 1.5, meaning that if the aim was to provide a
model of turbulent boundary-layer, the ratio would have to be set at H = 1.5 instead of H = 2. However,
it will be seen in the next section of this chapter that the flow is far from being turbulent.
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Figure 4.11: Comparaison of the ratio δ/θ for both H = 1.5 and H = 2 heigth ratio in the median
wake region

4.2.3 Comparaison of the autocorrelations

Like in the precedent section, autocorrelations of the u1 signal are compared for the probe 440 which is
located at the outlet, for y = 2 in the median plane. This points belongs to the path of hairpin heads in
both cases. Figure 4.12 shows the associated plot. Both autocorrelations have been performed over 8000
timesteps, with a constant length of 6000ts for the time integration, and for a delay τ between 0 and 2000ts

Figure 4.12: Autocorrelation of u1 for a probe located at x = 20, y = 2 in the median plane for
both low and high blockage grids

• The level of correlations are strongly lower for the H = 1.5 case. It may indicate that the flow is less
periodical, especially by considering that the levels of coherence of the secondary peaks are not, as
it was for both the 20× 10× 5 and 20× 10× 10 cases, decreasing linearly

38



• However, it also has to be pointed out that only 10000 iterations have been performed for this case,
instead of more than 20000 for the 20×10×5 case. It may be the effect of an incomplete convergence.

• It can also be seen that a change diminution of H leads to a strong increase of the Strouhal number
to 0.31, which means about 17% of variation compared to the 20× 10× 5 case.

4.3 Study of different statistics for the 20× 10× 5 simulation

The idea of this short section is to study the statistics and associated autocorrelations of some quantities
that can be made of the acceleration and velocity field in order to get some insight in eventual ways to
detect the hairpins as well as the way the acceleration and velocity field interact. The study will only
be performed using the results of the probe 440 which is located at the outlet, on the median plane, at
(x, y, z) = (20, 2, 2.5). Figure 4.15 shows the fluctuating parts of the two non-zero components of the
velocity field u′1 and u′2, the two non-zero components of the acceleration field a′1 and a′2, as well as a′.u′

and (a′×u′)3 (which is the only non-zero component of the cross product as both velocities and acceleration
have a zero component along the z direction in the median plane).

Figure 4.13: Plot of u′
1, u′

2, a′
1, a′

2, a′.u′ and (a′×u′)3 against t for the probe located at (x, y, z) =
(20, 2, 2.5)

• First of all, figure 4.15 shows that all the plotted components are highly periodical, though one can
wonder to what point this is influenced by the fact that the probe is located at the outlet, meaning
that the flow is simply convected here. It thus seems to prove that the acceleration, and thus the
associated forces using the Newton’s principle, are correlated in time.

• Secondly, it can be seen that the all the signals show a clear pattern allowing to locate the moment
where the hairpin passes through

• It is easier to locate this interval on the acceleration or a′.u′ and (a′ × u′)3 signals than using the
velocity signal as the variation is stronger than for the velocity signals. For instance, (a′ × u′)3
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is always positive except when the hairpin passes through. This behaviour should be confirmed by
plotting the same kind of signals for other probes, but it may be a really efficient way to detect
hairpins.

• When comparing the signals u1 and u2, it can be seen that the first one is minimal for an hairpin
while the second one is maximal. Given that the hairpins heads rotate anti-clockwise along the
crossstream direction, it means that the probe is located above the line of hairpin heads center (there
is a u1 minimum on top of the hairpin, and a u1 maximum below).

• It can also be seen that u1 and a1 recover faster a constant value than u2 and a2, showing that the
time of influence of an hairpin is longer along the y direction than along the x direction, which may
come from the fact that x is the direction of the mean flow.

