Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

97 lines (96 sloc) 2.59 kb
SUBROUTINE ZPOTRIF( UPLO, N, A, LDA, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
* ..
*
* Purpose
* =======
*
* ZPOTRI computes the inverse of a complex Hermitian positive definite
* matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
* computed by ZPOTRF.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the triangular factor U or L from the Cholesky
* factorization A = U**H*U or A = L*L**H, as computed by
* ZPOTRF.
* On exit, the upper or lower triangle of the (Hermitian)
* inverse of A, overwriting the input factor U or L.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the (i,i) element of the factor U or L is
* zero, and the inverse could not be computed.
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZLAUUM, ZTRTRI
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZPOTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Invert the triangular Cholesky factor U or L.
*
CALL ZTRTRI( UPLO, 'Non-unit', N, A, LDA, INFO )
IF( INFO.GT.0 )
$ RETURN
*
* Form inv(U)*inv(U)' or inv(L)'*inv(L).
*
CALL ZLAUUM( UPLO, N, A, LDA, INFO )
*
RETURN
*
* End of ZPOTRI
*
END
Jump to Line
Something went wrong with that request. Please try again.