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Preface

This text is built from the notes that I use for teaching Georgia Tech’s undergrad-
uate and graduate courses on natural language processing, CS 4650 and 7650.
The title was inspired by Fernando Pereira’s EMNLP 2008 keynote, “Are linear
models right for language.”2 The notes are influenced by several other good re-
sources (e.g., Manning and Schütze, 1999; Jurafsky and Martin, 2009; Smith, 2011;
Figueiredo et al., 2013; Collins, 2013), but for various reasons I wanted to create
something of my own.

The text assumes familiarity with basic linear algebra, and with calculus through
Lagrange multipliers. It includes a refresher on probability, but some previous ex-
posure would be helpful. An introductory course on the analysis of algorithms is
also assumed; in particular, the reader should be familiar with asymptotic analysis
of the speed and memory costs of algorithms, and should have seen dynamic pro-
gramming. No prior background in machine learning or linguistics is assumed,
and even students with background in machine learning should be sure to read
the introductory chapters, since the notation used in natural language process-
ing is different from typical presentations of machine learning classifiers, due to
the heavy emphasis on structure prediction in applications of machine learning to
language. Throughout the book, advanced material is marked with an asterisk,
and can be safely skipped.

The focus of the notes us on what I view as a core subset of the field of nat-
ural language processing, unified by the concepts of linear models and structure
prediction. A remarkable thing about the field of natural language processing is
that so many problems in language technology can be solved by a small number
of methods. These notes focus on the following methods:

Search algorithms shortest path, Viterbi, CKY, minimum spanning tree, shift-
reduce, integer linear programming, dual decomposition (maybe), beam
search.

2You can see a version of this talk — not the one I saw — online at vimeo.com/30676245
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Learning algorithms Naı̈ve Bayes, logistic regression, perceptron, expectation-
maximization, matrix factorization.

The goal of this book is to teach how these methods work, and how they can be
applied to problems that arise in the computer processing of natural language:
document classification, word sense disambiguation, sequence labeling (part-of-
speech tagging and named entity recognition), parsing, coreference resolution,
relation extraction, discourse analysis, and, to a limited degree, language model-
ing and machine translation. Because proper application of these techniques re-
quires understanding the underlying linguistic phenomena, the notes also include
chapters on the foundations of morphology, syntactic parts of speech, context-
free grammar, semantics, and discourse; however, for a detailed understanding of
these topics, a full-fledged linguistics textbook should be consulted (e.g., Akma-
jian et al., 2010; Fromkin et al., 2013). Finally, most of the chapters conclude with
some discussion of recent papers, which are meant to suggest paths from the core
of each subject towards the research frontier.

-Jacob Eisenstein, September 23, 2016

(c) Jacob Eisenstein 2014-2016. Work in progress.



Notation

wn word token at position n
xi a vector of feature counts for instance i, often word counts
N number of training instances
V number of words in vocabulary
θ a vector of weights
yi the label for instance i
y vector of labels across all instances
Y set of all possible labels
K number of possible labels K = #|Y|
f(xi, yi) feature vector for instance i with label yi
P (A) probability of event A
pB(b) the marginal probability of random variable B taking value b
M length of a sequence (of words or tags)
T (w) the set of possible tag sequences for the word sequence w
〈START〉 the start symbol
〈STOP〉 the stop symbol
λ the amount of regularization
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Chapter 1

Linear classification and features

Suppose you want to build a spam detector, in which each document is classified
as “spam” or “ham.” How would you do it, using only the text in the email?

One solution is to represent document i as a column vector of word counts:
xi = [0 1 1 0 0 2 0 1 13 0 . . .]>, where xi,j is the count of word j in document i.
Suppose the size of the vocabulary is V , so that the length of xi is also V . The
object xi is a vector, but colloquially we call it a bag of words, because it includes
only information about the count of each word, and not the order in which they
appear.

We’ve thrown out grammar, sentence boundaries, paragraphs — everything
but the words! But this could still work. If you see the word free, is it spam or
ham? How about Bayesian? One approach would be to define a “spamminess”
score for every word in the dictionary, and then just add them up. These scores
are called weights, written θ, and we’ll spend a lot of time talking about where
they come from.

But for now, let’s generalize: suppose we want to build a multi-way classifier
to distinguish stories about sports, celebrities, music, and business. Each label
is an element yi in a set of K possible labels Y . Our goal is to predict a label ŷi,
given the bag of words xi, using the weights θ. We’ll do this using a vector inner
product between the weights θ and a feature vector f(xi, yi). As the notation
suggests, the feature vector is constructed by combining xi and yi. For example,
feature j might be,

fj(xi, yi) =

{
1, if(freeee ∈ xi) ∧ (yi = SPAM)

0, otherwise
(1.1)

13



14 CHAPTER 1. LINEAR CLASSIFICATION AND FEATURES

For any pair 〈xi, yi〉, we then define f(xi, yi) as,

f(x, Y = 0) = [x>, 0, 0, . . . , 0︸ ︷︷ ︸
V×(K−1)

]> (1.2)

f(x, Y = 1) = [0, 0, . . . , 0︸ ︷︷ ︸
V

,x>, 0, 0, . . . , 0︸ ︷︷ ︸
V×(K−2)

]> (1.3)

f(x, Y = 2) = [0, 0, . . . , 0︸ ︷︷ ︸
2×V

,x>, 0, 0, . . . , 0︸ ︷︷ ︸
V×(K−3)

]> (1.4)

. . .

f(x, Y = K) = [0, 0, . . . , 0︸ ︷︷ ︸
V×(K−1)

,x>]>, (1.5)

where 0, 0, . . . , 0︸ ︷︷ ︸
V×(K−1)

is a column vector of V × (K − 1) zeros. This arrangement is

shown in Figure 1.1. This notation may seem like a strange choice, but in fact it
helps to keep things simple. Given a vector of weights, θ ∈ RV×K , we can now
compute the inner product θ>f(x, y). This inner product gives a scalar measure
of the score for label y, given observations x. For any document xi, we predict the
label ŷ as

ŷ = arg max
y
θ>f(xi, y) (1.6)

This inner product is the fundamental equation for linear classification, and it
is the reason we prefer the feature function notation f(x, y). The notation gives
a clean separation between the data f(x, y), and the parameters, which are ex-
pressed by the single vector of weights, θ. As we will see in later chapters, it
generalizes nicely to structured output spaces, in which the space of labels Y is
very large, and we want to model shared substructure between labels.

Often we’ll add an offset feature at the end of x, which is always 1; we then
have to also add an extra zero to each of the zero vectors. This gives the entire
feature vector f(x, y) a length of (V +1)×K. The weight associated with this offset
feature can be thought of as a “bias” for each label. For example, if we expect most
documents to be spam, then the weight for the offset feature for Y = spam should
be larger than the weight for the offset feature for Y = ham.

Returning to the weights θ — where do they come from? As already sug-
gested, we could just set the weights by hand. If we wanted to distinguish, say,
English from Spanish, we could just use English and Spanish dictionaries, and
set the weight to 1 for each word that appears in the associated dictionary. For

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 1.1: The bag-of-words and feature vector representations, for a hypotheti-
cal text classification task.

example,

θenglish,bicycle =1 θspanish,bicycle =0

θenglish,bicicleta =0 θspanish,bicicleta =1

θenglish,con =1 θspanish,con =1

θenglish,ordinateur =0 θspanish,ordinateur =0

Similarly, if we want to distinguish positive and negative sentiment, we could
use positive and negative sentiment lexicons, which are defined by expert psychol-
ogists (Tausczik and Pennebaker, 2010). You’ll try this in Project 1.

But it is usually not easy to set the weights by hand. Instead, we will learn
them from data. For example, suppose that an email user has manually labeled
thousands of messages as “spam” or “not spam”; or a newspaper may label its
own articles as “business” or “fashion.” Such instance labels are a typical form of
labeled data that we will encounter in NLP. In supervised machine learning, we
use instance labels to automatically set the weights for a classifier. An important
tool for this is probability.

(c) Jacob Eisenstein 2014-2016. Work in progress.



16 CHAPTER 1. LINEAR CLASSIFICATION AND FEATURES

1.1 Review of basic probability

[todo: Rework, using Goldwater’s terminology of sample space, outcomes, and
events as sets of outcomes.]

This section is inspired by and partially borrowed from Manning and Schütze
(1999). If you feel very confident in your understanding of probability, feel free to
skim ahead to Section 1.2, where we return to text classification.

• Formally: When we write P ()̇, this denotes a function P : F → [0, 1] from
an event space F to a probability. A probability is a real number between
zero and one, with zero representing impossibility and one representing cer-
tainty.

• We think about the event space F as a set, with any element A ∈ F referred
to as an event. We write ∅ to indicate the impossible event, P (∅) = 0, and
Ω to indicate the certain event, P (Ω) = 1.

• If Ai ∈ F and Aj ∈ F and Ai ∩ Aj = ∅, then Ai and Aj are disjoint events.
Consider rolling a die, with Ai being the event of rolling 1, and Aj being the
event of rolling 2; these are disjoint events, Ai∩Aj = ∅. On other hand, if Ai
is the event of there being an earthquake, and Aj is the event of there being
a hurricane, Ai ∩ Aj 6= ∅, because it is possible to have both an earthquake
and a hurricane.

• The probabilities of disjoint event sets are additive:

Ai ∩ Aj = ∅⇒ P (Ai ∪ Aj) = P (Ai) + P (Aj). (1.7)

This is a restatement of the Third Axiom of probability, which generalizes to
any countable sequence of disjoint event sets.

• As an example, you might ask what is the probability of two heads on three
flips of a fair coin. There are eight possible series of three flipsHHH,HHT, . . .,
and each is an equally likely event, with probability 1

8
. Of these events, three

meet the criterion of having two heads: HHT , HTH , THH . These events
are all mutually exclusive; in other words, each pair of events is disjoint. So
the probability is 1

8
+ 1

8
+ 1

8
= 3

8
.

• More generally, P (Ai∪Aj) = P (Ai)+P (Aj)−P (Ai∩Aj). This can be derived

(c) Jacob Eisenstein 2014-2016. Work in progress.
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from the Third Axiom of probability, mentioned above.

P (Ai ∪ Aj) =P (Ai) + P (Aj − (Ai ∩ Aj)) (1.8)
P (Aj) =P (Aj − (Ai ∩ Aj)) + P (Ai ∩ Aj) (1.9)

P (Aj − (Ai ∩ Aj)) =P (Aj)− P (Ai ∩ Aj) (1.10)
P (Ai ∪ Aj) =P (Ai) + P (Aj)− P (Ai ∩ Aj) (1.11)

• If the probability P (A ∩ B) = P (A)P (B), then the events A and B are inde-
pendent, written A ⊥ B.

Conditional probability and Bayes’ rule

A conditional probability is an expression like P (A | B), where we are interested
in the probability of A conditioned on B happening: for example, the probability
of a randomly selected person answering the phone by saying hello, conditioned
on that person being a speaker of English. We define conditional probability as
the ratio,

P (A | B) =
P (A ∩B)

P (B)
(1.12)

The chain rule states that P (A ∩ B) = P (A | B)P (B), which is just a simple
rearrangement of terms from Equation 1.12. We can apply the chain rule repeat-
edly:

P (A ∩B ∩ C) =P (A | B ∩ C)P (B ∩ C)

=P (A | B ∩ C)P (B | C)P (C)

Bayes’ rule (sometimes called Bayes’ law or Bayes’ theorem) gives us a way to
convert from P (A | B) to P (B | A). It follows from the chain rule:

P (A | B) =
P (A ∩B)

P (B)
=
P (B | A)P (A)

P (B)
(1.13)

The terms in Bayes rule have specialized names, which we will occasionally use:

• P (A) is the prior, since it is the probability of event A without knowledge
about whether B happens or not.

(c) Jacob Eisenstein 2014-2016. Work in progress.



18 CHAPTER 1. LINEAR CLASSIFICATION AND FEATURES

• P (B | A) is the likelihood, the probability of event B given that event A has
occurred.

• P (A | B) is the posterior, since it is the probability of event A with knowl-
edge that B has occurred.

Often we want the maximum a posteriori (MAP) estimate,

Â = arg max
A

P (A | B)

= arg max
A

P (B | A)P (A)/P (B)

∝ arg max
A

P (B | A)P (A).

• We don’t need to normalize the probability because P (B) is the same for all
values of A.

• If we do need to compute the normalized probability P (A | B), we can com-
pute P (B) by summing over P (B∩A)+P (B∩A), whereA is the complement
of A. The complement is defined such that A∩A = ∅ and A∪A = Ω, so that
P (A ∩ A) = 0 and P (A ∪ A) = 1.

• More generally, if
⋃
iAi = Ω and ∀i,j, Ai ∩ Aj = ∅, then

P (B) =
∑
i

P (B | Ai)P (Ai). (1.14)

Example Manning and Schütze (1999) have a nice example of Bayes’ rule (some-
times called Bayes Law) in a linguistic setting. (This same example is usually
framed in terms of tests for rare diseases.)

• Suppose one is interested in a rare syntactic construction, such as parasitic
gaps, which occurs on average once in 100,000 sentences.

– (An example of a sentence with a parasitic gap is Which class did you
attend without registering for ?)

• Lana Linguist has developed a complicated pattern matcher that attempts
to identify sentences with parasitic gaps. Its pretty good, but it’s not perfect:

– If a sentence has a parasitic gap, the pattern matcher will find it with
probability 0.95. This is the recall; the false negative rate is defined as
one minus the recall.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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– If the sentence doesn’t have a parasitic gap, the pattern matcher will
wrongly say it does, with probability 0.005. This is the false positive
rate. The precision is defined as one minus the false positive rate, and
the f-measure is the harmonic mean of the recall and precision,

f =
2× r × p
r + p

(1.15)

• Suppose the test says that a sentence contains a parasitic gap. What is the
probability that this is true?

Solution: Let G be the event of a sentence having a parasitic gap, and T be the
event of the test being positive.

P (G | T ) =
P (G | T )P (T )

P (G | T )P (T ) + P (G | T )P (T )
(1.16)

=
0.95× 0.00001

0.95× 0.00001 + 0.005× 0.99999
≈ 0.002 (1.17)

Note that even though the pattern matcher is very accurate, with false positive
and false negative rates below 5%, the extreme rarity of this phenomenon means
that a positive result from the detector is most likely to be wrong.

If P (A∩B | C) = P (A | C)×P (B | C), then the events A and B are condition-
ally independent, written A ⊥ B | C.

Random variables

We will treat random variables as functions from events to the space Rn, where
R is the set of real numbers. This general notion subsumes a number of different
types of random variables, [todo: rework]

• Indicator random variables are functions from events to the set {0, 1}. In
the coin flip example, we can define X as an indicator random variable,
for whether the coin has come up heads on at least two flips. This would
include the events {HHT,HTH, THH,HHH}. The probability Pr(X = 1)
is the sum of the probabilities of these events, Pr(X = 1) = 1

8
+ 1

8
+ 1

8
+ 1

8
= 1

2
.

• A discrete random variable is a function from events to a countable subset
of R. Consider the coin flip example: the number of heads,H , can be viewed
as a discrete random variable, H ∈ 0, 1, 2, 3. The probability Pr(H = 2) can

(c) Jacob Eisenstein 2014-2016. Work in progress.
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again be computed as the sum of the probabilities of the events in which
there are two heads, {HHT,HTH, THH}, giving Pr(H = 2) = 3

8
.

• Each possible value of a random variable is associated with a subset of the
event space. For example, H = 0 is associated with the event TTT , while
H = 1 is associated with the events {HTT, THT, TTH}.
• Assuming the probabilities of each of the eight “atomic” events is equal to

1
8
, then the probability mass associated with each value of H is {1

8
, 3

8
, 3

8
, 1

8
}.

• This set of numbers represents the probability distribution over H , written
P (H = h) = pH(h). (I will often just write p(h), when the subscript is clear
from context.)

• To indicate that the RV (random variable) H is distributed as p(h), we write
H ∼ p(h).

• The function p(h) is called a probability mass function (pmf) if h is discrete,
and a probability density function (pdf) if h is continuous. In either case, we
have

∫
h
P (H = h) = 1 and ∀h, P (H = h) ≥ 0 for all h in the range of the

random variable.

• If we have more than one variable, we can write a joint probability pA,B(a, b) =
P (A = a,B = b).

• We can write a marginal probability pA(a) =
∑

b pA,B(a, b).

• Random variables are independent iff pA,B(a, b) = pA(a)pB(b).

• We can write a conditional probability as pA|B(a | b) =
pA,B(a,b)

pB(b)
.

Expectations

Sometimes we want the expectation of a function, such asE[g(x)] =
∑

x∈X g(x)p(x).
Expectations are easiest to think about in terms of probability distributions over
discrete events:

• If it is sunny, Marcia will eat three ice creams.

• If it is rainy, she will eat only one ice cream.

• There’s a 80% chance it will be sunny.

• The expected number of ice creams she will eat is 0.8× 3 + 0.2× 1 = 2.6.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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If the random variable X is continuous, the sum becomes an integral:

E[g(x)] =

∫
X
g(x)p(x)dx (1.18)

For example, a fast food restaurant in Quebec gives a 1% discount on poutine1 for
every degree below zero. Assuming they use a thermometer with infinite preci-
sion, the expected price would be an integral over all possible temperatures,

E[price(x)] =

∫
X

min(1, 1 + x)× original-price× p(x)dx. (1.19)

(Careful readers will note that the restaurant will apparently pay you for tak-
ing poutine, if the temperature falls below −100 degrees celsius.)

1.2 Naı̈ve Bayes

Back to text classification, where we were left wondering how to set the weights θ.
Having just reviewed basic probability, we can now take a probabilistic approach
to this problem. A Naı̈ve Bayes classifier chooses the weights θ to maximize the
joint probability of a labeled dataset, p({xi, yi}i∈1...N), where each tuple 〈xi, yi〉 is a
labeled instance.

We first need to define the probability p({xi, yi}i∈1...N). We’ll do that through
a “generative model,” which describes a hypothesized stochastic process that has
generated the observed data.2

• For each document i,

– draw the label yi ∼ Categorical(µ)

– draw the vector of counts xi | yi ∼Multinomial(φyi),

The first line of this generative model is “for each document i”, which tells
us to treat each document independently: the probability of the whole dataset is

1Readers from New Jersey will recognize poutine as a close relative of “disco fries.”
2We’ll see a lot of different generative models in this course. They are a helpful tool because

they clearly and explicitly define the assumptions that underly the form of the probability distri-
bution. For a very readable introduction to generative models in statistics, see Blei (2014).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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equal to the product of the probabilities of each individual document. The ob-
served word counts and document labels are independent and identically dis-
tributed (IID).

p({xi, yi}i∈1...N ;µ,φ) =
N∏
i=1

p(xi, yi;µ,φ) (1.20)

This means that the words in each document are conditionally independent given
the parameters µ and φ.

The second line indicates yi ∼ Categorical(µ), which means that the random
variable yi is a stochastic draw from a categorical distribution with parameterµ. A
categorical distribution is just like a weighted die: pcat(y;µ) = µy, where µy is the
probability of the outcome Y = y. For example, ifY = {positive,negative,neutral},
we might have µ = [0.1, 0.7, 0.2]. We require

∑
y µy = 1 and ∀y, µy ≥ 0.

The third and final line invokes the multinomial distribution, which is only
slightly more complex:

pmult(x;φ) =

(∑V
j xj

)
!∏V

j xj!

V∏
j

φ
xj
j (1.21)

We again require that
∑V

j φj = 1 and ∀j, φj ≥ 0. The second part of the equa-
tion is a product over words, with an exponent for each word; recall that φ0

j = 1
for all φj ; this means that the words that have zero count play no role in the overall
probability.

The first part of Equation 1.21 doesn’t depend on φ, and can usually be ig-
nored. Can you see why we need the first part at all?3 We will return to this issue
shortly.