Finally, figure 4.14 shows the associated autocorrelations for the 6 signals considered: To measure the level

(a) (b)

Figure 4.14: Autocorrelation of u′
1, u′

2, a′
1, a′

2 (a), a′.u′ and (a′ ×u′)3 (b) for the probe located at
(x, y, z) = (20, 2, 2.5)

of corerlation of these different signals, the integral scale are evaluated:

LT (x) =
∫ ∞

0

ρxx(τ)dτ (4.1)

However, in our case, the length of the considered signals are not sufficient to get a convergence towards
zero, this value is evaluated over three periods as it is the biggest multiple of the period for the autocorrela-
tion time available:

LT (x) =
∫ 3

St

0

ρxx(τ)dτ (4.2)

Using the Strouhal number given in table 4.1.3, the values of LT for u′1, u′2, a′1, a′2 (a), a′.u′ and (a′×u′)3
are given in table 4.3 It thus seem that the only quantity geting a positive integral scale is a′.u′. The other

u′
1 u′

2 a′
1 a′

2 a′.u′ (a′ × u′)3
−0.0585 −0.0547 −0.0324 −0.0087 0.4487 −0.0314

Table 4.3: Integral scales over 3 periods of the autocorrelation signals of u′
1, u′

2, a′
1, a′

2 (a), a′.u′

and (a′ × u′)3

signals, though getting high positive correlation peak levels, are associated for most of the delays over a
period with a negative correlation levels.
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4.4 Validation of the recycled condition

In order to validate the method of recycled condition, the plots of δ/θ are compared for x = 12 to x = 20 in
the median line for both the 20×10×5 domain and the recycled domain in figure ?? The two plot are exactly

Figure 4.15: Comparaison of the plots of δ
θ against x for x = 12 to x = 20 in the median line for

both the 20× 10× 5 domain and the recycled domain

equal, and thus the recycled condition will be used with full confidence to test the plasma actuators. A more
rigourous validation has been performed by [12] who has compared after an high number of iterations two
instantaneous isosurfaces of vorticity for the complete domain and the recyled domain and shown that they
were exactely equal.

41



42



Chapter 5

Defintion and use of the critical point
theory and the Q-criterion isosurfaces
to explore the physics of Hairpin flows

5.1 Introduction

The aim of this chapter is to get more insight into the physics of the hairpins. Using the unsteady fields
of velocity and accleration, the topology of the flow will be investigated. Many studies of that kind have
already been performed on two-dimensional fields, like [16], and the simple and unperturbated structure of
a single hairpin or an hairpin streets make it an ideal case to try to apply such theories to a three-dimensional
flow. The idea will be to try to investigate the nature of the core lines of the hairpins and the presence of
non-zero divergence points on the acceleration fields, which are points for which a volumic force is applied
as the work of the acceleration is non-zero. First of all, the link between the Lagrangian acceleration field
and the Q-criterion is investigated.

5.2 Link between the Lagrangian acceleration field and the Q-criterion
is investigated

By definition, the Lagrangian acceleration field is equal to:

a =
Du
Dt

=
∂u
∂t

+ u.∇u (5.1)

The Q criterion is defined as the difference between the rate-of-rotation and the rate-of-strain of the Jacobian
matrix of the velocity field.

Q =
1
2

(
||Ω||2 − ||S||2

)
(5.2)

It has also been proven to be proportional to the laplacian of the pressure field. It is one of the most efficient
criterions to detect coherent structures, as the core of this latters is usually a zone of low pressure. When
the rate-of-rotation becomes dominant compared to the rate of strain, which corresponds to positive values
of the Q-criterion, it means that we are inside a coherent structure. The main interest of the Q− criterion
compared to the study of the vorticity fields is that it is not triggered by a simple shear and thus is not
trigerred at the walls. In these zones, there is usually vorticity because of this strain, but not necessarely
coherent structures. One of the definition of the Q-criterion is:

Q = −1
2
ui,juj,i where ui,j =

∂ui

∂xj
(5.3)
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Then, using the equations 5.1 and 5.3:

∇.a =
∂

∂x

(
∂u1

∂t
+ ui

∂u1

∂xi

)
+

∂

∂y

(
∂u2

∂t
+ ui

∂u2

∂xi

)
+

∂

∂z

(
∂u3

∂t
+ ui

∂u3

∂xi

)

