Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.

Silk: A framework for managing SQL data flows.

http://xerial.org/silk

Examples

import xerial.silk.core._

import sampledb._

// SELECT count(*) FROM nasdaq
def dataCount = nasdaq.size

// SELECT time, close FROM nasdaq WHERE symbol = 'APPL'
def appleStock = nasdaq.filter(_.symbol is "APPL").select(_.time, _.close)

// You can use a raw SQL statjement as well:
def appleStockSQL = sql"SELECT time, close FROM nasdaq where symbol = 'APPL'"

// SELECT time, close FROM nasdaq WHERE symbol = 'APPL' LIMIT 10
appleStock.limit(10).print

// time-column based filtering
appleStock.between("2015-05-01", "2015-06-01")

for(company <- Seq("YHOO", "GOOG", "MSFT")) yield {
  nasdaq.filter(_.symbol is company).selectAll
}

Milestones

  • Build SQL + local analysis workflows

  • Submit queries to Presto / Treasure Data

  • Run scheduled queries

  • Retry upon failures

  • Cache intermediate results

  • Resume workflow

  • Partial workflow executions

  • Sampling display

    • Interactive mode
  • Split a large query into small ones

    • Differential computation for time-series data
  • Windowing for stream queries

  • Object-oriented workflow

  • Input Source: fluentd/embulk

  • Output Source:

  • Workflow Executor

    • Local-only mode
    • Register SQL part to Treasure Data
    • Run complex analysis on local cache
    • UNIX command executor

About

Simplify SQL Workflows with Scala

Resources

License

Releases

No releases published

Packages

No packages published