We can write p(xi | yi;φ) to indicate the conditional probability of word counts
xi given label yi, with parameter φ, which is equal to pmult(xi;φyi). By specifying
the multinomial distribution, we are working with multinomial naı̈ve Bayes (MNB).
Why “naı̈ve”? Because the multinomial distribution treats each word token inde-
pendently: the probability mass function factorizes across the counts.4 We’ll see

3Technically, a multinomial distribution requires a second parameter, the total number of
counts, which in the bag-of-words representation is equal to the number of words in the docu-
ment.

4You can plug in any probability distribution to the generative story and it will still be naı̈ve
Bayes, as long as you are making the “naı̈ve” assumption that your features are conditionally
independent, given the label. For example, a multivariate Gaussian with diagonal covariance
would be naı̈ve in exactly the same sense.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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this more clearly later, when we show how MNB is an example of linear classifi-
cation.

Another version of Naı̈ve Bayes

Consider a slight modification to the generative story of NB:

• For each document i

– Draw the label yi ∼ Categorical(µ)

– For each word n ≤ Di

∗ Draw the word wi,n ∼ Categorical(φyi)

This is not quite the same model as multinomial Naive Bayes (MNB): it’s a
product of categorical distributions over words, instead of a multinomial distri-
bution over word counts. This means we would generate the words in order, like
pW (multinomial)pW (Naive)pW (Bayes). Formally, this is a model for the joint prob-
ability p(w, y), not p(x, y).

However, as a classifier, it is identical to MNB. The final probabilities are re-
duced by a factor corresponding to the normalization term in the multinomial,
(
∑
j xj)!∏
j xj !

. This means that the the probability for a vector of counts x is larger
than the probability for a list of words w that induces the same counts. But this
makes sense: there can be many word sequences that correspond to a single vec-
tor counts. For example, man bites dog and dog bites man correspond to an identical
count vector, {bites : 1, dog : 1,man : 1}, and the total number of word orderings

for a given count vector x is exactly the ratio (
∑
j xj)!∏
j xj !

.

From the perspective of classification, none of this matters, because it has noth-
ing to do with the label y or the parameters φ. The ratio of probabilities between
any two labels y1 and y2 will be identical in the two models, as will the maximum
likelihood estimates for the parameters µ and φ (defined later).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Prediction

The Naive Bayes prediction rule is to choose the label y which maximizes p(x, y;µ,φ):

ŷ =arg max
y

p(x, y;µ,φ) (1.22)

=arg max
y

p(x | y;φ)p(y;µ) (1.23)

=arg max
y

log p(x | y;φ) + log p(y;µ) (1.24)

Converting to logarithms makes the notation easier. It doesn’t change the pre-
diction rule because the log function is monotonically increasing.

Now we can plug in the probability distributions from the generative story.

log p(x | y;φ) + log p(y;µ) = log


(∑

j xj

)
!∏

j xj!

∏
j

φ
xj
y,j

+ log µy (1.25)

= log

(∑
j xj

)
!∏

j xj!
+
∑
j

xj log φy,j + log µy (1.26)

=k + θ>f(x, y), (1.27)

where

θ = [θ(1)>,θ(2)>, . . . ,θ(K)>]> (1.28)

θ(y) = [log φy,1, log φy,2, . . . , log φy,V , log µy]
> (1.29)

k = log

(∑
j xj

)
!∏

j xj!
(This is a constant that we can ignore.) (1.30)

The feature function f(x, y) is a vector of V word counts and an offset, padded
by zeros for the labels not equal to y (see equations 1.2-1.5, and Figure 1.1). This
construction ensures that the inner product θ>f(x, y) only activates the features
whose weights are in θ(y). These features and weights are all we need to compute
the joint log-probability log p(x, y) for each y. This is a key point: through this
notation, we have converted the problem of computing the log-likelihood for a
document-label pair 〈xi, yi〉 into the computation of a vector inner product.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Estimation

The parameters of a multinomial distribution have a simple interpretation: they
are the expected frequency for each word. Based on this interpretation, it is tempt-
ing to set the parameters empirically, as

φy,j =

∑
i:Yi=y

xi,j∑
j′
∑

i:Yi=y
xi,j′

=
count(y, j)∑
j′ count(y, j′)

(1.31)

This is called a relative frequency estimator. It can be justified more rigorously as
a maximum likelihood estimate.

Our prediction rule in Equation 1.22 is to choose ŷ so as to maximize the joint
probability p(x, y). Maximum likelihood estimation proposes to choose the pa-
rameters φ and µ in much the same way. Specifically, we want to maximize the
joint log-likelihood of some training data, which consists of a set of annotated ex-
amples where we observe both the text and the true label, {xi, yi}i∈1...N . Based on
the generative model that we have defined, the log-likelihood is:

L =
∑
i

log pmult(xi;φyi) + log pcat(yi;µ). (1.32)

Let’s continue to focus on the parameters φ. Since p(y) is constant in L with
respect to these parameters, we can forget it for now,

L(φ) =
∑
i

log pmult(xi;φyi) (1.33)

=
∑
i

log
(
∑

j xi,j)!∏
j xi,j!

∏
j

φ
xi,j
yi,j

(1.34)

=
∑
i

log

[
(
∑
j

xi,j)!

]
−
∑
j

log (xi,j!) +
∑
j

xi,j logφyi,j (1.35)

∝
∑
j

xi,j logφyi,j, (1.36)

where I have abused notation by writing ∝ to indicate that the left side of Equa-
tion 1.36 is equal to the right side plus terms that are constant with respect to φ.

We would now like to optimize L, by taking derivatives with respect to φ. But
before we can do that, we have to deal with a set of constraints:

∀y,
V∑
j=1

φy,j = 1 (1.37)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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We’ll do this by adding a Lagrange multiplier. Solving separately for each label y,
we obtain the resulting Lagrangian,

`[φy] =
∑
i:Yi=y

∑
j

xij log φy,j − λ(
∑
j

φy,j − 1) (1.38)

We can now differentiate the Lagrangian with respect to the parameter of in-
terest, setting ∂`

∂φy,j
= 0,

0 =
∑
i:Yi=y

xi,j/φy,j − λ (1.39)

λφy,j =
∑
i:Yi=y

xi,j (1.40)

φy,j ∝
∑
i:Yi=y

xi,j =
∑
i

δ(Yi = y)xi,j, (1.41)

where I use two different notations for indicating the same thing: a sum over the
word counts for all documents i such that the label Yi = y. This gives a solu-
tion for each φy up to a constant of proportionality. Now recall the constraint
∀y,∑V

j=1φy,j = 1; this constraint arises because φy represents a vector of probabil-
ities for each word in the vocabulary. We can exploit this constraint to obtain an
exact solution,

φy,j =

∑
i:Yi=y

xi,j∑V
j′=1

∑
i:Yi=y

xi,j′
(1.42)

=
count(y, j)∑V
j′=1 count(y, j′)

. (1.43)

This is exactly equal to the relative frequency estimator. A similar derivation
gives µy ∝

∑
i δ(Yi = y), where δ(Yi = y) = 1 if Yi = y and 0 otherwise.

Smoothing and MAP estimation

If data is sparse, you may end up with values of φ = 0. For example, the word
Bayesian may have never appeared in a spam email yet, so the relative frequency
estimate φSPAM,Bayesian = 0. But choosing a value of 0 would allow this single feature
to completely veto a label, since P (Y = SPAM | x) = 0 if xBayesian > 0.

This is undesirable, because it imposes high variance: depending on what data
happens to be in the training set, we could get vastly different classification rules.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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One solution is to smooth the probabilities, by adding “pseudo-counts” of α to
each count, and then normalizing.

φy,j =
α +

∑
i:Yi=y

xi,j∑V
j′=1

(
α +

∑
i:Yi=y

xi,j′
) =

α + count(y, j)
V α +

∑V
j′=1 count(y, j′)

(1.44)

This form of smoothing is called “Laplace smoothing”, and it has a nice Bayesian
justification, in which we extend the generative story to include φ as a random
variable (rather than as a parameter). The resulting estimate is called maximum a
posteriori, or MAP.

Smoothing reduces variance, but it takes us away from the maximum likeli-
hood estimate: it imposes a bias. In this case, the bias points towards uniform
probabilities. Machine learning theory shows that errors on heldout data can be
attributed to the sum of bias and variance. Techniques for reducing variance typ-
ically increase the bias, so there is a bias-variance tradeoff.5

• Unbiased classifiers overfit the training data, yielding poor performance on
unseen data.

• But if we set a very large smoothing value, we can underfit instead. In the
limit of α → ∞, we have zero variance: it is the same classifier no matter
what data we see! But the bias of such a classifier will be high.

• Navigating this tradeoff is hard. But in general, as you have more data,
variance is less of a problem, so you just go for low bias.

• You may wonder if it is possible to choose a separate αj for each word j,
possibly to add larger amounts of smoothing to more common words. In-
deed this is possible, and we will talk a great deal about more advanced
smoothing techniques in Chapter 5. But I am unaware of any cases where
this makes a major positive impact on classification.

Training, testing, and tuning (development) sets

We’ll soon talk about more learning algorithms, but whichever one we apply, we
will want to report its accuracy. Really, this is an educated guess about how well
the algorithm will do on new data in the future.

To make an estimate of the accuracy, we need to hold out a separate “test set”
from the data that we use for estimation (i.e., training, learning). Otherwise, if

5The bias-variance tradeoff is covered by Murphy (2012), but see Mohri et al. (2012) for a more
formal treatment of this key concept in machine learning theory.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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we measure accuracy on the same data that is used for estimation, we will badly
overestimate the accuracy that we are likely to get on new data.

Recall that in addition to the parameters µ and φ, which are learned on train-
ing data, we also have the amount of smoothing, α. This can be considered a
“tuning” parameter, and it controls the tradeoff between overfitting and underfit-
ting the training data. Where is the best position on this tradeoff curve? It’s hard
to tell in advance. Sometimes it is tempting to see which tuning parameter gives
the best performance on the test set, and then report that performance. Resist this
temptation! It will also lead to overestimating accuracy on truly unseen future
data. For that reason, this is a sure way to get your research paper rejected; in a
commercial setting, this mistake may cause you to promise much higher accuracy
than you can deliver. Instead, you should split off a piece of your training data,
called a “development set” (or “tuning set”).

Sometimes, people average across multiple test sets and/or multiple develop-
ment sets. One way to do this is to divide your data into “folds,” and allow each
fold to be the development set one time. This is called K-fold cross-validation. In
the extreme, each fold is a single data point. This is called leave-one-out.

The Naı̈vety of Naı̈ve Bayes

Naı̈ve Bayes is simple to work with: estimation and prediction can done in closed
form, and the nice probabilistic interpretation makes it relatively easy to extend
the model in various ways. But Naı̈ve Bayes makes assumptions which seriously
limit its accuracy, especially in NLP.

• The multinomial distribution assumes that each word is generated indepen-
dently of all the others (conditioned on the parameter φy). Formally, we
assume conditional independence:

p(naı̈ve,Bayes | y) = p(naı̈ve | y)p(Bayes | y). (1.45)

• But this is clearly wrong, because words “travel together.” To hone your
intuitions about this, try and decide whether you believe

p(naı̈ve Bayes) > p(naı̈ve)p(Bayes) (1.46)

or...
p(naı̈ve Bayes) < p(naı̈ve)p(Bayes). (1.47)

Apply the chain rule!

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Traffic lights Dan Klein makes this point with an example about traffic lights. In
his hometown of Pittsburgh, there is a 1/7 chance that the lights will be broken,
and both lights will be red. There is a 3/7 chance that the lights will work, and
the north-south lights will be green; there is a 3/7 chance that the lights work and
the east-west lights are green.

The prior probability that the lights are broken is 1/7. If they are broken, the
conditional likelihood of each light being red is 1. The prior for them not being
broken is 6/7. If they are not broken, the conditional likelihood of each individual
light being red is 1/2.

Now, suppose you see that both lights are red. According to Naı̈ve Bayes, the
probability that the lights are broken is 1/7× 1× 1 = 1/7 = 4/28. The probability
that the lights are not broken is 6/7 × 1/2 × 1/2 = 6/28. So according to naive
Bayes, there is a 60% chance that the lights are not broken!

What went wrong? We have made an independence assumption to factor
the probability P (R,R | not-broken) = Pnorth-south(R | not-broken)Peast-west(R |
not-broken). But this independence assumption is clearly incorrect, because P (R,R |
not-broken) = 0.

Less Naı̈ve Bayes? Of course we could decide not to make the naive Bayes as-
sumption, and model P (R,R) explicitly. But this idea does not scale when the
feature space is large — as it often is in NLP. The number of possible feature
configurations grows exponentially, so our ability to estimate accurate parame-
ters will suffer from high variance. With an infinite amount of data, we would
be okay; but we never have that. Naı̈ve Bayes accepts some bias, because of the
incorrect modeling assumption, in exchange for lower variance.

Recap

• Documents are represented as “bags of words”, written as the vector x.

• Feature functions combine the document and the label into a single vector,
f(x, y).

• Classification can then be performed as a dot-product θ>f(x, y).

• Naive Bayes

– Define p(x,y) via a generative model
– Prediction: ŷ = arg maxy p(xi, y)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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– Learning:

θ =arg max
θ

p(x,y;θ)

p(x,y;θ) =
∏
i

p(xi, yi;θ) =
∏
i

p(xi | yi)p(yi)

φy,j =

∑
i:Yi=y

xij∑
i:Yi=y

∑
j xij

µy =
count(Y = y)

N

This gives the maximum likelihood estimator (MLE; same as relative
frequency estimator)

• The MLE is unbiased, but has high variance. We can navigate the bias-
variance tradeoff by adding smoothing pseudo-counts α, reducing variance
but adding bias.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 2

Discriminative learning

Naı̈ve Bayes is a simple classifier, where both the prediction rule and the learning
objective are based on the joint probability of labels and base features,

log p(yi,xi) = log p(xi | yi) + log p(yi) (2.1)

=
∑
j

log p(xi,j | yi) + log p(yi) (2.2)

=θ>f(xi, yi) (2.3)

Equation 2.2 shows the independence assumption that makes it possible to com-
pute this joint probability: the probability of each base feature xi,j is mutually
independent, after conditioning on the label yi.

In the equations above, we define the feature function f(x, y) so that it cor-
responds to “bag-of-words” features. These features do violate the assumption
of conditional independence — for example, the probability of the word naı̈ve is
surely higher given the presence of the word Bayes — but the violation is rela-
tively mild. However, to get really good performance on text classification and
other language processing tasks, we will need to add many other types of fea-
tures. Some of these features will capture parts of words, and others will capture
multi-word units. For example:

• Prefixes, such as anti-, im-, and un-.

• Punctuation and capitalization.

• Bigrams, such as not good, not bad, least terrible, and higher-order n-grams.

These “rich” features tend to violate the Naı̈ve Bayes independence assump-
tion more severely. Consider what happens if we add feature capturing the word

31
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prefix. We then want to compute the probability,

Pr(word = impossible,prefix = im- | y) ≈Pr(prefix = im- | y)

× Pr(word = impossible | y) (2.4)

To test the quality of the approximation, we can manipulate the original probabil-
ity by applying the chain rule,

Pr(word = impossible,prefix = im- | y) =Pr(prefix = im- | word = impossible, y)

× Pr(word = impossible | y) (2.5)

But Pr(prefix = im- | word = impossible, y) = 1, since im- is guaranteed to be the
prefix for the word impossible. Therefore,

Pr(word = impossible,prefix = im- | y) (2.6)
= 1× Pr(word = impossible | y)

� Pr(prefix = im- | y)× Pr(word = impossible | y). (2.7)

The final inequality is due to the fact that the probability of any given word start-
ing with the prefix im- is much less than one, and it shows that Naı̈ve Bayes will
systematically underestimate the true probabilities of conjunctions of positively
correlated features. To use such features, we will need learning algorithms that
do not rely on an independence assumption.

2.1 Perceptron
In Naı̈ve Bayes, the weights can be interpreted as parameters of a probabilistic
model. But this model requires an independence assumption that usually does
not hold, and limits our choice of features. Why not forget about probability and
learn the weights in an error-driven way? The perceptron algorithm, shown in
Algorithm 1, is one way to do this.1

What the algorithm says is this: if you make a mistake, increase the weights
for features which are active with the correct label yi, and decrease the weights for

1The attentive reader will note that Algorithm 1 does not define the initial values of θ or the
index t. Initialization decisions are typically heuristic, and I prefer not to clutter the algorithm
definition by committing to one initialization procedure or another. In this case, θ = 0 is a perfectly
good choice. I have been similarly vague about the stopping criterion, but the text presents some
alternatives. Counters like t should be assumed to begin at t← 1 unless otherwise noted.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Algorithm 1 Perceptron learning algorithm

1: procedure PERCEPTRON(x1:N , y1:N )
2: repeat
3: Select an instance i
4: ŷ ← arg maxy θ

>
t f(xi, y)

5: if ŷ 6= yi then
6: θt+1 ← θt + f(xi, yi)− f(xi, ŷ)
7: else
8: do nothing
9: until tired

features which are active with the guessed label ŷ. This is an online learning al-
gorithm, since the classifier weights change after every example. This is different
from Naı̈ve Bayes, which computes corpus statistics and then sets the weights in
a single operation — Naı̈ve Bayes is a batch learning algorithm.2

The perceptron algorithm may seem like a cheap heuristic: Naı̈ve Bayes has
a solid foundation in probability, but now we are just adding and subtracting
constants from the weights every time there is a mistake. Will this really work?
In fact, there is some nice theory for the perceptron. To understand it, we must
introduce the notion of linear separability:

Definition 1 (Linear separability). The dataset D = {〈xi, yi〉}i is linearly separable iff
there exists some weight vector θ and some margin ρ such that for every instance 〈xi, yi〉,
the inner product of θ and the feature function for the true label, θ>f(x, yi), is at least
ρ greater than inner product of θ and the feature function for every other possible label,
θ>f(x, y′).

∃θ, ρ > 0 : ∀〈xi, yi〉 ∈ D,θ>f(xi, yi) ≥ ρ+ max
y′ 6=yi

θ>f(xi, y
′). (2.8)

Linear separability is important because of the following guarantee: if your
data is linearly separable, then the perceptron algorithm will find a separator (Novikoff,
1962).3 So while the perceptron may seem heuristic, it is guaranteed to succeed —

2Later in this chapter we will encounter a third class of learning algorithm, which is iterative.
Such algorithms perform multiple updates to the weights (like perceptron), but are also batch, in
that they have to use all the training data to compute the update.

3It is also possible to prove an upper bound on the number of training iterations required to
find the separator. Proofs like this are part of the field of statistical learning theory. Mohri et al.
(2012) provide an excellent survey.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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if the learning problem is easy enough.
How useful is this proof? Minsky and Papert (1969) note that the simple log-

ical function of exclusive-or is not separable, and that a perceptron is therefore
incapable of learning to mimic this function. But this is not just a problem for
perceptron: any linear classification algorithm, including Naı̈ve Bayes, will fail to
learn this function. In natural language, we work in very high dimensional feature
spaces, with thousands or millions of features. In these high-dimensional spaces,
finding a separator becomes exponentially easier. Furthermore, later theoretical
work showed that if the data is not separable, it is still possible to place an upper
bound on the number of errors that the perceptron algorithm will make (Freund
and Schapire, 1999).

Averaged perceptron

The perceptron iterates over the data repeatedly — until “tired”, as described in
Algorithm 1. If the data is linearly separable, it is guaranteed that the percep-
tron will eventually find a separator, and then we can stop. But if the data is not
separable, the algorithm can thrash between two or more weight settings, never
converging. In this case, how do we know that we can stop training, and how
should we choose the final weights? An effective practical solution is to average
the perceptron weights across all iterations.