=
∂

∂t

∇.u︸︷︷︸
=0

 + u1
∂

∂x

∇.u︸︷︷︸
=0

 + u2
∂

∂y

∇.u︸︷︷︸
=0

 + u3
∂

∂z

∇.u︸︷︷︸
=0


+

(
∂u1

∂x

)2

+
(

∂u2

∂y

)2

+
(

∂u3

∂z

)2

+ 2
∂u2

∂x

∂u1

∂y
+ 2

∂u3

∂x

∂u1

∂z
+ 2

∂u3

∂y

∂u2

∂z

= ui,juj, i

= −1
2
Q

Thus, as a conclusion, the following relation links the Q-criterion and the Lagrangian acceleration field:

∇.a = −1
2
Q (5.4)

The idea now is to use this relation to investigate the flow field. As the cores of the structures are supposed
to be the zone where Q is maximal, the acceleration field can be investigated. Moreover, the star-critical
point of the acceleration field cannot be found using the classical critical point theory on the velocity field,
as this latter is bound to get a zero-divergence due to the incompressibility equation. The idea will thus be
to use the tools defined by [16] and [2] on other fields than the velocity field to investigate the unsteady
field provided by our simulation. The aim is also to try to find a criterion without treshold, as the analysis
of Q criterion and of the shape of coherent structures highly depends on the value used to define these
isosurfaces.

5.3 Search for the hairpin core lines

The first idea was to try to find the local maximums and minimums of the Q field. The first way to do so
was to evaluate locally the components of the Q-criterion gradient using first order finite-differences and
to spot all the points for which sign changes were occuring for at least two of the gradients components.
This method gave too many points. The second problem of such a method is that the extremums are
only searched on the nodes of the mesh, and there is no physical reason for this nodes to coincide with
the structures. Moreover, using first order finite difference approximations of the gradients components was
unapropriate given the fact that the code provides efficient algorithm to evaluate the derivatives, using 6−th
order compact schemes which are far more accurate. Finally, the fact that a point is an extremum along two
directions is not sufficient enough to get a local extremum. It could, for instance, be a saddle point in one
of the referential planes and an extremum in another one. It led to the conclusion that more directions had
to be investigated.

To avoid the problem of localisation at the nodes, a new method has been tested:

1. First, the Q gradients are evaluated on the mesh

2. Then, for each node of the mesh, the presence of a zero along the line linking it to a neighbouring
node is investigated for the three components.

3. If for a given direction, at least two components of the Q gradient change between the two nodes,
the position of this zero is extracted for each component by linear interpolation along the direction

4. Then, the actual position of the zero is obtained by averaging the positions of the zeros for each
components. All these zeros are in the line between the two nodes, and thus the average is also on
this line.

This new process is better than the first one as it gives already some liberties concerning the position of the
zero (not necessarely a point of the mesh), and also because it leads to the investigation of more directions.
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Even if this method is not foolproof, we could see by having a look at some slice planes that at least two
components of the Q-gradient were changing their signs between both sides of a core line. But plotting all
the local extremum for which Q is positive leads once more to two many points. To find a kind of cutting
value with physical meaning, the PDF of the Q value in all the edges considered has been compared to
the PDF of the local extremums and can be seen in figure 5.1 It can be seen in fig. 5.1 that the pdf of the

Figure 5.1: PDF of Q for all the edges considered by the method compared to the PDF of Q for all
the points selected as extremums by the method

extremums exhibit a cutting value at Q = 0.5 above which the curve follows a constant slope. This value of
0.5 is a threshold, but with a somewhat physical meaning. Figure 5.2 shows the isosurface of Q = 1.5 for
the 20× 10× 5 simulation at a given instant. The red spheres are maximum associated with values Q > 1,
the yellow ones for 0.5 < Q < 1, the blue ones for Q < −1 while the light blue ones are associated with
−1 < Q < −0.5. The structure of the hairpins is well rendered even though too many points are considered.
Local filtering and tracking methods towards the extrema may be added to the method to increase the level
of selection. The second big flaw of this method is that the physical meaning of these extremums is not
known, and it will thus be hard to extract information appart from the position of the core lines.

