1 Matrix exponentials

1.1 SVD for reversible Q

For reversible \boldsymbol{Q}, we have

$$
\pi_{i} Q_{i j}=\pi_{j} Q_{j i}
$$

Thus, $\pi_{i} Q_{i j}$ is symmetric. Therefore, if we multiply both sides by the symmetric matrix $1 / \sqrt{\pi_{i} \pi_{j}}$ the result is also symmetric:

$$
S_{i j}=\pi_{i} Q_{i j} \cdot \frac{1}{\sqrt{\pi_{i} \pi_{j}}}=Q_{i j} \sqrt{\frac{\pi_{i}}{\pi_{j}}} .
$$

We define $\Pi_{i j}=\delta_{i j} \cdot \pi_{i}$ to be the diagonal matrix with the frequencies π_{i} on the diagonal, where δ is the kronecker δ, indicating the identity matrix. We can then express this as

$$
\boldsymbol{S}=\boldsymbol{\Pi}^{\frac{1}{2}} \cdot \boldsymbol{Q} \cdot \boldsymbol{\Pi}^{-\frac{1}{2}}
$$

Then we have

$$
\begin{aligned}
\exp (\boldsymbol{Q}) & =\exp \left(\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot \boldsymbol{S} \cdot \boldsymbol{\Pi}^{\frac{1}{2}}\right) \\
& =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot \exp (\boldsymbol{S}) \cdot \boldsymbol{\Pi}^{\frac{1}{2}}
\end{aligned}
$$

Now, using the SVD we can decompose \boldsymbol{S} as $\boldsymbol{S}=\boldsymbol{O} \cdot \boldsymbol{D} \cdot \boldsymbol{O}^{\mathbf{- 1}}$, where \boldsymbol{D} is a diagonal matrix (of eigenvalues) that is easy to exponentiate. Since S is a symmetric matrix, the eigenvalues are all real, I think, and also $\boldsymbol{O}^{-1}=\boldsymbol{O}^{t}$.

$$
\begin{aligned}
\exp \boldsymbol{Q} t & =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot \exp \left(\boldsymbol{O} \cdot \boldsymbol{D} t \cdot \boldsymbol{O}^{-1}\right) \cdot \boldsymbol{\Pi}^{\frac{1}{2}} \\
& =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot\left[\boldsymbol{O} \cdot \exp \boldsymbol{D} t \cdot \boldsymbol{O}^{-1}\right] \cdot \boldsymbol{\Pi}^{\frac{1}{2}}
\end{aligned}
$$

However, this will not yield $\exp \boldsymbol{Q} t=\boldsymbol{I}$ when $t=0$ because the $\exp D_{i} t$ terms will be ≈ 1, leading to roundoff errors (on the order of $1 \mathrm{e}-15$) I think. We can instead compute

$$
\begin{aligned}
\exp \boldsymbol{Q} t-\boldsymbol{I} & =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot\left[\boldsymbol{O} \cdot \exp \boldsymbol{D} t \cdot \boldsymbol{O}^{-1}\right] \cdot \boldsymbol{\Pi}^{\frac{1}{2}}-\boldsymbol{I} \\
& =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot\left[\boldsymbol{O} \cdot \exp \boldsymbol{D} t \cdot \boldsymbol{O}^{-1}\right] \cdot \boldsymbol{\Pi}^{\frac{1}{2}}-\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot \boldsymbol{I} \cdot \boldsymbol{\Pi}^{\frac{1}{2}} \\
& =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot\left[\boldsymbol{O} \cdot \exp \boldsymbol{D} t \cdot \boldsymbol{O}^{-1}-\boldsymbol{I}\right] \cdot \boldsymbol{\Pi}^{\frac{1}{2}} \\
& =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot\left[\boldsymbol{O} \cdot \exp \boldsymbol{D} t \cdot \boldsymbol{O}^{-1}-\boldsymbol{O} \cdot \boldsymbol{I} \cdot \boldsymbol{O}^{-1}\right] \cdot \boldsymbol{\Pi}^{\frac{1}{2}} \\
& =\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot\left[\boldsymbol{O} \cdot(\exp \boldsymbol{D} t-\boldsymbol{I}) \cdot \boldsymbol{O}^{-1}\right] \cdot \boldsymbol{\Pi}^{\frac{1}{2}},
\end{aligned}
$$

leading to the formula

$$
\exp \boldsymbol{Q} t=\boldsymbol{I}+\boldsymbol{\Pi}^{-\frac{1}{2}} \cdot\left[\boldsymbol{O} \cdot(\exp \boldsymbol{D} t-I) \cdot \boldsymbol{O}^{-1}\right] \cdot \boldsymbol{\Pi}^{\frac{1}{2}}
$$

where $\exp \boldsymbol{D} t-\boldsymbol{I}$ is computed by applying the $\operatorname{expm} 1$ function to the entries of \boldsymbol{D}. The benefit of this approach is that when t is close to 0 , the expm1 terms will all be proportional to t, thus yielding $\exp \boldsymbol{Q} t=\boldsymbol{I}$ when $t=0$.