This procedure is shown in Algorithm 2. The learning algorithm is nearly iden-
tical to the “vanilla” perceptron, but we also maintain a vector of the weight sums,
m. At the end of the learning procedure, we divide this sum by the total number
of updates t, to compute the averaged weights, θ. These averaged weights are
then used to predict the labels of new data, such as examples in the test set. Even
if the data is not separable, the averaged weights will eventually converge. One
possible stopping criterion is to check the difference between the average weight
vectors after each pass through the data: if the norm of the difference falls below
some predefined threshold, we can stop iterating. Another stopping criterion is to
hold out some data, and to measure the predictive accuracy on this heldout data
(this is called a development set in chapter 1). When the accuracy on the heldout
data starts to decrease, the learning algorithm has begun to overfit. At this point,
it is probably best to stop; this stopping criterion is known as early stopping.

Generalization is the ability to make good predictions on instances that are
not in the training data; it can be proved that averaging improves generalization,
by computing an upper bound on the generalization error (Freund and Schapire,
1999; Collins, 2002).

(c) Jacob Eisenstein 2014-2016. Work in progress.



2.2. LOSS FUNCTIONS AND LARGE MARGIN CLASSIFICATION 35

Algorithm 2 Averaged perceptron learning algorithm

1: procedure AVG-PERCEPTRON(x1:N , y1:N )
2: repeat
3: Select an instance i
4: ŷ ← arg maxy θ

>
t f(xi, y)

5: if ŷ 6= yi then
6: θt+1 ← θt + f(xi, yi)− f(xi, ŷ)
7: m←m+ θt+1

8: else
9: do nothing

10: until tired
11: θ ← 1

t
m

2.2 Loss functions and large margin classification

Naı̈ve Bayes chooses the weights θ by maximizing the joint likelihood p({xi, yi}i).
This is equivalent to maximizing the log-likelihood (due to the monotonicity of the
log function), and also to minimizing the negative log-likelihood. This negative
log-likelihood can therefore be viewed as a loss function,

log p(x,y;θ) =
N∑
i=1

log p(xi, yi;θ) (2.9)

`NB(θ;xi, yi) =− log p(xi, yi;θ) (2.10)

θ̂ =arg min
θ

N∑
i=1

`NB(θ,xi, yi) (2.11)

This minimization problem is identical to the maximum-likelihood estimation
problem that we solved in the previous chapter. Framing it as minimization may
seem confusing and backwards, but loss functions provide a very general frame-
work in which to compare many approaches to machine learning. For example,
even though the perceptron is not a probabilistic model, it is also trying to mini-
mize a loss function:

`perceptron(θ;xi, yi) =

{
0, yi = arg maxy θ

>f(xi, y)

1, otherwise
(2.12)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The perceptron loss — sometimes called the 0/1 loss — has some pros and cons
in comparison with the joint likelihood loss implied by Naive Bayes.

• `NB can suffer infinite loss on a single example, which suggests it will overem-
phasize some examples, and underemphasize others.

• `perceptron treats all errors equally. It only cares if the example is correct, and
not about how confident the classifier was. Since we usually evaluate on
accuracy or some related error-based metric, this is a better match.

• `perceptron is non-convex4 and discontinuous. Although it is possible to bound
the number of errors on the training data, finding the global optimum is
intractable when the data is not separable.

We can fix this last problem by defining a loss function that behaves more
nicely. To do this, let’s define the margin as

γ(θ;xi, yi) = θ>f(xi, yi)−max
y 6=yi

θ>f(xi, y) (2.13)

The margin represents the separation between the score for the correct label
yi, and the score for the highest-scoring label. If the instance is classified incor-
rectly, the margin will be negative. The intuition behind “large-margin” learning
algorithms is that it is not enough just to get the training data correct — we want
the correct label to be separated from the other possible labels by a comfortable
margin. We can use the margin to define a convex and continuous hinge loss,

`hinge(θ;xi, yi) =

{
0, γ(θ;xi, yi) ≥ 1,

1− γ(θ;xi, yi), otherwise
(2.14)

Equivalently, we can write `hinge(θ;xi, yi) = (1− γ(θ;xi, yi))+, where (x)+ is
equal to x if x is positive, and 0 otherwise. The hinge loss is zero if we have
a margin of at least 1 between the score for the true label and the best-scoring
alternative, which we have written ŷ. The hinge and perceptron loss functions are
shown in Figure 2.1. Note that the hinge loss is an upper bound on the perceptron
loss.

4A function f is convex iff αf(xi) + (1 − α)f(xj) ≥ f(αxi + (1 − α)xj), for all α ∈ [0, 1] and
for all xi and xj on the domain of the function. Convexity implies that any local minimum is also
a global minimum, and there are effective techniques for optimizing convex functions (Boyd and
Vandenberghe, 2004).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 2.1: Hinge and perceptron loss functions

Support vector machines

We can write the weight vector θ = su, where the norm of u is equal to one,
||u||2 = 1.5 Think of s as the magnitude and u as the direction of the vector θ. If
the data is separable, there are many values of s that attain zero hinge loss. To see
this, let us redefine the margin as,

γ(θ,xi, yi) = min
y 6=yi

θ>f(xi, yi)− θ>f(xi, y) (2.15)

= min
y 6=yi

s(u> (f(xi, yi)− f(xi, y)) . (2.16)

Based on this definition, if the unit vector u∗ satisfies γ(u∗,xi, yi) > 0, then there is
some smallest value s∗ such that ∀s ≥ s∗, γ(su∗,xi, yi) ≥ 1. This observation sug-
gests that given many possible θ that obtain zero hinge loss, we should choose
the one with the smallest norm (s = s∗), since this entails making the least com-
mittment to the training data. This idea underlies the Support Vector Machine
(SVM) classifier, which, in its most basic form, solves the following optimization
problem,

min
θ
. ||θ||22

s.t. ∀i`hinge(θ;xi, yi) = 0. (2.17)

Recall that ||θ||22 =
∑

j θ
2
j .

5The norm of a vector ||u||2 is defined as, ||u||2 =
√∑

j u
2
j .

(c) Jacob Eisenstein 2014-2016. Work in progress.
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In realistic settings, we do not know whether there is any feasible solution —
that is, whether there exists any θ so that the hinge loss on every training instance
is zero. We therefore introduce a set of slack variables ξi ≥ 0, which represent
a sort of “fudge factor” for each instance i — instead of requiring that the hinge
loss be exactly zero, we require that it be less than ξi. Ideally there would not be
any slack, so we add the sum of the slack variables to the objective function to be
minimized:

min
θ

||θ||22 + C
∑
i

ξi

s.t. ∀i`hinge(θ;xi, yi) ≤ ξi

∀iξi ≥ 0. (2.18)

Here C is a tunable parameter that controls the penalty on the slack variables.
AsC →∞, slack is infinitely expensive, and we can only find a solution if the data
is separable. As C → 0, slack becomes free, and there is a trivial solution at θ = 0,
regardless of the data. Thus, C plays a similar role to the smoothing parameter in
Naı̈ve Bayes(̃section 1.2), trading off between a close fit to the training data and
better generalization. Like the smoothing parameter of Naı̈ve Bayes, C must be
set by the user, typically by maximizing performance on a heldout development
set.

To solve the constrained optimization problem defined in Equation 2.18, we
can use Lagrange multipliers to convert it into the unconstrained primal form,6

min
θ

λ

2
||θ||22 +

∑
i

`hinge(θ;xi, yi), (2.19)

where λ is a tunable parameter that can be computed from the term C in Equa-
tion 2.18. A generic way to minimize such objective functions is gradient descent:
moving along the gradient (obtained by differentiating with respect to θ), until
the gradient is equal to zero.7 If the objective is convex, then this will be the global
minimum. Gradient-based optimization techniques are discussed in section 2.4.

6An alternative dual form is used in the formulation of the kernel-based support vector ma-
chine, which supports non-linear classification. This is described briefly at the end of the chapter.

7Because the hinge loss is not smooth, there is not a single gradient at the point at which the
hinge loss is exactly equal to zero, but rather, a subgradient set. However, this is a theoretical
issue that poses no difficulties in practice.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Passive-aggressive

[todo: Replace this with PEGASOS] In online learning, rather than seeking the
feasible θ with the smallest norm, we might instead prefer to make the small-
est magnitude change to θ, while meeting the hinge loss constraint for instance
〈xi, yi〉. Specifically, at each step t, we solve the following optimization problem:

minw.
1

2
||θ − θt||2 + Cξt (2.20)

s.t. `hinge(θ;xi, yi) ≤ ξt, ξt ≥ 0

By forming another Lagrangian, it is possible to show that the solution to
Equation 2.20 is,

θt+1 =θt + τt(f(yi,xi)− f(ŷ,xi)) (2.21)

τt = min

(
C,

`(θ;xi, yi)

||f(xi, yi)− f(xi, ŷ)||2
)
, (2.22)

This algorithm is called Passive-Aggressive (PA; Crammer et al., 2006), be-
cause it is passive when the margin constraint is satisfied, but it aggressively
changes the weights to satisfy the constraints if necessary.8 PA is error-driven
like the perceptron, and the update is nearly identical: the only difference is the
learning rate τt, which depends on the amount of loss incurred by instance i, the
norm of the difference in feature vectors between the predicted and correct labels,
and the hyperparameterC, which places an upper bound on the step size. As with
the perceptron, it is possible to apply weight averaging to PA, which can improve
generalization. PA allows more explicit control than the Averaged Perceptron,
due to the C parameter: when C is small, we make very conservative adjustments
to θ from each instance, because the slack variables aren’t very expensive; when
C is large, we make large adjustments to avoid using the slack variables.

2.3 Logistic regression
Thus far, we have seen two broad classes of learning algorithms. Naı̈ve Bayes is
a probabilistic method, where learning is equivalent to estimating a joint prob-
ability distribution. Perceptron, support-vector machines (SVM), and passive-
aggressive (PA) are all error-driven algorithms: the learning objective is to min-
imize the number of errors on the training data (perceptron), or to minimize a

8A related algorithm without slack variables is called MIRA, for Margin-Infused Relaxed Al-
gorithm (Crammer and Singer, 2003).

(c) Jacob Eisenstein 2014-2016. Work in progress.



40 CHAPTER 2. DISCRIMINATIVE LEARNING

convex upper bound on the number of errors (SVM, PA). Both approaches have
advantages: probability enables us to quantify uncertainty about the predicted
labels, but error-driven learning typically leads to better performance on error-
based performance metrics such as accuracy.

Logistic regression combines both of these advantages: it is error-driven like
the perceptron and margin-based learning algorithms, but it is probabilistic like
Naı̈ve Bayes. To understand the motivation for logistic regression, first recall that
Naı̈ve Bayes selects weights to optimize the joint probability p(x, y).

• We have used the chain rule to factor this joint probability as p(x, y) = p(x |
y)× p(y).

• But we could equivalently choose the alternative factorization p(x, y) =
p(y | x)× p(x).

In classification, we always know x: these are the base features from which
we predict y. So there is no need to model p(x); we really care only about the
conditional probability p(y | x) — sometimes called the likelihood. Logistic
regression defines this probability directly, in terms of the features f(x, y) and the
weights θ.

We can think of θ>f(x, y) as a scoring function for the compatibility of the
base features x and the label y. This function is an unconstrained scalar; we
would like to convert it to a probability. To do this, we first exponentiate, ob-
taining exp

(
θ>f(x, y)

)
, which is guaranteed to be non-negative. Next, we need

to normalize, dividing over all possible labels y′ ∈ Y . The resulting conditional
probability is defined as,

p(y | x) =
exp

(
θ>f(x, y)

)∑
y′∈Y exp (θ>f(x, y′))

. (2.23)

Given a dataset D = {〈xi, yi〉}i, the maximum-likelihood estimator for θ is
obtained by maximizing,

L(θ) = log p(y1:N | x1:N ;θ) (2.24)

= log
∏
i

p(yi | xi;θ) (2.25)

=
∑
i

log p(yi | xi;θ) (2.26)

=
∑
i

θ>f(xi, yi)− log
∑
y′∈Y

exp
(
θ>f(xi, y

′)
)
. (2.27)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The final line is obtained by plugging in Equation 2.23 and taking the logarithm.9,10

Inside the sum, we have the (additive inverse of the) logistic loss.

• In binary classification, we can write this as

`logistic(θ;xi, yi) = −(yiθ
>xi − log

(
1 + expθ>xi

)
) (2.28)

• In multi-class classification, we have,

`logistic(θ;xi, yi) = −(θ>f(xi, yi)− log
∑
y′∈Y

expθ>f(xi, y
′)) (2.29)
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Figure 2.2: Hinge, perceptron, and logistic loss functions

The logistic loss is shown in Figure 2.2. Note that logistic loss is also an upper
bound on the perceptron loss. A key difference from the perceptron and hinge
losses is that logistic loss is never exactly zero: the objective function can always
be improved by chosing the correct label with more confidence.

9Any reasonable base will work; if it is important to you to know which one to choose, then I
suggest using base 2 if you are a computer scientist, and base e otherwise.

10The log-sum-exp term is very common in machine learning. It is numerically unstable be-
cause it will underflow if the inner product is small, and overflow if the inner product is large.
Scientific computing libraries usually contain special functions for computing logsumexp, but
with some thought, you should be able to see how to create an implementation that is numerically
stable.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Regularization

As with the margin-based algorithms described in section 2.2, we can obtain better
generalization by penalizing the norm of θ, by adding a term of λ

2
||θ||22 to the

minimization objective. This is called L2 regularization, because it includes the
L2 norm. It can be viewed as placing a zero-mean Gaussian prior distribution on
each term of θ, because the log-likelihood under a zero-mean Gaussian is,

logN(θj; 0, σ2) ∝− 1

2σ2
θ2
j , (2.30)

so that λ = 1
σ2 .

The effect of this regularizer will cause the estimator to trade off conditional
likelihood on the training data for a smaller norm of the weights, and this can
help to prevent overfitting. Indeed, regularization is generally considered to be
essential to estimating high-dimensional models, as we typically do in NLP. To
see why, consider what would happen to the unregularized weight for a base
feature j that was active in only one instance xi: the conditional likelihood could
always be improved by increasing the weight for this feature, so that θ(j,yi) → ∞
and θ(j,ỹ 6=yi) → −∞, where (j, y) indicates the index of feature associated with xi,j
and label y in f(xi, y).

Gradients

We will optimize θ through gradient descent. Specific algorithms are described
in section 2.4, but because the gradient of the logistic regression objective is illus-
trative, it is worth working out in detail. Let us begin with the logistic loss on a
single example,

`(θ;xi, yi) =− (θ>f(xi, yi)− log
∑
y′∈Y

exp
(
θ>f(xi, y

′))
)

(2.31)

∂`

∂θ
=− f(xi, yi) +

1∑
y′′∈Y exp (θ>f(xi, y′′))

×
∑
y′

exp
(
θ>f(xi, y

′)
)
× f(xi, y

′)

(2.32)

=− f(xi, yi) +
∑
y′

exp
(
θ>f(xi, y

′)
)∑

y′′∈Y exp (θ>f(xi, y′′))
× f(xi, y

′) (2.33)

=− f(xi, yi) +
∑
y′

p(y′ | xi;θ)× f(xi, y
′) (2.34)

=− f(xi, yi) + Ey|x[f(xi, y)], (2.35)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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where the final step employs the definition of an expectation (section 1.1). The
gradient thus has the pleasing interpretation as the difference between the ob-
served feature counts f(xi, yi) and the expected counts under the current model,
Ey|x[f(xi, y)]. When these two count vectors are equal for a single example, there
is nothing more to learn from this example; when they are equal in sum over the
entire dataset, there is nothing more to learn from the dataset as a whole.

As we will see shortly, a simple online approach to gradient-based optimiza-
tion is to take a step along the gradient. In (unregularized) logistic regression, this
gradient-based optimization is a soft version of the perceptron. Put another way,
in the case that p(y | x) is a delta function, p(y | x) = δ(y = ŷ), then the gradient
step is exactly equal to the perceptron update.

If we add a regularizer λ
2
||θ||22, then this contributes λθ to the overall gradient:

L =
λ

2
||θ||22 −

N∑
i=1

(
θ>f(xi, yi)− log

∑
y′∈Y

expθ>f(xi, y
′)

)
(2.36)

∂L

∂θ
=λθ −

N∑
i=1

(
f(xi, yi)− Ey|x[f(xi, y)]

)
(2.37)

2.4 Optimization
In Naı̈ve Bayes, the gradient on the joint likelihood led us to a closed form solu-
tion for the parameters θ; in passive-aggressive, we obtained a solution for each
individual update from a constrained optimization problem. In logistic regression
and support vector machines (SVM), we have objective functions L.

• In logistic regression, L corresponds to the regularized negative log-likelihood,

L =
λ

2
||θ||22 −

∑
i

(
θ>f(xi, yi)− log

∑
y

exp
(
θ>f(xi, y)

))
(2.38)

• In the support vector machine, L corresponds to the “primal form”,

L =
λ

2
||θ||22 −

∑
i

(1− θ>f(xi, yi) + max
y′ 6=yi

θ>f(xi, y
′))+ (2.39)

In both cases, the objective is convex, and there are many efficient algorithms for
optimizing convex functions (Boyd and Vandenberghe, 2004). Most algorithms

(c) Jacob Eisenstein 2014-2016. Work in progress.
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are based on the gradient ∂L
∂θ

, or on the subgradients, in the case of non-smooth
objectives in which the gradient is not unique. This section will present the most
frequently-used optimization algorithms, focusing on logistic regression. How-
ever, these algorithms can also be applied to the support vector machine objective
with minimal modification.

Batch optimization

In batch optimization, all the data is kept in memory and iterated over many
times. The logistic loss is smooth and convex, so we can find the global optimum
using gradient descent,

θt+1 ← θt − ηt
∂L

∂θ
, (2.40)

where ∂L
∂θ

is the gradient computed over the entire training set, and ηt is some step
size. In practice, this can be very slow to converge, as the gradient can become
infinitesimally small. Second-order (Newton) optimization obtains much better
convergence rates by incorporating the inverse of the Hessian matrix,

Hi,j =
∂2

∂wi∂wj
L. (2.41)

Unfortunately, in NLP problems, the Hessian matrix (which is quadratic in the
number of parameters) is usually too big to deal with. A typical solution is to ap-
proximate the Hessian matrix via a quasi-Newton optimization technique, such
as L-BFGS (Liu and Nocedal, 1989).11 Quasi-Newton optimization packages are
available in many scientific computing environments, and for most types of NLP
practice and research, it is okay to treat them as black boxes. You will typically
pass in a pointer to a function that computes the likelihood and gradient, and the
solver will return a set of weights.

Online optimization

In online optimization, you consider one example (or a “mini-batch” of a few
examples) at a time. Stochastic gradient descent (SGD) makes a stochastic online

11You can remember the order of the letters as “Large Big Friendly Giants.” Does this help you?

(c) Jacob Eisenstein 2014-2016. Work in progress.
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approximation to the overall gradient:

θ(t+1) ←θ(t) − ηt
∂L

∂θ
(2.42)

=θ(t) − ηt
(
λθ(t) −

N∑
i

(
f(xi, yi)− Ey|x[f(xi, y)]

))
(2.43)

=(1− ληt)θ(t) + ηt

(
N∑
i

f(xi, yi)− Ey|x[f(xi, y)]

)
(2.44)

≈(1− ληt)θ(t) +Nηt
(
f(xi(t), yi(t))− Ey|x[f(xi(t), y)]

)
(2.45)

where ηt is the step size at iteration t, and 〈xi(t), yi(t)〉 is an instance that is randomly
sampled at iteration t. We can obtain a more compact form for SGD by folding the
constant N into ηt and λ, so that η̃t = Nηt and λ̃ = λ

N
. This yields the form shown

in Algorithm 3.