5.4 Perspectives

Some procedures have been tested using the critical point theory, based on the obtention of the deformation
matrix of gradQ, but without success for now. Only 2D extremum points are found efficiently. This
method will have to be implemented on the framework of 3D critical point theory to find the nature of
critical points in the eigenvector planes.
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Figure 5.2: Isosurfaces of Q and extremums detected by the extrema algorithm for a 20× 10× 5
simulation instantaneous velocity field
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Chapter 6

First results in Plasma forcing

6.1 Plasma Actuators and their numerical Implementation

The aim of this study was to run numerical simulations of plasma actuators on a simple hairpin street. The
final objective is to reduce the associated skin friction on the wall. Yet because of lack of time, this part
of the study has not been granted with the time it would have been needed to get really pertinent results
and the insight we were looking for on this kind of actuators. It has not been possible either to try to
match experimental or numerical results provided for instance in [6], [15] or [3]. Firstly, simple numerical
simulations without any flow will be performed to test the actuator model and its associated parameters.
Then, once everything is set up, some simulations will be run on the hairpin flow. But first of all, the
principle of plasma actuators has to be explained. It has been used for the last ten years in aeronautics, for
instance for leading-edge separation control on airfoils as in [15]. [6] have described experimentaly three
plasma actuators without any flow: the DC (Direct Current), DBD (Dielectric Barrier Discharge) and the
sliding discharge actuator. Only the DBD actuator will be modeled and studied here. Figure 6.1.(a) gives
a sketch of the DBD actuator extracted from [6] The principle of the Direct Barrier Discharge is to get one

(a) (b)

Figure 6.1: sketches of the DBD plasma actuator (a) and of the plasma actuator principle (b)
extracted from [6]

of the two immerged at the surface of the flow while the second one is immerged into a dielectric material.
The difference of potential between these two electrodes generate an ionised gas at the positive electrode,
and those ions are then attracted by the negative electrode, generating an artificial wind that will be used
for control purpose. Figure 6.1.(b) shows the principle: the collecting electrode, negatively charged, will
attract the ions created at the injecting electrode.

One of the major interests of the plasma actuators is that it is one of the only actuators which is completely
non-intrusive, generating the effect asked without creating blockage or vorticity like for instance flaps or
jets. It is however, at least for now, only partially understood and mastered experimentally or numerically.
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And for instance, the repartition of the ions and the way the electrical field generated can be converted into
a forcing field, the net charge density, is badly understood. Yet [21] provide a numerical model avoiding
the need of this net charge density. The approach for our simulations will rather simple: the net charge
density is set equal to 1 everywhere. The aim of this net charge density function is to provide a minimum
level of E for which ionisation occurs. Thus, in the present case, it will occur everywhere, even though the
electrical field decrease rather fastly. Both electrodes are set to a potential of −1 and +1. The norm of E
is controled by a proportionality factor. The forcing field is then injected into the Navier Stokes equations
and its contribution to the flow is evaluated at the same time as the contribution of obstacles using a direct
forcing method described briefly in chapter 2.

Figure 6.2 shows the the wind generated experimentally by a single DBD actuator extracted from [6]
Figure 6.2 shows that the length of penetration, which is defined by the heigth of the u1 maximum generated

Figure 6.2: Wind generated experimentally by a single DBD actuator extracted from [6]

by the actuator, does not depend on the applied current but only in the actuator geometry, as quoted for the
quite similar situation of electromagnetic forcing by [14].