Algorithm 3 Stochastic gradient descent for logistic regression

1: procedure SGD(x1:N , y1:N , η, λ)
2: repeat
3: Select an instance i
4: θ(t+1) ← (1− λ̃η̃t)θ(t) + η̃t

(
f(xi(t), yi(t))− Ey|x[f(xi(t), y)]

)
5: until tired

As above, the expectation is equal to a weighted sum over the labels,

Ey|x[f(xi(t), y)] =
∑
y′∈Y

p(y′ | xi(t);θ)f(xi(t), y
′). (2.46)

Again, note how similar this update is to the perceptron.
The theoretical foundation for SGD assumes that each training instance is ran-

domly sampled (thus the name “stochastic”), but in practice, it is not uncommon
to stream through the data sequentially. It is often useful to select not a single
instance, but a mini-batch of K instances. In this case, we would scale ηt and λ by
N
K

. The gradients over mini-batches will be lower variance approximations of the
true gradient, and it is possible to parallelize the computation of the gradient for
each instance in the mini-batch.

A key question for SGD is how to set the learning rates ηt. It can be proven that
SGD will converge if ηt = η0t

−α for α ∈ [1, 2]; however, convergence may be very

(c) Jacob Eisenstein 2014-2016. Work in progress.
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slow. In practice, ηt may also be fixed to a small constant, like 10−3. In either case,
it is typical to try a set of different values, and see which minimizes the objective
L most quickly. For more on stochastic gradient descent, as applied to a number
of different learning algorithms, see (Zhang, 2004) and (Bottou, 1998). Murphy
(2012) traces SGD to Nemirovski and Yudin (1978).

AdaGrad

Recent work has shown that it is possible to learn more quickly by using an adap-
tive step size, which is different for every feature (Duchi et al., 2011). Common
features are likely to be updated frequently, so it is best to use a small step size;
rare features will be updated infrequently, so it is better to take larger steps. The
AdaGrad (adaptive gradient) algorithm achieves this behavior by storing the sum
of the squares of the gradients for each feature, and rescaling the learning rate by
its inverse:

gt =λθ − f(xi, yi) +
∑
y′∈Y

p(y′ | xi)f(xi, yi) (2.47)

θ
(t+1)
j ←θ(t)

j −
η√∑t
t′=1 g

2
t,j

gt,j, (2.48)

where j iterates over features in f(x, y). AdaGrad seems to require less careful
tuning of η, and Dyer (2014) reports that η = 1 works for a wide range of problems.

2.5 More on logistic regression*

Other regularizers

In Equation 2.36, we proposed to regularize the estimator of θ by penalizing
the squared L2 norm, ||θ||22. However, this is not the only way to penalize large
weights; we might prefer some other norm, such as L0 = ||θ||0 =

∑
j δ(θj 6= 0),

which applies a constant penalty for each non-zero weight. This norm can be
thought of as a form of feature selection: optimizing the L0-regularized condi-
tional likelihood is equivalent to trading off the log-likelihood against the number
of active features. Reducing the number of active features is desirable because the
resulting model will be fast, low-memory, and should generalize well, since fea-
tures that are not very helpful will be pruned away. Unfortunately, the L0 norm is

(c) Jacob Eisenstein 2014-2016. Work in progress.
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non-convex and non-differentiable; optimization under L0 regularization is NP-
hard, meaning that it can be solved efficiently only if P=NP (Ge et al., 2011).

A useful alternative is the L1 norm, which is equal to the sum of the absolute
values of the weights, ||θ||1 =

∑
j |θj|. The L1 norm is convex, and can be used as

an approximation to L0 (Tibshirani, 1996). Moreover, the L1 norm also performs
feature selection, by driving many of the coefficients to zero; it is therefore known
as a sparsity inducing regularizer. Gao et al. (2007) compare L1 and L2 regular-
ization on a suite of NLP problems, finding that L1 regularization generally gives
similar test set accuracy to L2 regularization, but that L1 regularization produces
models that are between ten and fifty times smaller, because more than 90% of the
feature weights are set to zero.

The L1 norm does not have a gradient at θj = 0, so we must instead optimize
the L1-regularized objective using subgradient methods. The associated stochas-
tic subgradient descent algorithms are only somewhat more complex than con-
ventional SGD; Sra et al. (2012) survey approaches for estimation under L1 and
other regularizers.

Other views of logistic regression

Logistic regression is so named because in the binary case where y ∈ {0, 1}, we
are performing a regression of x against y, after passing the inner product θ>x
through a logistic transformation to obtain a probability. However, it goes by
many other names:

• Logistic regression is also called maximum conditional likelihood (MCL),
because it is based on maximizing the conditional likelihood p(y | x).

• Logistic regression can be viewed as part of a larger family of generalized
linear models (GLMs), which include other “link functions,” such as the
probit function. If you use the R software environment, you may be familiar
with glmnet, a widely-used package for estimating GLMs.

• In the neural networks literature, the multivariate analogue of the logistic
transformation is sometimes called a softmax layer, because it “softly” iden-
tifies the label y that maximizes the activation function θ>f(x, y).

In the early NLP literature, logistic regression is frequently called maximum
entropy (Berger et al., 1996). This is due to an alternative formulation, which tries
to find the maximum entropy probability function that satisfies moment-matching

(c) Jacob Eisenstein 2014-2016. Work in progress.
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constraints. The moment matching constraints specify that the empirical counts
of each label-feature pair should match the expected counts:

∀j,
N∑
i=1

fj(xi, yi) =
N∑
i=1

∑
y∈Y

p(y | xi;θ)fj(xi, y) (2.49)

Note that this constraint will be met exactly when the derivative of the like-
lihood function (Equation 2.35) is equal to zero. However, this constraint can be
met for many values of θ, so which should we choose?

The entropy of the conditional likelihood py|x is,

H(py|x) = −
∑
x∈X

px(x)
∑
y∈Y

py|x(y | x) log py|x(y | x), (2.50)

where px(x) is the probability of observing the base features x. We compute an
empirical estimate of the entropy by summing over all the instances in the training
set,

H̃(py|x) = − 1

N

∑
i

∑
y∈Y

py|x(y | xi) log py|x(y | xi). (2.51)

If the entropy is large, the likelihood function is smooth across possible val-
ues of y; if it is small, the likelihood function is sharply peaked at some preferred
value; in the limiting case, the entropy is zero if p(y | x) = 1 for some y. By
saying we want a maximum-entropy classifier, we are saying we want to make
the weakest commitments possible, while satisfying the moment-matching con-
straints from Equation 2.49. The solution to this constrained optimization prob-
lem is identical to the maximum conditional likelihood (logistic-loss) formulation
we considered in the previous section. This view of logistic regression is arguably
a little dated, but it is useful to understand, especially when reading classic papers
from the 1990s. For a tutorial on maximum entropy, see http://www.cs.cmu.
edu/afs/cs/user/aberger/www/html/tutorial/tutorial.html.

2.6 Summary of learning algorithms
Having seen several learning algorithms, it is natural to ask which is best in vari-
ous situations.

Naı̈ve Bayes Pros: easy to implement; estimation is very fast, requiring only a
single pass over the data; assigns probabilities to predicted labels; controls

(c) Jacob Eisenstein 2014-2016. Work in progress.
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overfitting with smoothing parameter. Cons: the joint likelihood is arguably
the wrong objective to optimize; often has poor accuracy, especially with
correlated features.

Perceptron and PA Pros: easy to implement; online learning means it is not neces-
sary to store all data in memory; error-driven learning means that accuracy
is typically high, especially after averaging. Cons: not probabilistic, which
can be bad in pipeline architectures, when the output of one system becomes
the input for another; non-averaged perceptron performs poorly if data is
not separable; hard to know when to stop learning.

Support vector machine Pros: optimizes an error-based metric, usually result-
ing in high accuracy; overfitting is controlled by a regularization parameter.
Cons: batch learning requires black-box optimization; not probabilistic.

Logistic regression Pros: error-driven and probabilistic; overfitting is controlled
by a regularization parameter. Cons: batch learning requires black-box opti-
mization; logistic loss sometimes gives lower accuracy than hinge loss, due
to overtraining on correctly-labeled examples.

Table 2.1 summarizes some properties of Naı̈ve Bayes, perceptron, PA, and
logistic regression. SVM is left out because it is identical to PA on most of these
dimensions, except for the estimation procedure, which typically employs a black-
box convex optimization package. In non-probabilistic settings, I usually reach
for averaged perceptron first if I am coding from scratch, and SVM if I am using
a library of learning algorithms such as sklearn. If probabilities are necessary, I
use logistic regression.

What about non-linear classification?

The feature spaces that we consider in NLP are usually huge, so non-linear clas-
sification can be quite difficult. When the feature dimension V is larger than the
number of instances N — often the case in NLP — you can always learn a linear
classifier that will perfectly classify your training instances.12 This makes select-
ing an appropriate non-linear classifier especially difficult. Nonetheless, there are
some approaches to non-linear learning in NLP:

12Assuming your feature matrix is full-rank.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• The most common approach is to define f(x, y) to contain conjunctions or
other nonlinear combinations of the base features in x. For example, a bi-
gram feature such as 〈coffee house〉 will not fire unless both base features
〈coffee〉 and 〈house〉 also fire. More generally, we can define non-linear trans-
formations such as the element-wise product x ◦ x and the cross-product
x⊗ x.

• Kernel-based learning is based on similarity between instances; it can be
seen as a generalization of k-nearest-neighbors, which classifies instances
by considering the label of the k most similar instances in the training set (Hastie
et al., 2009). The resulting decision boundary will be non-linear in general.
Kernel functions can be designed to compute the similarity between struc-
tured objects, such as strings, bags-of-words, sequences, trees, and general
graphs. Such methods will be discussed briefly in chapter 18.

• Boosting (Freund et al., 1999) and decision tree algorithms (Schmid, 1994)
learn non-linear conjunctions of features. These methods sometimes do well
on NLP tasks, but are used less frequently in contemporary research, espe-
cially as the field increasingly emphasizes big data and simple classifiers.

• More recent work has shown how deep learning can perform non-linear
classification, by passing the inputs through a series of non-linear transfor-
mations. These methods will be reviewed in chapter 21; surveys are offered
by Goldberg (2015) and Cho (2015).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Table 2.1: Comparison of classifiers. N = number of examples, V = number of
features, T = number of instances.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 3

Linguistic applications of
classification

Having learned some techniques for classification, let’s now see how they can be
applied to typical problems in natural language technology.

3.1 Sentiment and opinion analysis
A popular NLP technology is automatically determining the “sentiment” or “opin-
ion polarity” of documents such as product reviews and social media posts. For
example, marketers are interested to know how people respond to advertise-
ments, services, and products (Hu and Liu, 2004); social scientists are interested
in how emotions are affected by phenomena such as the weather (Hannak et al.,
2012), and how both opinions and emotions spread over social networks (Coviello
et al., 2014; Miller et al., 2011). In the field of digital humanities, literary schol-
ars track plot structures through the flow of sentiment across a novel (Jockers,
2015). A comprehensive analysis of this broad literature is beyond the scope of
this chapter, but see survey manuscripts by Pang and Lee (2008) and Liu (2015).

Sentiment analysis can be framed as a fairly direct application of document
classification, assuming reliable labels can be obtained. In the simplest case, sen-
timent analysis can be treated as a two or three-class problem, with sentiments
of POSITIVE, NEGATIVE, and possibly NEUTRAL. Such annotations could be anno-
tated by hand, or obtained automatically through a variety of means:

• Tweets containing happy emoticons can be marked as positive, sad emoti-
cons as negative (Read, 2005; Pak and Paroubek, 2010).

53
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• Reviews with four or more stars can be marked as positive, two or fewer
stars as negative (Pang et al., 2002).

• Statements from politicians who are voting for a given bill are marked as
positive (towards that bill); statements from politicians voting against the
bill are marked as negative (Thomas et al., 2006).

After obtaining the annotations, several design decisions may be taken in con-
struction of the feature vector f(x, y):

Preprocessing One question is whether the vocabulary should be case sensitive:
do we distinguish great, Great, and GREAT? What about coooooool? In social
media text, this sort of expressive lengthening can cause the vocabulary
size to explode (Brody and Diakopoulos, 2011); we might want to somehow
normalize the text (Sproat et al., 2001) to collapse the vocabulary again.

A related issue is that suffixes may be irrelevant to the sentiment orientation
of each word: for example, love, loved, and loving are all positive, so perhaps
we should eliminate the suffix and group them together. The removal of
these suffixes is called stemming when it is done at the character level (leav-
ing roots like lov-), and is called lemmatization when the goal is to identify
the underlying base word (in this case, love). Both of these methods will be
discussed in detail in chapter 6 and chapter 7.

Still another preprocessing decision involves tokenization: breaking the text
into tokens. This is more complicated than simply looking for whitespace,
since we may want to tokenize items such as well-bred into 〈well, bred〉, isn’t
into 〈is,n’t〉; at the same time, we would like to keep U.S. as a single token.
This too will be discussed in chapter 7.

Vocabulary In some cases, it is preferable not to include all words in the vocab-
ulary. Words such as the, to, and and seem intuitively to play little role in
expressing sentiment or opinion, yet they are very frequent; removing these
stopwords may therefore improve the classifier. This is typically done by
creating a list and simply matching all items on the list. More aggressively,
we might assume that sentiment is typically carried by adjectives and ad-
verbs (see Chapter 8), and therefore we could focus on these words (Hatzi-
vassiloglou and McKeown, 1997; Turney, 2002). However, Pang et al. (2002)
find that in their case, eliminating non-adjectives causes the performance of
the classifier to decrease.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Count or binary? Finally, we may consider whether we want our feature vector
to include the count of each word, or its mere presence. This gets at a subtle
limitation of linear classification: two failures may be worse than one, but
is it really twice as bad? A more flexible classifier could assign diminish-
ing weight to each additional instance, but this is hard to do in the linear
classification framework, and its hard to see how much the weight should
diminish. Pang et al. (2002) take a simpler approach, using binary pres-
ence/absence indicators in the feature vector: fi(x, y) ∈ {0, 1},∀i. They find
that classifiers trained on these binary feature vectors outperform classifiers
trained on count-based features.

A more challenging version of opinion analysis is to determine not just the
class of a review, but its rating on a numerical scale (Pang and Lee, 2005). If
the scale is continuous, we might take a regression approach, identifying a set
of weights θ so as to minimize the squared error of a predictor ŷ = θ>x+ b, where
b is an offset. We can remove the offset by adding a feature to x whose value is
always 1; the corresponding weight in θ is then equivalent to b. Least squares
regularization has a closed form solution,

θ =(X>X)−1X>y, (3.1)

where y is a column vector of size N , containing all ratings in the training data,
and X is an N ×D matrix containing all D features for all N instances. If we place
an L2 regularizer on θ, with penalty λ||θ||22, the resulting problem is called ridge
regression. It too has a closed form solution,

θ =(X>X + λI)−1X>y. (3.2)

If the rating scale is discrete, y ∈ {1, 2, . . . , K}, we can take a ranking ap-
proach (Crammer and Singer, 2001), in which scores θ>x are discretized into
ranks, by also learning a set of boundaries, b0 = −∞ ≤ b1 ≤ . . . ≤ bK . The
learning algorithm consists in making perceptron-like updates to both θ and b.
This approach is ideal for settings like predicting a 1-10 rating or a grade (A - F);
instead of learning one vector θ for every rank, we can learn a single θ, and then
just partition the output space.

[todo: Other topics to cover:]

• subjectivity

• sentence-level versus document-level sentiment

• negation and the role of syntax

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• targeted sentiment

• Stance classification

3.2 Word sense disambiguation
Consider the the following headlines:

(3.1) Iraqi head seeks arms

(3.2) Prostitutes appeal to Pope

(3.3) Drunk gets nine years in violin case1

They are ambiguous because they contain words that have multiple meanings,
or senses. Word Sense Disambiguation (WSD) is the problem of identifying the
intended sense of each word token in a document. WSD is part of a larger field of
research called lexical semantics, which is concerned with meanings of the words.

Problem definition

Part-of-speech ambiguity (e.g., noun versus verb, as in she is heading out of town)
is usually considered to be a different problem from WSD. Here we are focusing
on ambiguity between senses that are all the same part-of-speech, and in part-
of-speech tagging evaluations, it is often assumed that the correct part-of-speech
has already been identified. [todo: why?] From a linguistic perspective, senses
are not really properties of words, but of lemmas, which are groups of inflected
forms, e.g. (arm/N, arms/N), (arm/V, arms/V, armed/V, arming/V ), where arm/N
indicates the word arm tagged as a noun (V is for verb). So the WSD problem can
be defined as identifying the correct sense for each word token from an inventory
associated for the word’s lemma.

How many word senses?

Words (lemmas) may have many more than two senses. For example, the word
serve would seem to have at least the following senses:

• [FUNCTION]: The tree stump served as a table
1These examples, and many more, can be found at http://www.ling.upenn.edu/

˜beatrice/humor/headlines.html

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• [ENABLE]: His evasive replies only served to heighten suspicion

• [DISH]: We serve only the rawest fish here

• [ENLIST]: She served her country in the marines

• [JAIL]: He served six years in Alcatraz

• [TENNIS]: Nobody can return his double-reverse spin serve

• [LEGAL]: They were served with subpoenas2

How do we know that these senses are really different? Linguists often design
tests for this purpose, and one such test is to construct a zeugma, which combines
antagonistic senses in an uncomfortable way:

(3.4) Which flight serves breakfast?
(3.5) Which flights serve Tuscon?
(3.6) *Which flights serve breakfast and Tuscon?3

The asterisk is a linguistic notation for utterances which would not be judged to
be grammatical by fluent speakers of a language. To the extent that you think that
(3.6) is ungrammatical, you should agree that (3.4) and (3.5) refer to distinct senses
of the lemma serve.

The WSD task: Output What should the output of WSD be? What are the pos-
sible senses for each word? We could just look in the dictionary. But rather than
using a traditional dictionary, WSD research is dominated by a computational
resource called WORDNET (http://wordnet.princeton.edu). WordNet is
organized in terms of lemmas rather than words. An example of a wordnet entry
is shown in Figure 3.1

WordNet consists of roughly 100,000 synsets, groups of words or phrases with
an identical meaning. (e.g., {CHUMP1, FOOL2, SUCKER1,MARK9}). A lemma is pol-
ysemous if it participates in multiple synsets. Besides synonymy, WordNet also
describes many other lexical relationships, including:

antonymy x means the opposite of y, e.g. FRIEND-ENEMY;

hyponymy x is a special case of y, e.g. RED-COLOR; the inverse relationship is
hypernymy;

2Examples from Dan Klein’s lecture notes, http://www.cs.berkeley.edu/˜klein/
cs294-7/SP07%20cs294%20lecture%205%20--%20maximum%20entropy%20(6pp).pdf

3I believe this example is from Jurafsky and Martin (2009) [todo: but check].

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 3.1: Example wordnet entry, from http://wordnet.princeton.edu

meronymy x is a part of y, e.g., WHEEL-BICYCLE; the inverse relationship is holonymy.

WordNet has played a big role in helping WSD move from toy systems to
to large-scale quantitative evaluations. However, some have argued that Word-
Net’s sense granularity is too fine (Ide and Wilks, 2006); more fundamentally, the
premise that word senses can be differentiated in a task-neutral way has been
criticized as linguistically naı̈ve (Kilgarriff, 1997). One way of testing this ques-
tion is to ask whether people tend to agree on the appropriate sense for example
sentences: according to Mihalcea et al. (2004), humans agree on roughly 70% of
examples using WordNet senses; far better than chance, but perhaps less than we
might like.

A range of tasks have been proposed for WSD:

• Synthetic data: different words are conflated (banana-phone), the system
must identify the original word.

• Lexical sample: disambiguate a few target words (e.g., plant etc). This is
what was used in the first large-scale WSD evaluation, SENSEVAL-1 (1998).[todo:
citation]

• All-words WSD: a sense must be identified for every token.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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– A semantic concordance is a corpus in which each open-class word
(nouns, verbs, adjectives, and adverbs) is tagged with its word sense
from the target dictionary or thesaurus.

– SEMCOR is a semantic concordance built from 234K tokens of the Brown
corpus.
As of Sunday1

n night1
n there was4

v no word2
n . . .

WSD as Classification

So, how can we tell living plants from manufacturing plants? The key information
often lies in the context:

(3.7) Town officials are hoping to attract new manufacturing plants through weakened
environmental regulations.