6.2 Simple case of 2D forcing

6.2.1 Forcing in a box

The first step is going to be to apply the forcing without a velocity field. The domain is set to Lx = 10, Ly =
10, Lz = 0.2 for an almost 2D simulation. In order to keep the same resolution in the x and y directions
as for the hairpin simulations, nx = 181 and ny = 121. nz is set to 4. All the boundaries are considered
as wall in both the x and y directions. The z direction remains periodic. The plasma actuator is made 2D
by setting up a succession of consecutive actuators along the z direction. The effect is to generate a zero-
value E3. The forcing field is considered as applied continuously to the same steady value. The increase
in ‖E‖ generated by the add of several electrodes to generate the 2D field is controlled by a proportionality
constant applied to the field to get the same norm as it would be found for a unique actuator. The width of
the electrodes is set to 10∆x. The ratio between this width and the other geometric parameters defined in
[6] is conserved, leading to an electrode length of 40∆x, a gap of 10∆x between the two electrodes, and
the second electrode located 2∆x deep in the ground. Figure 6.3 shows the u1 field as well as some vectors
along x =const. profiles close to the electrodes. It shows that a wind is generated on top of the collecting
electrode while a blockage is generated on top of the injecting electrode, generating reverse flow along the
x direction. Profiles at x = 3.5 and x = 4 also show a pumping towards the electrode on the y direction
which is the proof of a large-scale effect of the actuator. The actuator seems to get the correct behaviour.
Yet the change of signs of the u1 component further above the collecting electrode for x = 5 seems to show
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Figure 6.3: u1 field as well as some vectors along x =const. profiles close to the electrodes for a
2D actuator on a closed 2D box without incoming flow.

the presence of a vortex generated along the electrode which is not coherent with the results provided by
[21] who have done the same kind of simulation on a DBD actuator, but using a net density modelisation. It
will be seen on the 3D actuator that this problem leads to undesired structures. However, knowing its flaws,
this model will be kept for the following experiments

6.2.2 Forcing of a Blasius boundary-layer

In order to get closer from the 3D situation of plasma forcing on hairpin vortices, the same domain is used,
but with an incoming boundary layer of heigth ratio 2 (compared this time to the non-dimensional reference
length which is set to 1 even though there is no hemisphere in that case). The top boundary is set to a no-slip
condition, while a convective equation for the velocity field is applied at the outlet. Figure 6.4 shows the
resulting mean U1 contours as well as mean streamlines. The electrodes are centered at x = 4.5 It can be

Figure 6.4: mean U1 contours as well as mean streamlines for the forcing of a Blasius boundary-
layer
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seen that the blockage effect generated close to the injecting electrode generates a separation of the flow,
and the pumping towards the electrode can also be noticed close to the positive electrode, even though the
blockage effect generates a deviation towards the top of the streamlines. There is no structure creation
further above the electrodes as it occured in 2D, but one can consider that such a structure would be flushed
as it would be generated around the cross-stream direction.

6.3 First try of 3D forcing

6.3.1 Domain used

The idea is now to apply the actuator to a fully 3D field. The recycled condition presented in chapter 2 is
used at the inlet, and the flow downstream the plane of capture at x = 12 is used as an initial condition.
Figure 6.5 shows both the plane and a visualisation of the initial flow using isosurfaces of Q for a threshold
level of 1.5.

Figure 6.5: Representation of the new domain used for hairpin forcing

6.3.2 Position of the actuators

The idea here was to act on the legs of the hairpins which are the closest to the floor. The electrodes are
located along the x axis this time in order to try to flush the legs away. In order to generate a maximum
upflow on the median plane to counter the downflow generated by the hairpins, two actuators are located
in both sides of the median plane, at equal distance. Both the positive electrodes are located on the median
plane side. The electrodes are centered in the x direction at x = 2. Figure 6.6.(a) shows an unsteady
velocity field in a x = 4 plane of ‖u‖ as well as the streamlines of the flow in this plane while figure 6.6.(b)
shows the contours of ‖E‖ as well as the streamlines of E in the same plane. At this x − value, the E3

field is equal to zero. The field generated is thus thinked to be as opposite as possible to the streamlines
generated by th legs in order to perturbate them and thus perturbate their effect on the skin friction.
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(a)

(b)

Figure 6.6: streamlines and contours of ‖u‖ of the flow without forcing (a) and contours of ‖E‖
as well as streamlines of E (b) in the plane x = 4

6.3.3 First results

The simulation is runned with and without forcing. After approximately 3000 iterations to ensure the
convergence of the plasma actuator effect on the flow, two snapshots are taken using isosurfaces of Q with
a threshold level of 1.5, and colored by the u3 velocity.

Snapshots

Figure 6.7 shows these two snapshots.