(3.8) The endangered plant plays an important role in the local ecosystem.

Bag-of-words models are a very typical approach. For example,

f(y, bank, I went to the bank to deposit my paycheck) =

{〈went, y〉 : 1, 〈deposit, y〉 : 1, 〈paycheck, y〉 : 1}

Some examples:4

• bank[FINANCIAL]:

a an and are ATM Bonnie card charges check Clyde criminals deposit
famous for get I much My new overdraft really robbers the they think to
too two went were

• bank[RIVER]:

a an and big campus cant catfish East got grandfather great has his I in is
Minnesota Mississippi muddy My of on planted pole pretty right River
The the there University walk Wets

An extension of bag-of-words models is to encode the position of each context
word, e.g.,

f(y, bank, I went to the bank to deposit my paycheck) =

{〈i− 3,went, y〉 : 1, 〈i+ 2, deposit, y〉 : 1, 〈i+ 4, paycheck, y〉 : 1}
4todo: reconcile with examples above

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Jurafsky and Martin (2009) call these collocation features. Other approaches in-
clude more information about the sentence structure, such as the part-of-speech
tag for each word, and the words with which it is syntactically linked in the sen-
tence (see chapter 12).

After deciding on the features, we can train a classifier to predict the right sense
of each word — assuming enough labeled examples can be accumulated. This is
difficult, because each polysemous lemma requires its own training set: having
a good classifier for bank is of no help at all towards disambiguating plant. For
this reason, unsupervised and semisupervised methods are particularly popular
for WSD (Yarowsky, 1995). We will talk about related methods in chapter 4 and
chapter 20. Unsupervised methods typically lean heavily on the heuristic “one
sense per discourse”, meaning roughly that a lemma will have a consistent sense
throughout any given document. Based on this heuristic, we can propagate infor-
mation from high-confidence instances to lower-confidence instances in the same
document. For a survey on word sense disambiguation, see Navigli (2009).

3.3 Other applications

• Author identification

• Author demographics, maybe

• Language classification

3.4 Evaluating text classification

In any text classification setting, it is critical to reserve a held-out test set, and
use this data for only one purpose: to evaluate the overall accuracy of a single
classifier. Using this data more than once would cause your estimated accuracy
to be overly optimistic. Since it is typically necessary to set hyperparameters or
perform feature selection, you may need to construct various “tuning” or “devel-
opment” sets, but these should not intersect with the test data. For more details,
see section 1.2.

There are a number of ways to evaluate classifier performance. The simplest
is accuracy: the number of correct predictions, divided by the total number of
instances.

Why isn’t this always the right choice? Suppose we were building a classi-
fier to detect whether an essay receives a passing grade. Due perhaps to grade

(c) Jacob Eisenstein 2014-2016. Work in progress.
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inflation, 95% of all essays receive a passing grade. This means that a classifier
that always says “pass” will get 95% accuracy. But this classifier isn’t telling us
anything useful at all.

Another way to evaluate this classifier is in terms of its precision and recall.
For each label y ∈ Y , we define a positive instance as one that the classifier labels
as Yi = y, and a negative instance as one that the classifier labels as Yi 6= y. We
can then define four quantities:

True positive positive and correct, TP

False positive positive but incorrect, FP

True negative negative and correct, TN

False negative negative and incorrect, FN .

From these quantities, we can then define the recall and precision:

r =
TP

TP + FN
(3.3)

p =
TP

TP + FP
(3.4)

The recall is the proportion of positive labels among those that should have been
labeled as positive (for some label y). The precision is the proportion of positive
labels among those that were labeled as positive. Our “always pass” classifier
above would have 100% recall for the positive label, but 95% precision. It would
have 0% recall for the negative label, and undefined precision.

The f-measure is the harmonic mean of recall and precision,

F =
2× r × p
r + p

. (3.5)

F-measure is a classic measure of classifier performance for binary classification
problems with unbalanced class distribution. Sometimes it is called F1, as there
are generalizations of f-measure in which the precision is multiplied by some con-
stant β2.

Macro-F1 is the average f-measure across several classes. In a multi-class prob-
lem with unbalanced class distributions, the macro-F1 is a balanced measure of
how well the classifier recognizes each class. In micro-F1, we compute true pos-
itives, false positives, and false negatives for each class, and then add them up

(c) Jacob Eisenstein 2014-2016. Work in progress.
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before computing a single f-measure. This metric is balanced across instances
rather than classes, so will weight each class in proportion to how frequently it
appears.

[todo: ROC curves and AUC]

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 4

Learning without supervision

So far we’ve assumed the following setup:

• A training set where you get observations xi and labels yi
• A test set where you only get observations xi

What if you never get labels yi? For example, suppose you are trying to do word
sense disambiguation. You get a bunch of text, and you suspect that there are at
least two different meanings for the word concern. But you don’t have any labels
for specific instances in which this word is used. What can you?

As described in chapter 3, in supervised word sense disambiguation, we often
build feature vectors from the words that appear in the context of the word that
we are trying to disambiguate. For example, for the word concern, the immediate
context might typically include words from one of the following two groups:

1. services, produces, banking, pharmaceutical, energy, electronics

2. about, said, that, over, in, with, had

Now suppose we were to scatterplot each instance of concern on a graph, so
that the x-axis is the density of words in group 1, and the y-axis is the density of
words in group 2. In such a graph, shown in Figure 4.1, two or more blobs might
emerge. These blobs would correspond to the different sense of concern.

But in reality, we don’t know the word groupings in advance.1 We have to try
to apply the same idea in a very high dimensional space, where every word gets
its own dimension — and most dimensions are irrelevant!

1One approach, which we do not consider here, would be to get them from some existing
resource, such as the dictionary definition (Lesk, 1986).
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Figure 4.1: Counts of words from two different context groups

Now here’s a related scenario, from a different problem. Suppose you down-
load thousands of news articles, and make a scatterplot, where each point corre-
sponds to a document: the x-axis is the frequency of the word hurricane, and the
y-axis is the frequency of the word election. Again, three clumps might emerge:
one for documents that are largely about the hurricane, another for documents
largely about the election, and a third clump for documents about neither topic.

These examples are intended to show that we can find structure in data, even
without labels — just look for clumps in the scatterplot of features. But again,
in reality we cannot make scatterplots of just two words; we may have to con-
sider hundreds or thousands of words. It would be impossible to visualize such
a high-dimensional scatterplot, so we will need to design algorithmic approaches
to finding these groups.

4.1 K-means clustering

You might know about classic clustering algorithms like K-means. These algo-
rithms maintain a cluster assignment for each instance, and a central location for
each cluster. They them repeatedly update the cluster assignments and the loca-
tions, until convergence. Pseudocode for K-means is shown in Algorithm 4.

K-means can used to find coherent clusters of documents in high-dimensional
data. When we assign each point to its nearest center, we are choosing which
cluster it is in; when we re-estimate the location of the centers, we are determining
the defining characteristic of each cluster. K-means is a classic algorithmic that has

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Algorithm 4 K-means clustering algorithm

1: procedure K-MEANS(x1:N )
2: Initialize cluster centers µk ← Random()
3: repeat
4: for all i do
5: Assign each point to the nearest cluster: zi ← mink Distance(xi, µk)

6: for all k do
7: Recompute each cluster center from the points in the cluster: µk ←

1∑
i δ(zi=k)

∑
i δ(zi = k)xi

8: until converged

been used and modified in thousands of papers (Jain, 2010); for an application of
K-means to word sense induction, see Pantel and Lin (2002).

Of the many variants of K-means, one that is particularly relevant for our pur-
poses is called soft K-means. The key difference is that instead of directly as-
signing each point xi to a specific cluster zi, soft K-means assigns each point a
distribution over clusters qi(zi), so that

∑
k qi(k) = 1, and ∀k0 ≤ qi(k) ≤ 1. The

centroid of each cluster is then computed from a weighted average of the points
in the cluster, where the weights are taken from the q distribution.

We will now explore a more principled, statistical version of soft K-means,
called expectation-maximization (EM) clustering. By understanding the statisti-
cal principles underlying the algorithm, we can extend it in a number of ways.

4.2 The Expectation-Maximization (EM) Algorithm

Let’s go back to the Naı̈ve Bayes model:

log p(x,y;φ, µ) =
∑
i

log p(xi | yi;φ)p(yi;µ) (4.1)

For example, x can describe the documents that we see today, and y can corre-
spond to their labels. But suppose we never observe yi? Can we still do anything
with this model?

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Since we don’t know y, let’s marginalize it:

log p(x) =
N∑
i

log p(xi) (4.2)

=
∑
i

log
∑
yi

p(xi | yi;φ)p(yi;µ) (4.3)

(4.4)

We will estimate the parameters φ and µ by maximizing the log-likelihood of
x1:N , which is our (unlabeled) observed data. Why is this a good thing to maxi-
mize? If we don’t have labels, discriminative learning is impossible (there’s noth-
ing to discriminate), so maximum likelihood is all we have.

Unfortunately, maximizing logP (x) directly is intractable. So to estimate this
model, we must employ approximation. We do this by introducing an auxiliary
variable qi, for each yi. We want qi to be a distribution, so we have the usual
constraints:

∑
y qi(y) = 1 and ∀y, qi(y) ≥ 0. In other words, qi defines a probability

distribution over Y , for each instance i.
Now since qi(y)

qi(y)
= 1, we can multiply the right side by this ratio and preserve

the equality,

log p(x) =
∑
i

log
∑
yi

p(xi | yi;φ)p(yi;µ)
qi(y)

qi(y)
(4.5)

=
∑
i

logEq

[
p(xi | y;φ)p(y;µ)

qi(y)

]
, (4.6)

by the definition of expectation, Eq [f(x)] =
∑

x q(x)f(x). Note that Eq [·] just
means the expectation under the distribution q.

Now we apply Jensen’s inequality, which says that because log is a concave
function, we can push it inside the expectation, and obtain a lower bound.

log p(x) ≥
∑
i

Eq

[
log

p(xi | y;φ)p(yi;µ)

qi(y)

]
(4.7)

J =
∑
i

Eq [log p(xi | y;φ)] + Eq [log p(y;µ)]− Eq [log qi(y)] (4.8)

By maximizing J , we are maximizing a lower bound on the joint log-likelihood
log p(x). Now, J is a function of two sets of arguments:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• the distributions qi for each i

• the parameters µ and φ

We’ll optimize with respect to each of these in turn, holding the other one fixed.

Step 1: the E-step

First, we expand the expectation in the lower bound as:

J =
∑
i

Eq [log p(xi | y;φ)] + Eq [log p(y;µ)]− Eq [log qi(y)] (4.9)

=
∑
i

∑
y

qi(y) (log p(xi | y;φ) + log p(y;µ)− log qi(y)) (4.10)

As in Naı̈ve Bayes, we have a “sum-to-one” constraint: in this case,
∑

y qi(y) =
1. Once again, we incorporate this constraint into a Lagrangian:

Jq =
N∑
i

∑
y∈Y

qi(y) (log p(xi | y;φ) + log p(y;µ)− log qi(y)) + λi(1−
∑
y

qi(y))

(4.11)

We then optimize by taking the derivative and setting it equal to zero:

∂Jq
∂qi(y)

= log p(xi | y;φ) + log p(y;θ)− log qi(y)− 1− λi (4.12)

log qi(y) = log p(xi | y;φ) + log p(y;µ)− 1− λi (4.13)
qi(y) ∝p(xi | y;φ)p(y;µ) = p(xi, y;φ, µ) (4.14)

Since qi is defined over the labels Y , we normalize it as,

qi(y) =
p(xi, y;φ, µ)∑

y′∈Y p(xi, y′;φ, µ)
= p(y | xi;φ, µ) (4.15)

After normalizing, each qi(y) — which is the soft distribution over clusters for
data xi — is set to the posterior probability p(y | xi) under the current parameters
µ,φ. This is called the E-step, or “expectation step,” because it is derived from
updating the bound on the expected likelihood under q(y). Note that although we
introduced the Lagrange multipliers λi as additional parameters, we were able to
drop these parameters because we solved for qi(y) to a constant of proportionality.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Step 2: the M-step

Next, we hold q(y) fixed and maximize the bound with respect to the parameters,
φ and µ. Lets focus on φ, which parametrizes the likelihood, p(x | y;φ). Again,
we have a constraint that

∑V
j φy,j = 1, so we start by forming a Lagrangian,

Jφ =
N∑
i

∑
y∈Y

qi(y) (log p(xi | y;φ) + log p(y;µ)− log qi(y)) +
∑
y∈Y

λy(1−
V∑
j

φy,j).

(4.16)

Again, we solve by setting the derivative equal to zero:

∂Jφ
∂φy,j

=
N∑
i

qi(y)
xi,j
φy,j
− λy (4.17)

λhφy,j =
N∑
i

qi(y)xi,j (4.18)

φy,j ∝
N∑
i

qi(y)xi,j. (4.19)

Now because
∑V

j φy,j = 1, we can normalize as follows,

φy,j =

∑N
i qi(y)xi,j∑

j′<V

∑N
i qi(y)xi,j′

(4.20)

=
Eq [count(y, j)]
Eq [count(y)]

, (4.21)

where j ∈ {1, 2, . . . , V } indexes base features, such as words.
So φy is now equal to the relative frequency estimate of the expected counts

under the distribution q(y).

• As in supervised Naı̈ve Bayes, we can apply smoothing to add α to all these
counts.

• The update for µ is identical: µy ∝
∑

i qi(y), the expected proportion of clus-
ter Y = y. If needed, we can add smoothing here too.

• So, everything in the M-step is just like Naı̈ve Bayes, except that we use
expected counts rather than observed counts.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 4.2: Sensitivity of expectation maximization to initialization

This is the M -step for a model in which the likelihood P (x | y) is multinomial.
For other likelihoods, there my be no closed-form solution for the parameters in
the M -step. We may therefore run gradient-based optimization at each M-step, or
we may simply take a single step along the gradient step and then return to the
E-step (Berg-Kirkpatrick et al., 2010).

Coordinate ascent

Algorithms that alternate between updating various subsets of the parameters are
called “coordinate ascent” algorithms.

The objective function J is biconvex, meaning that it is separately convex in
q(y) and 〈µ,φ〉, but it is not jointly convex in all terms. In the coordinate ascent
algorithm that we have defined, each step is guaranteed not to decrease J . This
is sometimes called “hill climbing”, because you never go down. Specifically, EM
is guaranteed to converge to a local optima — a point which is as good or better
than any of its immediate neighbors. But there may be many such points, and the
overall procedure is not guaranteed to find a global maximum. Figure 4.2 shows
the objective function for EM with ten different random initializations: while the
objective function increases monotonically in each run, it converges to several dif-
ferent values.

The fact that there is no guarantee of global optimality means that initializa-
tion is important: where you start can determine where you finish. This is not

(c) Jacob Eisenstein 2014-2016. Work in progress.
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true in the supervised learning algorithms that we have considered, such as logis-
tic regression — although deep learning algorithms do suffer from this problem.
But for logistic regression, and for many other supervised learning algorithms,
we don’t need to worry about initialization, because it won’t affect our ultimate
solution: we are guaranteed to reach the global minimum. Recent work on spec-
tral learning has sought to obtain similar guarantees for “latent variable” models,
such as the case we are considering now, where x is observed and y is latent. This
work is briefly touched on in section 4.4.

Variants In hard EM, each qi distribution assigns probability of 1 to a single ŷi,
and probability of 0 to all others (Neal and Hinton, 1998). This is similar in spirit
to K-means clustering. In problems where the space Y is large, it may be easier to
find the maximum likelihood value ŷ than it is to compute the entire distribution
qi(y). Spitkovsky et al. (2010) show that hard EM can outperform standard EM in
some cases.

Another variant of the coordinate ascent procedure combines EM with stochas-
tic gradient descent (SGD). In this case, we can do a local E-step at each instance
i, and then immediately make an gradient update to the parameters 〈µ,φ〉. This
is particularly relevant in cases where there is no closed form solution for the pa-
rameters, so that gradient ascent will be necessary in any case. This algorithm
is called “incremental EM” by Neal and Hinton (1998), and online EM by Sato
and Ishii (2000) and Cappé and Moulines (2009). Liang and Klein (2009) apply a
range of different online EM variants to NLP problems, obtaining better results
than standard EM in many cases.

How many clusters?

All along, we have assumed that the number of clusters K = #|Y| is given. In
some cases, this assumption is valid. For example, the dictionary or WordNet
might tell us the number of senses for a word. In other cases, the number of
clusters should be a tunable parameter: some readers may want a coarse-grained
clustering of news stories into three or four clusters, while others may want a fine-
grained clusterings into twenty or more. But in many cases, we will have choose
K ourselves, with little outside guidance.

One solution is to choose the number of clusters to maximize some computable
quantity of the clustering. First, note that the likelihood of the training data will
always increase with K. For example, if a good solution is available for K = 2,
then we can always obtain that same solution at K > 2; usually we can find

(c) Jacob Eisenstein 2014-2016. Work in progress.
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an even better solution by fitting the data more closely. The Akaike Information
Crition (AIC; Akaike, 1974) solves this problem by minimizing a linear combina-
tion of the log-likelihood and the number of model parameters, AIC = 2m − 2L,
where m is the number of parameters and L is the log-likelihood. Since the num-
ber of parameters increases with the number of clusters K, the AIC may prefer
more parsimonious models, even if they do not fit the data quite as well.

Another choice is to maximize the predictive likelihood on heldout data x(h)
1:Nh

.
This data is not used to estimate the model parameters φ and µ; we can compute
the predictive likelihood on this data by keeping the parameters φ and µ fixed,
and running a single iteration of the E-step. In document clustering or topic mod-
eling (Blei, 2012), a typical approach is to split each instance (document) in half.
We use the first half to estimate qi(zi), and then on the second half we compute
the expected log-likelihood,

`i =
∑
z

qi(z) (log p(xi | z;φ) + log p(z;µ)) . (4.22)

On heldout data, this quantity will not necessarily increase with the number of
clusters K, because for high enough K, we are likely to overfit the training data.
Thus, choosingK to maximize the predictive likelihood on heldout data will limit
the extent of overfitting. Note that in general we cannot analytically find the K
that maximizes either AIC or the predictive likelihood, so we must resort to grid
search: trying a range of possible values of K, and choosing the best one.

Finally, it is worth mentioning an alternative approach, called Bayesian non-
parametrics, in which the number of clusters K is treated as another latent vari-
able. This enables statistical inference over a set of models with a variable number
of clusters; this is not possible with EM, but there are several alternative infer-
ence procedures that are suitable for this case (Murphy, 2012), including MCMC
(section 4.4). Reisinger and Mooney (2010) provide a nice example of Bayesian
nonparametrics in NLP, applying it to unsupervised word sense induction.

4.3 Applications of EM
EM is not really an “algorithm” like, say, quicksort. Rather, it is a framework for
learning with missing data. The recipe for using EM on a problem of interest is:

• Introduce latent variables z, such that it is easy to write the probability
P (D, z), where D is your observed data; it should also be easy to estimate
the associated parameters, given knowledge of z.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Derive the E-step updates for q(z), which is typically factored as q(z) =∏
i qzi(zi), where i is an index over instances.

• The M-step updates typically correspond to the soft version of some super-
vised learning algorithm, like Naı̈ve Bayes.

Some more applications of this basic setup are presented here.

Word sense clustering

In the “demos” folder, you can find a demonstration of expectation-maximization
for word sense clustering. I assume we know that there are two senses, and
that the senses can be distinguished by the contextual information in the docu-
ment. The basic framework is identical to the clustering model of EM as presented
above.

Semi-supervised learning

Nigam et al. (2000) offer another application of EM: semi-supervised learning.
They apply this idea to document classification in the classic “20 Newsgroup”
dataset, in which each document is a post from one of twenty newsgroups from
the early days of the internet.

In the setting considered by Nigam et al. (2000), we have labels for some of
the instances, 〈x(`),y(`)〉, but not for others, 〈x(u)〉. The question they pose is: can
unlabeled data improve learning? If so, then we might be able to get good per-
formance from a smaller number of labeled instances, simply by incorporating a
large number of unlabeled instances. This idea is called semi-supervised learn-
ing, because we are learning from a combination of labeled and unlabeled data;
the setting is described in much more detail in chapter 20.

As in Naı̈ve Bayes, the learning objective is to maximize the joint likelihood,

log p(x(`),x(u),y(`)) = log p(x(`),y(`)) + log p(x(u)) (4.23)

We treat the labels of the unlabeled documents as missing data — in other
words, as a latent variable. In the E-step we impute q(y) for the unlabeled doc-
uments only. The M-step computes estimates of µ and φ from the sum of the
observed counts from 〈x(`),y(`)〉 and the expected counts from 〈x(u)〉 and q(y).

Nigam et al. (2000) further parametrize this approach by weighting the unla-
beled documents by a scalar λ, which is a tuning parameter. The resulting crite-

(c) Jacob Eisenstein 2014-2016. Work in progress.
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rion is:

L = log p(x(`),y(`)) + λ log p(x(u)) (4.24)

≥ log p(x(`),y(`)) + λEq[log p(x(u), y)] (4.25)

The scaling factor does not really have a probabilistic justification, but it can be
important to getting good performance, especially when the amount of labeled
data is small in comparison to the amount of unlabeled data. In that scenario,
the risk is that the unlabeled data will dominate, causing the parameters to drift
towards a “natural clustering” that may be a bad fit for the labeled data. Nigam
et al. (2000) show that this approach can give substantial improvements in classi-
fication performance when the amount of labeled data is small.

Multi-component modeling

Now let us consider an alternative application of EM to supervised classification.
One of the classes in 20 newsgroups is comp.sys.mac.hardware; suppose that
within this newsgroup there are two kinds of posts: reviews of new hardware, and
question-answer posts about hardware problems. The language in these compo-
nents of the mac.hardware class might have little in common. So we might do
better if we model these components separately. Nigam et al. (2000) show that
EM can be applied to this setting as well.

Recall that Naı̈ve Bayes is based on a generative process, which provides a
stochastic explanation for the observed data. For multi-component modeling, we
envision a slightly different generative process, incorporating both the observed
label yi and the latent component zi:

• For each document i,

– draw the label yi ∼ Categorical(µ)

– draw the component zi | yi ∼ Categorical(βyi), where zi ∈ 1, 2, . . . , Kz.
– draw the vector of counts xi | zi ∼Multinomial(φzi)

Our labeled data includes 〈xi, yi〉, but not zi, so this is another case of missing
data. Again, we sum over the missing data, applying Jensen’s inequality to as to
obtain a lower bound on the log-likelihood,

log p(xi, yi) = log
Kz∑
z

p(xi, yi, z) (4.26)

≥ log p(yi;µ) + Eq [log p(xi | z;φ) + log p(z | yi;ψ)− log qi(z)] . (4.27)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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We are now ready to apply expectation-maximization. As usual, the distribu-
tion over the missing data — the component zi — qi(z) is updated in the E-step.
Then during the m-step, we compute:

βy,z =
Eq [count(y, z)]∑Kz
z′ Eq [count(y, z′)]

(4.28)

φz,j =
Eq [count(z, j)]∑V
j′ Eq [count(z, j′)]

. (4.29)

Suppose we assume each class y is associated with K components, Zy. We can
then add a constraint to the E-step so that qi(z) = 0 if z /∈ Zy ∧ Yi = y.

4.4 Other approaches to learning with latent
variables*

Expectation maximization is a very general way to think about learning with la-
tent variables, but it has some limitations. One is the sensitivity to initialization,
which means that we cannot simply run EM once and expect to get a good so-
lution. Indeed, in practical applications of EM, quite a lot of attention may be
devoted to finding a good initialization. A second issue is that EM tends to be
easiest to apply in cases where the latent variables have a clear decomposition (in
the cases we have considered, they decompose across the instances). For these
reasons, it is worth briefly considering some alternatives to EM.

Sampling

Recall that in EM, we set q(z) =
∏

i qi(zi), factoring the q distribution into condi-
tionally independent qi distributions. In sampling-based algorithms, rather than
maintaining a distribution over each latent variable, we draw random samples
of the latent variables. If the sampling algorithm is designed correctly, this proce-
dure will eventually converge to drawing samples from the true posterior, p(z1:N |
x1:N). For example, in the case of clustering, we will draw samples from the distri-
bution over clusterings of the data. If a single clustering is required, we can select
the one with the highest joint likelihood, p(z1:N ,x1:N).

This general family of algorithms is called Markov Chain Monte Carlo (MCMC):
“Monte Carlo” because it is based on a series of random draws; “Markov Chain”
because the sampling procedure must be designed such that each sample depends

(c) Jacob Eisenstein 2014-2016. Work in progress.
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only on the previous sample, and not on the entire sampling history. Gibbs Sam-
pling is a particularly simple and effective MCMC algorithm, in which we sample
each latent variable from its posterior distribution,

zi | x, z−i ∼ p(zi | x, z−i), (4.30)

where z−i indicates {z\zi}, the set of all latent variables except for zi.
What about the parameters,φ and µ? One possibility is to turn them into latent

variables too, by adding them to the generative story. This requires specifying a
prior distribution; the Dirichlet is a typical choice of prior for the parameters of a
multinomial, since it has support over vectors of non-negative numbers that sum
to one, which is exactly the set of permissible parameters for a multinomial. For
example,

φy ∼ Dirichlet(α),∀y (4.31)

We can then sample φy | x, z ∼ p(φy | x, z, α); this posterior distribution will also
be Dirichlet, with parameters α +

∑
i:yi=y

xi. Alternatively, we can analytically
marginalize these parameters, as in Collapsed Gibbs Sampling; this is usually
preferable if possible. Finally, we might maintain φ and µ as parameters rather
than latent variables. We can employ sampling in the E-step of the EM algo-
rithm, obtaining a hybrid algorithm called Monte Carlo Expectation Maximiza-
tion (MCEM; Wei and Tanner, 1990).

In principle, these algorithms will eventually converge to the true posterior
distribution. However, there is no way to know how long this will take; there is
not even any way to check on whether the algorithm has converged. In practice,
convergence again depends on initialization, since it might take ages to recover
from a poor initialization. Thus, while Gibbs Sampling and other MCMC algo-
rithms provide a powerful and flexible array of techniques for statistical inference
in latent variable models, they are not a panacea for the problems experienced by
EM.

Murphy (2012) includes an excellent chapter on MCMC; for a more compre-
hensive treatment, see Robert and Casella (2013).

Spectral learning

A more recent approach to learning with latent variables is based on the method
of moments. In these approaches, we avoid the problem of non-convex log-
likelihood by using a different estimation criterion. Let us write xi for the nor-
malized vector of word counts in document i, so that xi = xi/

∑
j xij . Then we

(c) Jacob Eisenstein 2014-2016. Work in progress.
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can form a matrix of word-word co-occurrence counts,

C =
∑
i

xix
>
i . (4.32)

We can also compute the expected value of this matrix under p(x | φ, µ), as

E[C] =
∑
i

∑
k

P (Zi = k | µ)φkφ
>
k (4.33)

=
∑
k

Nµkφkφ
>
k (4.34)

=ΦDiag(Nµ)Φ>, (4.35)

where Φ is formed by horizontally concatenating φ1 . . .φK , and Diag(Nµ) indi-
cates a diagonal matrix with values Nµk at position (k, k). Now, by setting C
equal to its expectation, we obtain,

C =ΦDiag(Nµ)Φ>, (4.36)

which is very similar to the eigendecomposition C = QΛQ>. This suggests that
simply by finding the eigenvectors and eigenvalues of C, we could obtain the
parameters φ and µ, and this is what motivates the name spectral learning.

However, there is a key difference in the constraints on the solutions to the two
problems. In eigendecomposition, we require orthonormality, so that QQ> = I.
But in estimating the parameters of a mixture model, we require the columns of
Φ represents probability vectors, ∀k, j, φk,j ≥ 0,

∑
j φk,j = 1, and that the entries of

µ correspond to the probabilities over components. Thus, spectral learning algo-
rithms must include a procedure for converting the solution into vectors of prob-
abilities. One approach is to replace eigendecomposition (or the related singu-
lar value decomposition) with non-negative matrix factorization (Xu et al., 2003),
which guarantees that the solutions are non-negative (Arora et al., 2013).

After obtaining the parameters φ and µ, we can obtain the distribution over
clusters for each document by simply computing p(zi | xi;φ, µ) ∝ p(xi | zi;φ)p(zi;µ).
The advantages of spectral learning are that it obtains (provably) good solutions
without regard to initialization, and that it can be quite fast in practice. Anand-
kumar et al. (2014) describe how similar matrix and tensor factorizations can be
applied to statistical estimation in many other forms of latent variable models.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 5

Language models

A language model is used to compute the probability of a sequence of text. Why
would we want to do this? Thus far, we have considered problems where text is
the input, and we want to select an output, such as a document class or a word
sense. But in many of the most prominent problems in language technology, text
itself is the output:

• In machine translation, we convert from text in a source language to text in
a target language.

• In speech recognition, we convert audio signal to text.

• In summarization, we produce short texts that capture the key points of
some longer text.

The goal of language models is to produce more fluent text output by comput-
ing the probability of the text.

Specifically, suppose we have a vocabulary of word types

V = {aardvark, abacus, . . . , zither} (5.1)

Given a sequence of word tokens1 w1, w2, . . . , wM , with every token belong-
ing to some finite vocabulary V , we would like to compute the probability of the

1The linguistic term “word” does not cover everything we might want to model, such as
names, numbers, and emoticons. Instead, we prefer the term token, which refers to anything
that can appear in a sequence of linguistic data. Tokenizers are programs for segmenting strings
of characters or bytes into tokens. In English, tokenization is relatively straightforward, and can be
performed using a regular expression. But in languages like Chinese, tokens are not usually sepa-
rated by spaces, so tokenization can be considerably more challenging. For more on tokenization
algorithms, see Manning et al. (2008), chapter 2.
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78 CHAPTER 5. LANGUAGE MODELS

sequence p(w1, w2, . . . , wM).2 We will do this in a data-driven way, assuming we
have a corpus of text.

So how can we estimate the probability of a sequence of word tokens? The
simplest idea would be to apply a relative frequency estimator. For example,
consider the quote (attributed to Picasso), Computers are useless, they can only give
you answers. We can estimate the probability of this sentence as follows:

p(Computers are useless, they can only give you answers) (5.2)

=
count(Computers are useless, they can only give you answers)

count(all sentences ever spoken)
(5.3)

It is useful to think about this estimator in terms of bias and variance.

• In the theoretical limit of infinite data, this approach might work. But in
practice, we are asking for accurate counts over an infinite number of events,
since sequences of words can be arbitrarily long.

• Even if we set an aggressive upper bound of, say, n = 20 tokens in the se-
quence, the number of possible sequences is #|V|20. A small vocabularly for
English would have #|V| = 104, so we would have 1080 possible sequences.

Clearly, this estimator is very data-hungry. We need to introduce bias to have a
chance of making reliable estimates from finite training data. The language mod-
els that follow in this chapter introduce bias in various ways. But before going
into detail, let’s discuss a little more about the motivation of probabilistic lan-
guage models.

Are probabilistic language models meaningful? What are the probabilities of
the following two sentences?

(5.1) Colorless green ideas sleep furiously.
(5.2) Furiously sleep ideas green colorless.

Noam Chomsky used this pair of examples to argue that the probability of a
sentence is a meaningless concept, from a linguistic standpoint. The reasoning
is that any English speaker can tell that the first sentence is grammatical but the
second sentence is not. Yet neither sentence, nor their substrings, had ever ap-
peared at the time that Chomsky wrote this article (they have appeared in lots

2For now, we’ll assume that the vocabulary V covers all the word tokens that we will ever see.
Of course, we can enforce this by allocating a special token 〈UNK〉 for unknown words. However,
this might not be a great solution, as we will see later.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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of linguistics articles since then). Thus, Chomsky argued, empirical probabilities
can’t distinguish grammatical from ungrammatical sentences.

Pereira (2000) showed that by identifying classes of words (e.g., noun, verb,
adjective, adverb — but not necessarily these grammatical categories), it is easy to
show that the first sentence is more probable than the second. (Class-based lan-
guage models are discussed in section 5.4.) Do you think this answers Chomsky’s
argument?

Are probabilistic language models useful? A separate question is whether prob-
abilistic language models are useful for natural language processing. To see how
they can help, suppose we want to translate a sentence from Spanish:

(5.3) El cafe negro me gusta mucho.

The literal word-for-word translation (sometimes called a gloss) is,

(5.4) The coffee black me pleases much.

A good language model of English will tell us that the probability of this trans-
lation is low. Furthermore,

p(The coffee black me pleases much) < p(I love dark coffee). (5.4)

How can we use this fact? Warren Weaver, one of the early leaders in machine
translation, viewed it as a problem of breaking a secret code (Weaver, 1955):

When I look at an article in Russian, I say: ’This is really written in
English, but it has been coded in some strange symbols. I will now
proceed to decode.’

This observation motivates a generative model (like Naı̈ve Bayes!):

• The English sentence w(e) is generated from a language model pW e(w(e))

• The Spanish sentencew(s) is then generated from a noisy channel pW s|W e(w(s) |
w(e))

Our goal is to determine which English sentence might have a generated a
given Spanish sentence. This is the decoding problem, and is written mathemati-
cally as:

max
w(e)

pW (e)|W s(w
(e) | w(s)) ∝ pW s,W e(w

(s),w(e)) = pW e(w
(e))pW s|W e(w

(s) | w(e))

(5.5)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Probablistic translation in the noisy channel framework incorporates two mod-
ular subcomponents:

• The translation model is pW s|W e(w(s) | w(e)). This ensures the adequacy of
the translation.

• The language model is pW e(w(e)). This ensures the fluency of the transla-
tion.

It turns out that many phenomena in natural language processing can be viewed
in the noisy channel framework. Here are some examples:

• Speech recognition (original = words; encoded = sound)

• Spelling correction (original = well-spelled text; encoded = text with spelling
mistakes)

• Summarization (original = summary; encoded = full document)

• Part of speech tagging (original = tags; encoded = words)

• Parsing (original = parse tree; encoded = words)

• Image caption generation (original = caption; encoded = image)

In each case, we solve a decoding problem by converting from the encoded form
back to the original that obtains maximum likelihood under the probabilistic model.

A key insight of the noisy channel model is that it allows us to decompose
NLP systems into a translation model and a language model, as shown above.
Since the language model be estimated from unlabeled data, this means we can
improve our system without the expense of obtaining more labeled data — we
simply focus on improving pW e(w). It also means that language models are in
principle reusable across many language technology systems. For this reason, I
will focus on language models in this chapter, and return to machine translation
later in the course.

5.1 N-gram language models
Let us return to the relative frequency estimator,

p(Computers are useless, they can only give you answers) (5.6)

=
count(Computers are useless, they can only give you answers)

count(all sentences ever spoken)
. (5.7)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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We will define the probability of a sequence of words as the probability of the
words (in order): p(w) = p(w1, w2, . . . , wM). We can apply the chain rule:

p(w) =p(w1, w2, . . . , wM)

=p(w1)p(w2 | w1)p(w3 | w2, w1) . . .p(wM | wM−1, . . . , w1)

Each element in the product is the probability of a word given all its predeces-
sors. We can think of this as a word prediction task: Computers are [BLANK]. The
relative frequency estimate of the probability of the word useless in this context is,

p(useless | computers are) =
count(computers are useless)∑

x count(computers are x)
=

count(computers are useless)
count(computers are)

.

Note that we haven’t made any approximations yet, and we could have just as
well applied the chain rule in reverse order, p(w) = p(wM)p(wM−1 | wM) . . ., or in
any other order. But this means that we also haven’t really improved anything ei-
ther: to compute the conditional probability P (wM | wM−1, wM−2, . . .), we need to
model V M−1 contexts, with V possible events. We can’t even store this probability
distribution, let alone reliably estimate it.

N-gram models make a simple approximation: condition on only the past n−1
words.

p(wm | wm−1 . . . w1) ≈P (wm | wm−1, . . . , wm−n+1) (5.8)

This means that the probability of a sentence w can be computed as

p(w1, . . . , wM) ≈
∏
m

p(wm | wm−1, . . . , wm−n+1) (5.9)

To compute the probability of an entire sentence, it is convenient to pad the
beginning and end with special symbols 〈START〉 and 〈STOP〉. Then the bigram
(n = 2) approximation to the probability of I like black coffee is:

p(I | 〈START〉)p(like | I)p(black | like)p(coffee | black)p(〈STOP〉 | coffee) (5.10)

In this model, we have to estimate and store the probability of only V n events,
which is exponential in the order of the n-gram, and not V M , which is exponential
in the length of the sentence.

The n-gram probabilities can be computed by relative frequency estimation,

P (Wi = c | Wi−1 = b,Wi−2 = a) =
count(a, b, c)∑
c′ count(a, b, c′)

=
count(a, b, c)
count(a, b)

(5.11)

In estimation, there could be at least two problems with an n-gram language
model:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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When n is too small. In this case, we are missing important linguistic context.
Consider the following sentences:

(5.5) Gorillas always like to groom THEIR friends.

(5.6) The computer that’s on the 3rd floor of our office building CRASHED.

The uppercase bolded words depend crucially on their predecessors in low-
ercase bold: the likelihood of their depends on knowing that gorillas is plu-
ral, and the likelihood of crashed depends on knowing that the subject is a
computer. If the n-grams are not big enough to capture this context, then
the resulting language model would offer probabilities that are too low for
these sentences, and too high for sentences that fail basic linguistic tests like
number agreement.

When n is too big. In this case, we cannot make good estimates of the n-gram
parameters from our dataset, because of data sparsity. To handle the gorilla
example, we would need to model 6-grams; which means accounting for V 6

events. Under a very small vocabulary of V = 104, this means estimating
the probability of 1024 distinct events.

These two problems point to another bias-variance tradeoff. Can you see how
it works? In practice, we often have both problems at the same time. Language is
full of long-range dependencies that we cannot capture because n is too small; at
the same time, language datasets are full of rare phenomena, whose probabilities
we fail to estimate accurately because n is too large.

We will seek approaches to keep n large, while still making low-variance es-
timates of the underlying parameters. To do this, we will introduce a different
sort of bias: smoothing. But before we talk about that, let’s consider how we can
evaluate language models.

5.2 Evaluating language models

Because language models are typically components of larger systems — language
modeling is not really an application itself — we would prefer extrinsic evalua-
tion. This means evaluating whether the language model improves performance
on the application task, such as machine translation or speech recognition. But this
is often hard to do, and depends on details of the overall system which may be
irrelevant to language modeling. In contrast, intrinsic evaluation is task-neutral.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Better performance on intrinsic metrics may be expected to improve extrinsic met-
rics across a variety of tasks, unless we are over-optimizing the intrinsic metric.
We will discuss intrinsic metrics here, but bear in mind that it is important to also
perform extrinsic evaluations to ensure that the improvements obtained on these
intrinsic metrics really carry over to the applications that we care about.

Held-out likelihood

A popular intrinsic metric is the held-out likelihood. To compute this metric, we
“hold out” a portion of our data from training. We compute the log probability
of this held-out data, according to the model that we estimate from the training
set. A good language model should assign high probability to this held-out data.
Specifically, we compute,

`(w) =
N∑
i

Mi∑
m

log p(w(i)
m | w(i)

m−1, . . . , w
(i)
m−n+1), (5.12)

summing over all sentences {w(i)}i∈1...N in the held-out corpus.
Typically, unknown words in the test data are mapped to the 〈UNK〉 token.

This means that we have to estimate some probability for 〈UNK〉 on the training
data. One way to do this is to fix the vocabulary V to the V − 1 words with the
highest counts in the training data, and then convert all other tokens to 〈UNK〉.