• It can be seen that the hairpins are perturbated by the forcing, but not enough to loose their structures.
However, they are slightly swept away along the z direction, even though the idea was to separate
them

• One can also notice in fig. 6.7.(b) the presence of secondary structures generated above the elec-
trodes. Unlike the boundary layer case, these structures are generated along the stream direction and
thus are not flushed by the flow.
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(a) (b)

Figure 6.7: Snapshots of the Q criterion isosurface with a threshold level of 1.5, and colored by
the u3 velocity with (b) and without (a) plasma after 3000 timesteps

• These structures also have the big disavantage of being generated close to the periodic condition
borders. The electrical field provided may not be periodic enough along the direction z

Even though non desired secondary structures are generated, the drag integrated over the all floor for both
simulations is compared in figure 6.8 It shows that the forcing has a drag reduction effect which remains to

Figure 6.8: Comparaison of the drag coefficient integrated over the whole floor against time both
with and without forcing

be confirmed by evaluation of the mean flow. The peak in figure 6.8 for the forcing curve is supposed to be
related to the convergence of the plasma actuator and should not occur anymore for the next timesteps.

But given th flush along the z direction constated on the snapshots of figure 6.7, the loss of drag could
generate an increase in skin friction along the z direction. Figure 6.9 compares both wτ fields at the same
instant where the snapshots have been taken. Figure 6.9 shows, as predicted, a strong increase of wτ close
to the periodicity condition. The control process proposed has thus only redistributed the skin friction along
the z direction, and the cut in the drag noticed in figure 6.8 should be the conequence of it.
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Figure 6.9: wτ fields on the floor both with (b) and without (a) plasma after 3000 timesteps

The next step for this plasma study will be to try the same actuators using a recycled condition for the
wider domain to see how the periodicity condition affects the flow. Another problem is that the size of the
actuators is close to the size of the structures, and it is not usually reckoned as the best way to control a
flow. Work will have to be done on the model to be able to generate more large-scale effects with smaller
actuators. However, this first results show that controlling hairpins with plasma actuators is possible, even
at high heigth ratios H for which the structures generated are far from the surface and moving away from
it.
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Chapter 7

Conclusion

Direct Numerical Simulations have been performed for the generation of hairpin streets by perturbating an
initially laminar boundary layer by an hemisphere, and it has been shown to be a good method to general
regular hairpin streets. This framework good both to test plasma actuators and dectection criteria as it is a
simple laminar flow with only few characteristic length scales associated to the hairpins.

The effect of some parameters like the blockage or the heigth ratio have been characterized on the flow
statistics as well as its ability to generate a turbulent-like model of boundary-layer. However, the effect of
other parameters like the Reynolds number have to be characterised also. It has not been possible here both
by lack of time and by the difficulty by the code to become unstable for lower Reynolds number given the
high aspect ratio considered (H = 2). In [1] and [9], the heigth ratio are lower, certainly explaining why
they get the shedding easier. A second effect woul be to consider the fact that the mesh used was defined
for Reτ = 1000, and may be too refined for lower Reynolds numbers. Even though there i no such thing
as too fine grid, it may lead the unstablility to take far more time to reach the sufficient level to lead to a
shedding.

Some detection criteria have also been tested, especially using critical point theory. But they have failed
to give us the physical points of the flow and only them, leading to a need of threshold level which make
these methods unefficient for a systematic use. However, some successes have been obtained in 2D planes
and will have to be adapted to the study of the flow in the planes normal to the eigenvectors associated to
the deformation matrices. An extremum criteria has also been created, leading to a quite good detection of
the vortex core, though it will have to be enhanced, using local filters for instance.

As far as plasma forcing is considered, a simple model has been tested but is not accurate enough to
match experimental results even in 2D. One of its main flaws is the creation of vortices on top of the
electrodes, which may come frome the fact that the net charge density is set to 1 everywhere. It has led to
a diminution of the skin friction along the x direction of the hairpins, but has also generated an increase in
the z direction. However, it shows that controlling hairpins with plasma is possible, and the use of a wider
domain should remove some of the problems encountered.
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