Perplexity

Perplexity is a transformation of the held-out likelihood into an information-theoretic
quantity. Specifically, we compute

PP (w) = 2−
`(w)
M

, (5.13)

where M is the total number of tokens in the held-out corpus.

• The transformation means that lower perplexities correspond to higher like-
lihoods, so lower scores are better on this metric. (Lower perplexity is better,
because you are less perplexed.) In the limit, we obtain probability 1 for our
held-out corpus, with PP = 2− log 1 = 20 = 1.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Assume a uniform, unigram model in which p(wi) = 1
V

for all V words in
the vocabulary. Then,

PP (w) =

[(
1

V

)M]− 1
M

=

(
1

V

)−1

= V

These observations imply that we can think of perplexity as the weighted branch-
ing factor at each word in the sentence.

• If we have solved the word prediction problem perfectly, PP (w) = 1, be-
cause there is only one possible choice for each word.

• If we have a uniform model that assigns equal probability to every word,
then PP (w) = V . This is not a worst-case scenario — in the worst case,
we assign zero probability to some word in the test data — but it is a worst
“reasonable” case.

• Most models give perplexities that fall somewhere in between 1 and V .

Example On 38M tokens of WSJ, V ≈ 20K, (Jurafsky and Martin, 2009, page 97)
obtain these perplexities on a 1.5M token test set.

• Unigram: 962

• Bigram: 170

• Trigram: 109

Will it keep going down?

Information theory*

Perplexity is closely related to the concept of entropy, the expected value of the
information contained in each word.

H(P ) = −
∑
w

p(w) log p(w) (5.14)

The true entropy of English (or any real language) is unknown. Claude Shannon,
one of the founders of information theory, wanted to compute upper and lower

(c) Jacob Eisenstein 2014-2016. Work in progress.
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bounds. He would read passages of 15 characters to his wife, and ask her to guess
the next character, recording the number of guesses it took for her to get the correct
answer. As a fluent speaker of English, his wife could provide a reasonably tight
bound on the number of guesses needed per character.3

We can view the goal of language modeling as computing a distributionQ that
is similar to the true distribution P . To measure the quality of Q, we can compute
its cross-entropy with P , written as H(P,Q),

H(P,Q) =EP [logQ] (5.15)

=−
∑
w

p(w) log q(w) (5.16)

=−
∑
w

p(w) log

(
q(w)

p(w)

p(w)

)
(5.17)

=−
∑
w

p(w) log
q(w)

p(w)
+ p(w) log p(w) (5.18)

=
∑
w

p(w) log
p(w)

q(w)
− p(w) log p(w) (5.19)

=DKL(P ||Q) +H(P ), (5.20)

whereDKL(P ||Q) is the Kullback-Leibler (KL) divergence between P andQ. The
KL-divergence is a non-symmetric measure of the the dissimilarity of two distri-
butions, where ∀(P,Q), DKL(P ||Q) ≥ 0 and DKL(P ||P ) = 0.4 The cross-entropy
also includes a term for the entropy of the true distribution P , but since P is given,
we can only control Q. Thus, minimizing the cross entropy H(P,Q) is equivalent
to minimizing the KL-divergence DKL(P ||Q).

We do not have access to the true P , just a sequence w = {w1, w2, . . . , }, which
is sampled from P . In the limit, the length of w is infinite, so we have,

H(P,Q) =−
∑
w

p(w) log q(w) (5.21)

=− lim
M→∞

1

M
log q(w). (5.22)

3Question for you: is this an upper bound or a lower bound?
4KL-divergence has connections to expectation maximization: the lower bound on the ex-

pected likelihood can be viewed as the true likelihood minus the KL-divergence DKL(q(y)||p(y |
x)), so that the E-step minimizes the KL-divergence by setting q(y) = p(y | x).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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There term p(w) disappears because the word sequence w is itself a sample from
this distribution. In practice, we have finiteM , so we compute the approximation,

H(P,Q) ≈− 1

M
log q(w) (5.23)

PP (Q) =2−
1
M

log q(w) = 2H(P,Q) (5.24)

Thus, the perplexity of the language model Q can be derived from its cross-
entropy with the true word distribution P , which we estimate from the observed
word sequence w. Low perplexity implies low cross-entropy, which in turn im-
plies a low KL-divergence between P and Q.

Further aside A related topic in psycholinguistics is the “constant entropy rate
hypothesis,” also called the “uniform information density hypothesis.” The hy-
pothesis is that speakers should prefer linguistic choices that convey a uniform
amount of information over time (Jaeger, 2010). Some evidence:

• Speakers shorten predictable words, and lengthen unpredictable ones (Jaeger,
2010).

• Low-probability words slow down the reader (Smith and Levy, 2013)

• Syntactic reductions (e.g., I’m versus I am) are more likely when the reducible
word contains less information (Jaeger and Levy, 2006).

5.3 Smoothing and discounting
Limited data is a persistent problem in estimating language models. In section 5.1,
we presented n-grams as a partial solution. But as we saw, sparse data can be a
problem even for low-order n-grams; at the same time, many linguistic phenom-
ena, like subject-verb agreement, cannot be incorporated into language models
without higher-order n-grams. It is therefore necessary to add additional induc-
tive biases to n-gram language models. This section covers some of the most in-
tuitive and common approaches, but there are many more. Chen and Goodman
(1999) provides a good survey of the state-of-the-art in the late 1990s; more recent
approaches are discussed in section 5.4.

Smoothing

A major concern in language modeling is to avoid the situation p(w) = 0, which
could arise as a result of a single unseen n-gram. A similar problem arose in

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Naı̈ve Bayes, and there we solved it by smoothing: adding pseudo counts. The
same idea can be applied to n-gram language models, as shown here in the bigram
case,

pLaplace(Wi = b | Wi = a) =
count(a, b) + α∑

w′ count(a, w′) + V α
. (5.25)

• In general, this is called Lidstone smoothing.

• When α = 1, it is Laplace smoothing.

• When α = 0.5, we are following Jeffreys-Perks law.

• Manning and Schütze (1999) offer more insight on the justifications for Jeffreys-
Perks smoothing

To maintain normalization, anything that we add to the numerator (α) must
also appear in the dominator (V α). This idea is reflected in the concept of effective
counts:

c∗i = (ci + α)
N

N + V α
, (5.26)

where ci is the count of event i, and c∗i is the effective count. The discount for each
n-gram is then computed as,

di =
c∗i
ci

=
(ci + α)

ci

N

(N + α)

Discounting and backoff

Discounting “borrows” probability mass from observed n-grams and redistributes
it. In Lidstone smoothing, we borrow probability mass by increasing the denom-
inator of the relative frequency estimates, and redistribute it by increasing the
numerator for all n-grams. But instead, we could borrow the same amount of
probability mass from all observed counts, and redistribute it among only the un-
observed counts. This is called absolute discounting.

For example, if we set an absolute discount d = 0.1 in a trigram model, we get:
p(w | denied the) =

We need not redistribute the probability mass equally. Instead, we can back-
off to a lower-order language model. In other words: if you have trigrams, use
trigrams; if you don’t have trigrams, use bigrams; if you don’t even have bigrams,

(c) Jacob Eisenstein 2014-2016. Work in progress.
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word counts c effective counts c∗ unsmoothed probability smoothed probability
allegations 3 2.9 0.429 0.414

reports 2 1.9 0.286 0.271
claims 1 0.9 0.143 0.129

request 1 0.9 0.143 0.129
charges 0 0.2 0.000 0.029
benefits 0 0.2 0.000 0.029

. . .

use unigrams. This is called Katz backoff:

c∗(u, v) =c(u, v)− d (5.27)

pbackoff(v | u) =

{
c∗(u,v)
c(u)

if c(u, v) > 0

α(u)× pbackoff(v)∑
v′:c(u,v′)=0 pbackoff(v

′)
if c(u, v) = 0

(5.28)

Typically we can set the discount d to minimize perplexity on a development
set.

Interpolation

An alternative to discounting is interpolation: setting the probability of a word
in context to a weighted sum of its probabilities across progressively shorter con-
texts.

Instead of choosing a single n for the size of the n-gram, we can take the
weighted average across several n-gram probabilities,

pInterpolation(a | b, c) = λ
(a)
3 p∗3(a | b, c)

+ λ
(a)
2 p∗2(a | b)

+ λ
(a)
3 p∗1(a).

In this equation, p∗k is the maximum likelihood estimate (MLE) of a k-gram model,
and λ

(a)
k is the weight of the n-gram model p∗k for word a. A nice property of this

model is that it can learn to use longer context for some words (e.g., possessive
pronouns like his and her, which often match the gender of the entity as defined
earlier in the sentence), and shorter context for others (e.g., rare content words).

To ensure that the interpolated p(w) is still a probability, we have a constraint,∑
k λ

(a)
k = 1,∀a. But how to find the specific values of λ for each word? An elegant

(c) Jacob Eisenstein 2014-2016. Work in progress.
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solution is expectation maximization. Recall from chapter 4 that we can think
about EM as learning with missing data: we just need to choose missing data
such that learning would be easy if it weren’t missing. So what’s missing in this
case? We can think of each word wm as drawn from an n-gram of unknown size,
zm ∈ {1 . . . n}. This zm is the missing data that we are looking for! Specifically,
consider the following generative story:

• For each token m,

– draw zm ∼ Categorical(λ(wm))

– draw wm ∼ p∗zm(wm | wm−1, . . . wm−zm).

If we knew {zm}m∈1...M , then we could compute λ from relative frequency esti-
mation, λ(a)

k =
∑
m δ(zm=k)δ(wm=a)∑

m δ(wm=a)
.5 Since we do not know the values of the missing

data, we impute a distribution qm(zm) in the E-step, which represents our degree
of belief that word token wm was generated from a n-gram of order zm.

Having defined these quantities, we can derive EM updates:

• E-step:

qm(k) =P (Zm = k | w1:m) (5.29)

∝p∗z(wm | wm−1, . . . , wm−k+1)λ
(wm)
k (5.30)

• M-step:

λk(a) =
Eq [count(W = a, Z = k)]∑
k′ Eq [count(W = a, Z = k′)]

(5.31)

=

∑
m qm(k)δ(wm = a)∑

m δ(wm = a)
(5.32)

As usual, EM iterates between these two steps until convergence to a local
optimum.

Kneser-Ney smoothing

Kneser-Ney smoothing also incorporates discounting, but redistributes the result-
ing probability mass in a different way. Consider the example: I recently visited

5We could also use z to update our n-gram models p∗i , but we will assume those are fixed here.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Francisco?

• Duluth?

Now suppose that both bigrams visited Duluth and visited Francisco are unob-
served in our training data, and furthermore, that the unigram probability p∗(Francisco)
is greater than p∗(Duluth). Nonetheless we would still guess that p(visited Duluth) >
P (visited Francisco), because Duluth is a more versatile word. This notion of ver-
satility is the key to Kneser-Ney smoothing.

Writing c for a context of undefined length, and count(w, c) as the count of
word w in context c, we define the Kneser-Ney bigram probability as

pKN(w | c) =

{
count(w,c)−d

count(c) , count(w, c) > 0

α(c)pcontinuation(w), otherwise

pcontinuation(w) =
#|c : count(w, c) > 0|∑
w′ #|c′ : count(c′, w′) > 0|

First, note that we reserve probability mass using absolute discounting d, which
is taken from all unobserved n-grams. The total amount of discounting in context
c is d × #|w : count(w, c) > 0|, and we divide this equally among the unseen
n-grams,

α(c) =
d×#|w : count(w, c) > 0|

#|c : count(w, c) = 0| . (5.33)

This is the amount of probability mass left to account for versatitility, which we
define via the continuation probability pcontinuation(w) as proportional to the number
of observed contexts in which w appears. In the numerator of the continuation
probability we have the number of contexts c in which w appears, and in the de-
nominator, we normalize by computing the same quantity over all words w′.

In practice, interpolation works a little better than backoff,

pKN(w | c) =
count(w, c)− d

count(c)
+ λcpcontinuation(w) (5.34)

This idea of counting contexts may seem heuristic, but there is a cool theoreti-
cal justification from Bayesian nonparametrics (Teh, 2006).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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5.4 Other language models

Interpolated Kneser-Ney is pretty close to state-of-the-art. But there are some in-
teresting other types of language models, and they apply ideas that we have al-
ready learned.

Class-based language models

The reason we need smoothing is because even the trigram probability model
P (wm, | wm−1, wm−2) has a huge number of parameters. We could use the idea of
word classes to simplify. Imagine that each word has a latent class z,

pclass(wm | wm−1) =
∑
z

p(wm | z;φ)p(z | wm−1; β),

where z ∈ [1, K], K � V . This means that each word wm is conditioned on its
class z through parameter φz, and the class itself is conditioned on the previous
word wm−1 through parameter βwm−1 . The advantage of this approach is that it
gives a bigram probability using 2× V ×K parameters, instead of V 2.

How do we estimate such a model? Since there is missing data — the word
classes — we might use expectation maximization:

• E-step: update qi(z)

• M-step: update φ and β

But this is usually too slow in practice, since it requires multiple passes over
the training data, which is typically very large. A useful approximate algorithm is
exchange clustering (Brown et al., 1992), which assigns each word type to a single
class, rather than maintaining a soft distribution p(z | w; β). This algorithm incre-
mentally constructs a binary tree over the words in the vocabulary, so that each
word can be represented by a bit vector corresponding to the series of left/right
decisions to get to the word from the root. The prefixes of these bit vectors are an
early form of word embedding, and it has been shown that syntactically similar
words tend to have similar bit vectors, as shown in Figure 5.1. As we will see in
chapter 20, these vectors can be used as features in NLP systems, improving their
performance by enabling generalization from frequent to rare words (Miller et al.,
2004; Koo et al., 2008).

(c) Jacob Eisenstein 2014-2016. Work in progress.



92 CHAPTER 5. LANGUAGE MODELS

Figure 5.1: Example subtrees from the Brown et al. (1992) hierarchical class-based
language model

Discriminative language models

Alternatively, we could just train a model to predict p(wm | wm−1, wm−2, . . .) di-
rectly. We can think of this as a straightforward classification problem, where
the label space is equal to the entire vocabulary; for example, Rosenfeld (1996)
applies logistic regression to language modeling, and Roark et al. (2007) apply
perceptrons and conditional random fields (section 9.4). A key advantage is that
discriminative training minimizes the error rate, rather than maximizing proba-
bility; for applications such as speech recognition, this is a better fit for the ulti-
mate goal, which is recognizing speech with as few errors as possible. Moreover,
because the underlying model is now discriminative, additional features can be
included, such as features of the syntactic structure (Khudanpur and Wu, 2000).
However, Roark et al. (2007) report that discriminative language models are ex-
pensive to train, requiring extensive feature selection.

Neural language models

Currently, neural probabilistic language models are attracting a lot of interest.
These are related to discriminative language models, but they also maintain a
continuous state that can capture long-term history. Another key distinction in
these models is the use of dense, discriminatively-trained vector representations,

(c) Jacob Eisenstein 2014-2016. Work in progress.
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computing the probability p(wm | w1:m−1) by passing an inner product h>mvwm−1

through a sigmoid activation function.6

There are many flavors of neural language models, from the early formula-
tion by Bengio et al. (2003) to more elaborate contemporary models based on long
short-term memory (LSTM; Hochreiter and Schmidhuber, 1997; Sundermeyer et al.,
2012). We will focus on the Recurrent Neural Network Language Model (RNNLM;
Mikolov et al., 2010), which works fairly well in practice, and is the basis for some
of the more complex recent models.

Assume each word type i is associated with a dense vector representation ui,
which is a parameter of the model. Writing xm is an indicator vector such that

xmi =

{
1, i = wm

0, i 6= wm,
(5.35)

then we can write uwm = Uxm. In fact, we will have two dense vector represen-
tations per word: U for the input and V for the output. We will return to word
vectors in chapter 15 and chapter 21.

The RNNLM is recurrent in the sense that there is a hidden state hm at each
word positionm, which is constructed from the hidden state hm−1, as well as from
the word wm. Specifically, the hidden state in the RNNLM is given by,

hm =f(Uxm + Θhm−1), (5.36)

where f is an element-wise non-linear activation function, such as the sigmoid.
Finally, we predict wm+1 with probability

p(wm+1 | hm) =
exp

(
h>mvwm+1

)∑
i exp (h>mvi)

. (5.37)

Since the hidden states h1:m can be computed deterministically from the words
w1:m, the RNNLM defines a distribution p(wm+1 | w1:m) without any explicit limit
on the length of the past history. However, information from words wj : j � m
will be attenuated by repeatedly passing through the recurrent function. Recent
variants on the RNNLM address this issue through the use of memory cells (Sun-
dermeyer et al., 2012) and gates (Chung et al., 2015), enabling crucial pieces of
past information to more directly impact future predictions.

The RNNLM has three parameters: the word representation matrices U and
V, and the recurrent update matrix Θ. Note that the size of these parameters are

6The function pij =
expψij∑
j′ expψij′

is sometimes called softmax in the neural net literature.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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relatively small. Writing K for the size of each word vector representation (as-
suming the input and output representations have identical size), the parameter
dimensions are K × V for U and V, and K ×K for Θ. Considering that V � K
in all practical cases, this means that the RNNLM has far fewer parameters than
even a bigram language model, which must score counts of size V × V . For this
reason, neural language models require less attention to smoothing and regular-
ization than traditional n-gram language models.

The RNNLM parameters are learned by backpropagation from a loss function:
a typical choice is the negative log-likelihood of the data, which is identical to the
cross-entropy:

` =
∑
m

log p(wm | w1:m−1) (5.38)

=
∑
m

h>m−1vwm − log
V∑
i

exp
(
h>m−1vi

)
. (5.39)

Computing this loss function (and its gradients) can be expensive, since it involves
summing over the entire vocabulary at each word position. One alternative is to
use a hierarchical softmax function to compute the sum more efficiently, in log V
time (Mikolov et al., 2011); another is to optimize an alternative metric, such as
noise-contrastive estimation, which learns by distinguishing observed instances
from artificial instances generated from a noise distribution (Mnih and Teh, 2012).

Recent work on probabilistic programming has resulted in a number of toolk-
its for building computation graphs over architectures such as the RNNLM. These
toolkits — Theano and Torch are currently popular choices — perform automatic
differentiation, allowing the researcher to plug in a variety of different loss func-
tions and model architectures, without having to derive and implement the pa-
rameter updates by hand.

5.5 Other details

Datasets Dataset genre is important: an LM learned from Shakespeare is a poor
match for the Wall Street Journal (WSJ); an LM learned from the WSJ is a poor
choice for predictive text entry in cellphones.

Vocabulary We have assumed we know the total vocabulary size V . Will we
always know this? What if we don’t?

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Suppose we are estimating a bigram language model. Then we can set
Vbigram = V 2

unigram, assuming we have seen all unigrams.

• But in general, we’re always at risk of seeing new words (http://www.
americandialect.org/hashtag-2012)

– hashtag (2012 word of the year)
– phablet
– Gangnam7

– -3.78109932019384

• If the set of unigrams is defined in advance, this is the closed vocabulary
setting. Typically we will just replace unknown words with a special token,
〈unk〉.
• Another solution is to backoff from the unigram model to a character model:

Pu(si) =

{
count(si)

count(all tokens)+β , si ∈ V
βPc(si), si /∈ V

(5.40)

Pc(si) = Plen(si)
∏
aj∈si

count(aj)
count(all characters)

(5.41)

[todo: reconcile this notation with the rest of the chapter] We could even
have a bigram or trigram model over characters.

• Still another possibility, this time in the setting of neural language models,
would be to require that word representations are themselves composed
from a character-level RNNLM (Ling et al., 2015). Besides ensuring that
we can always compute a word representation for any sequence of charac-
ter symbols, this approach implies that similarly-spelled words have similar
representations.

7[todo: Wow this list is already incredibly dated! I should probably try to use more timeless
examples, like Sputnik or something.]

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Chapter 6

Morphology

So far we have been focusing on NLP at the word level. Now we will explore
meaning inside of words. We’ve already hinted at a morphological problem by
introducing the idea of lemmas, where serve/served/serving all have the lemma
serve.

From the perspective of document classification, these multiple forms may just
seem like an annoyance, which we can get rid of by lemmatization or stemming
(more on this later). But morphology conveys information which can be crucial
for some applications.

Information retrieval With a search query like bagel, we want to get hits for the
inflected form bagels; the same goes for irregular inflections like corpus/corpora,
goose/geese. In query expansion, the search query is expanded to include all in-
flections of the search terms. Note that this isn’t always what we want: for exam-
ple, given a query for Apple, we may not want hits for apples.

Information extraction A major goal of information extraction is to capture ref-
erences to events, and their properties. Event timing is conveyed in morphology:
in English, we have suffixes for past tense (she talked), the past participle (she had
spoken), and the present participle (she is speaking). Other languages can indicate
many more details about event timing through morphology; for example, Ro-
mance languages like French have a much larger inventory of verb endings:
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J’achete un velo I buy a bicycle (now)
J’acheterai un velo I will buy a bicycle
J’achetais un velo I was buying a bicycle
J’ai acheté un velo I bought a bicycle

J’acheterais un velo I would buy a bicycle

In English, this function is mostly filled by auxiliary verbs like will, was, had,
and would. This makes morphological analysis relatively less important for En-
glish, as we can get a long way with carefully constructed n-gram patterns (Riloff,
1996). But in languages like French and Spanish — where second-language learn-
ers are tormented by conjugation tables with dozens of different inflections —
there seems little alternative to morphological analysis if language technology is
to generalize across many verbs.

Document classification Even document classification tasks, such as sentiment
analysis, are potentially impacted by morphology. For example, suppose you
are doing sentiment analysis, and you encounter the out-of-vocabulary words
unfriended, antichrist, unputdownable, or disenchanted. As unknown words, they
would make no contribution to the overall sentiment polarity in a bag-of-words
system. But with some morphological reasoning, we can see that they are indeed
strongly subjective.

Translation In addition to recognizing morphology, there are applications in
which we need to produce it. Translation is a classic case, especially when translat-
ing from morphologically simple languages like English and Chinese to morpho-
logically rich languages, like French, Czech, German, and Swahili. Here again,
a purely word-based approach would suffer from data sparsity: relatively rare
words would be unlikely to be seen in every inflection, and thus the translation
system would be unable to produce them.

Morphology, Orthography, and Phonology

Morphology interacts closely with two related systems: orthography and phonol-
ogy. The surface form of a word is the form that is written down or spoken. This
form results from the interactions between morphology and the orthographic and
phonological systems. More specifically:

• Morphology describes how meaning is constructed from combining affixes.
For example, it is a morphological fact of English that adding the affix +S to

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Surface form lemma features

duck duck NOUN+SINGULAR
ducks duck NOUN+PLULAR
duck duck VERB+PRESENT
ducks duck VERB+THIRDPERSON+PRESENT

Table 6.1: Fragment of a morphologically-aware dictionary

many nouns creates a plural.

berry + PLURAL → berry+s

Morphological rules may also include stem changes, such as goose+PLURAL →
geese.

• Orthography specifically relates to writing. For example,

berry+s→ berries

is an orthographic rule. We have lots of these in English, which is one reason
English spelling is difficult.

• Phonology describes how sounds combine. For example, the different pro-
nunciations of the final s in cats (s) and dogs (z) follow from a phonological
rule (Bender, 2013, example 25, page 30).

In English, morphologically distinct words may be pronounced differently
even when they are spelled the same, and this can reflect morphological differ-
ences. read+PRESENT vs. read+PAST. Conversely, morphological variants may
be spelled differently even when they sound the same, like The Champions’ league
versus The Champion’s league versus The Champions league.

Productivity

One idea for dealing with morphology is to build a morphologically-aware dic-
tionary. The keys in this dictionary would correspond to surface forms, such as
served. The values would include both the underlying lemma as well as any mor-
phological features: in this case, the lemma is serve, and the feature is PAST. Given
such a dictionary, we simply look up each surface form that we encounter.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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As shown in the example in Table 6.1, we may need multiple entries for the
same surface form; this means that there is ambiguity, so simple lookup will not
suffice. Still another problem is that morphology is productive, meaning that
it applies to new words. If you only know the words Google or iPad, you can
immediately understand their inflected forms.

• Have you Googled that yet?

• I have broken all three iPads.

Derivational morphology (more on this later) is productive in another way:
you can produce new words by applying morphological changes to existing words.
hyper+un+desire+able+ity

In some languages, derivational morphology can create extremely complicated
words. Jurafsky and Martin (2009) have a fun example from Turkish:

Figure 6.1: From (Jurafsky and Martin, 2009)

In the homework, you’ll see examples from Swahili, which also has complex
morphology. A dictionary of all possible surface forms in such languages would
be gargantuan. So instead of building a static dictionary, we will try to model the
underlying morphological and orthographic rules.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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6.1 Types of morphemes

There are two broad classes of morphemes: stems and affixes. Intuitively, stems
are the “main” part of meaning, and affixes are the modifiers. Typically, stems can
appear on their own (they are free) and affixes cannot (they are bound).

Affixes can be categorized by where they appear with respect to the stem.

• Prefixes: un+learn, pre+view.

– These examples are derivational, in that they form new words, rather
than forming grammatical variants of the same word (inflectional mor-
phology; more on this in section 6.2).

– English has no inflectional prefixes, but other languages do. For exam-
ple, in Swahili, u-na-kata means you are cutting, while u-me-kata means
you have cut. In this example, na and me are prefixes, kata is the root.1

• Suffixes are the typical way of inflecting words in English, and in other lan-
guages in the Indo-European family. For example, in English: I learn+ed, She
learn+s, three apple+s, four fox+es. English suffixes can also be derivational:
for example: modern+ity, fix+able, and deriv+ation+al.

• Circumfixes go around the stem.

– German has a circumfix for the past participle: sagen (say)→ ge+sag+t
(said)

– English has a very small number of circumfix examples: bold→ em+bold+en,
and, arguably, light→ en+light+en. Both of these examples are deriva-
tional.

– French negation can be seen as a circumfix: Je mange+NEG→Je ne mange
pas (I do not eat).2

– More generally, morphemes can be non-contiguous, e.g. (Bender, 2013,
example 7, page 12):

1Would it be better to think about u, na, and me as words? This example suggests that the
word/affix distinction is not always clear-cut.

2In spoken French, the ne is gradually disappearing, so that Je mange pas is now acceptable.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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In this example, the root ktb (related to writing) is combined with pat-
terns that indicate where to insert vowels to produce different parts-of-
speech and meanings.

• Infixes go inside the stem.

– In Tagalog (spoken in the Philippines), the root hingi indicates a request,
and the infix um creates humingi, as in I asked.

– English, absolutely+fucking→
(6.1) absofuckinglutely
(6.2) ?absfuckingsolutely

where the ’?’ prefix indicates questionable linguistic acceptability.

• Morphology may be non-segmental, meaning that it doesn’t involve any af-
fix at all. For example, the pluralization of goose to geese is not accomplished
through any affix, but through vowel alteration; the past tense marking of
eat → ate is another example of this phenomenon, known as apophony. Lan-
guages in which morphemes are represented by affixes that are “glued to-
gether” (like talk+ed or think+ing) are known as agglutinative; languages
in which morphemes are represented by changes to spelling and sound are
known as fusional.

• What about words like fish, which have the same form in both singular and
plural? We say that this word has a zero plural.

6.2 Types of morphology
Morphology serves a variety of linguistic functions, and acts in a variety of ways.
Inflectional and derivational morphology are distinguished by their function; other

(c) Jacob Eisenstein 2014-2016. Work in progress.
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forms of morphology, such as cliticization and compounding are distinguished by
how they work. In this section, we will focus mainly on inflectional and deriva-
tional morphology, describing their roles in English, and in other languages when
there is no adequate example in English.

Inflectional morphology

Inflectional morphology adds information about the stem, typically grammatical
properties such as tense, number, and case. English has a relatively simple system
of inflectional morphology, compared to many other languages.

Figure 6.2: From (Bender, 2013)

Nouns

English nouns are marked for number and possession. Number is typically marked
by the suffix +s, e.g., hat + PLURAL → hat+s, but some words are pluralized dif-
ferently, e.g., geese, children, and fish. Number is binary in English (singular versus
plural), but many languages, such as Arabic and Sanskrit, include an additional
dual number for groups of two. English has residual traces of the dual number,
with both versus all and either versus any. Some Austronesian languages even have
a trial number, for groups of three, and languages such as Arabic have a paucal
number, for small groups. Conversely, nouns are not marked for number at all in
Japanese and Indonesian.

Many languages mark nouns for case, which is the syntactic role that the noun
plays in the sentence. In English, we do distinguish the case of some pronouns:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• He (NOMINATIVE) gave her (OBLIQUE) his (GENITIVE) guitar.

• She gave him her guitar.

• I gave you our guitar.

• You gave me your guitar.

The third person masculine pronoun appears as he in the nominative case, him in
the oblique case, and his in the genitive case. English distinguishes these cases
for all personal pronouns except for the second person, where the nominative and
oblique cases are both you.

Other languages — such as Latin, Russian, Sanskrit, and Tamil — mark the
case of all nouns. These languages have additional cases, such as dative (indirect
object), accusative (direct object), and vocative (address). In German, noun is not
inflected for case, but the articles and adjectives are, as shown in example 49 from
Bender (2013):

(6.3) Der alte Mann gab dem kleinen Affen die grosse Banane.
The old man (NOM) gave the little monkey (DATIVE) the big banana (AC-
CUSATIVE)

Notice how der, dem, and die all mean the same thing (the), but they are spelled
differently due to the case marking. The adjectives (alte, kleinen, grosse) are also
marked for case.

Many languages — such as Romance languages — mark the gender and num-
ber of nouns by inflecting the article and adjective. e.g., Spanish:

(6.4) El coche rojo pasó la luz roja.
The red car ran the red light.

(6.5) Los coches rojos pasó las luces rojas.
The red cars ran the red lights.

Here, la is the feminine article and el is the masculine article; the adjective for red
is inflected to roja when describing a feminine noun (luz, meaning light), and rojo
when describing a masculine noun (coche, meaning car). The article and adjective
must agree with noun for the sentence to be grammatical. The following examples
are ungrammatical for this reason:

(6.6) *Los coches rojo pasó la luce rojas

(6.7) *Los coches rojas pasó las luces rojos

(c) Jacob Eisenstein 2014-2016. Work in progress.
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In English, demonstrative determiners mark number: e.g., this book vs these books,
and the determiner and noun must agree, e.g. *this books. Agreement is also re-
quired between subject and verb, as we will see shortly.

Romance languages like Spanish and French mark gender as masculine and
feminine, but it need not be binary:

• English pronouns include neuter it; German, Sanskrit, and Latin do this for
all nouns.

• Danish and Dutch distinguish neuter from common gender.[todo: example]

• Other languages distinguish animate and inanimate genders.

Verbs

English verbs are inflected for tense and number distinguishing past (she acted),
present (you act), and third person singular (she acts). As with nouns, these in-
flections may change the orthography (plan+ed → planned), and there are many
irregular patterns, e.g. they eat / she eats / we ate. English verbs are also inflected
for aspect, distinguishing the perfective (I had eaten) and progressive (I am eating).
The perfective and the past tense are identical for regular verbs, e.g. we had talked,
we talked.

Many languages (e.g., Chinese and Indonesian), do not mark tense with mor-
phology. For example, Indonesian uses function words rather than morphology
to distinguish tense (Table 6.2).

Saya makan apel I eat an apple
Saya sedang makan apel I am eating an apple
Saya telah makan apel I already ate an apple
Saya akan makan apel I will eat an apple

Table 6.2: Indonesian uses function words (sedang, telah, makan) rather than mor-
phology to distinguish verb tense. [todo: switch to exe]

Romance languages distinguish many more tenses than English with morphol-
ogy. For example, Spanish has multiple past tenses: preterite and imperfect, dis-
tinguishing events that occurred at a specific past point in time from a continuous
or repeated past state:

(6.8) I ate onions yesterday
Comı́ cebollas ayer

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(6.9) I ate onions every day
Comı́a cebollas cada dı́a

Spanish and French also have endings for conditional (comerı́a cebollas, I would eat
onions) and future (comeré cebollas, I will eat onions). In English, these differences
are marked with time signals rather than morphology. In French and Spanish,
time signals are also an option, e.g. voy a comer cebollas, which literally translates
to I am going to eat onions.

Romance languages also have separate verb forms for every combination of
number and person, while in English, only the third-person singular is distin-
guished:

• English: I speak / you speak / she speaks / we speak / you (pl) speak / they speak

• Spanish: Yo hablo / tu hablas / ella habla / nosotros hablamos / vosotros hableis /
ellas hablan

• French: Je parle / tu parles / elle parle / nous parlons / vous parlez / ils parlent

In Spanish and in many other Romance languages (but not French), the verb
morphology is sufficiently descriptive that the subject is often omitted, since it can
often be easily recovered from the verb ending and the context.

Other things can be marked with affixes, such as evidentiality – how the
speaker came to know the information. In Eastern Pomo (a California language),
there are verb suffixes for four evidential categories (McLendon, 2003):

-ink’e nonvisual sensory
-ine inferential
-le hearsay
-ya direct knowledge

Adjectives and adverbs

Adjectives in English mark comparative and superlative (taller, tallest). Adverbs
can mark comparative and superlative too: Yangfeng paddles fast, Yi paddles faster,
Uma paddles fastest. As we have seen, adjectives can mark gender and number
in languages like French and Spanish, where they are required to agree with the
noun and determiner; adjectives also mark case in languages like German and
Latin.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Synthetic and isolating languages

Languages with complex morphology are called synthetic; languages with simple
morphology are called isolating or analytic. The index of synthesis quantifies
this property by measuring the ratio of the number of morphemes in a given text
to the number of words. On this index, English is relatively, but not extremely,
analytic.

Figure 6.3: From Bender (2013)

An approximation of the index of synthesis is the type-token ratio. Can you see
why? If you count the number of unique surface forms in 10K parallel sentences
from a corpus of European Parliament transcripts, you get:

• English: 16k distinct word types

• French: 22k

• German: 32k

• Finnish: 55k

Derivational Morphology

Derivational morphology is a way to create new words and change part-of-speech.

• nominalization

– V + -ation: computerization
– V + -er: walker

(c) Jacob Eisenstein 2014-2016. Work in progress.
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– Adj + -ness: fussiness
– Adj + -ity: obesity

• negation: undo, unseen, misnomer

• adjectivization: V + -able : doable, thinkable, N + -al : tonal, national, N + -ous:
famous, glamorous

• abverbization: ADJ + -ily: clumsily

• lots more: rewrite, phallocentrism, ...

You can create totally new words this way.
word → wordify → wordification → wordificationism → antiwordificiationism →
hyperantiwordificationism

As with inflection, derivational morphology can require orthographic changes,
e.g. true+ly → truly and fussy+ness → fussiness. It can also cause phonological
changes, such as the change emphasis from imPOSSible to impossiBILity, and the
change in vowel from ferTILE to ferTILity.

Other types of morphology

Cliticization combines Georgia+’s into Georgia’s; the possessive clitic ’s is syntac-
tically independent but phonologically dependent. This syntactic indepen-
dence can be seen in examples like (Bender, 2013, example 21):

(6.10) Jesse met the president of the university’s cousin

In this example, the possessive modifies the president, but it attaches to the
right edge of the entire noun phrase.

• Pronouns appear as clitics in French, e.g., j’accuse (I accuse), as does
negation Je n’accuse personne (I don’t accuse anyone).
• Another example is from Hebrew: l’shana tova (literally for year good,

meaning happy new year); the preposition for appears as a clitic.

Compounding combines two words into a new word:

(6.11) cream→ ice cream

We can think of ice cream as a word since it is a non-compositional combina-
tion of ice and cream. Perhaps someday the written space will be dropped,
as it has been in watermelon (Figure 6.4).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 6.4: The written space in watermelon disappeared as the word became
more frequent over the 19th century. From Google ngrams.

Portmanteaus combine words, truncating one or both.

(6.12) smoke + fog→ smog
(6.13) glass + asshole→ glasshole

Urban Dictionary is a fun source of contemporary portmanteaus.

Irregularities

English morphology contains a lot of irregularities: know/knew/known, foot/feet,
go/went, etc. if you are not a native speaker, learning these was probably a pain in
the neck. The good news is that there are fewer of these all the time! English is
undergoing a process in which these irregular forms are gradually being replaced:
for example, the past tense of show used to be shew, just as the past tense of know is
still knew (Figure 6.5a). This transformation remains incomplete, as the past par-
ticiple of show is still shown, and not showed (Figure 6.5b). However, this example
points to the bad news for language learners: the most frequently-occuring words,
like know, will be the last to change — if ever!

6.3 Computing and morphology
In this section, we will briefly overview some of the computational problems re-
lated to morphology. We don’t yet have many tools to solve these problems, but
we will soon: chapter 7 presents finite-state automata, which are the workhorse

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(a) (b)

Figure 6.5: Google n-grams plots for inflections of show. While the past participle
had shown is decreasing, this does not seem to be due to competition from the more
regular had showed; rather, there appears to be a broader decrease in frequency of
the past participle, shown by the parallel pattern for had known.

of morphological analysis in NLP. For now, we will simply state the problem def-
initions, and discuss some of the challenges involved.

Lemmatization

[todo: write]

Stemming

[todo: write]

Generation

[todo: write]

Normalization

[todo: write]

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 7

Finite-state automata

Consider the following problems:

• Segment a word into its stem and affixes: impossibility→ im+possibl+ity.

• Convert a sequence of morphemes like im+possible+ity into the correct se-
quence of characters (impossibility).

• Decide whether a given word is morphotactically correct, or more gener-
ally, rank all the possible realizations for a morphological expression like
NEGATION + possible: impossible, inpossible, nonpossible, unpossible, etc.

• Given a speech utterance and a large set of potential text transcriptions,
choose the one with the highest probability according to an n-gram language
model.

• Perform context-sensitive spelling correction, so as to correct examples like
their at piece to they’re at peace.

All of these problems relate to the content of the previous two chapters — lan-
guage models and morphology — but none of them seem easily solved by super-
vised classifiers. This chapter presents a new tool for language technology: finite
state automata. Finite-state automata are particularly suited for scoring strings
(sequences of characters, words, morphemes, or phonemes), and for converting
one string into another. A key advantage of finite state automata is their modular-
ity: the output of one finite-state transducer can be the input for another, allowing
the combination of simple components into cascades with rich and complex be-
haviors.

Finite-state automata are a formalism for representing a subset of formal lan-
guages, the regular languages; these are languages that can be defined with regu-

113
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lar expressions. While there is strong evidence that natural language is not regular
— that is, the question of whether a given sentence is grammatical cannot be an-
swered with any regular expression — finite state automata can be used as the
building block for a surprisingly wide range of applications in language technol-
ogy.1

7.1 Automata and languages
Finite state automata emerge from formal language theory. Here are some basic
formalisms that will be used throughout this chapter:

• An alphabet Σ is a set of symbols, e.g. {a,b,c,. . . ,z}, or {aardvark, abacus, . . . , zyxt}.
• A string ω is a sequence of symbols, ω ∈ Σ∗. The empty string ε contains

zero symbols.

• A language L ⊆ Σ∗ is a set of strings.

• An automaton is an abstract model of a computer, which reads a string ω ∈
Σ∗, and determines whether or not ω ∈ L.

This seems a very different notion of “language” than English or Hindi. But
could we think of these natural languages in the same way as formal languages?
If impossible is acceptable as an English word but unpossible is not, might it be pos-
sible to build an automaton that formalizes the underlying linguistic distinction?

Finite-state automata

A finite-state acceptor (FSA) is a special type of automaton, which is capable of
modeling some, but not all languages. Formally, finite-state automata are defined
by a tuple M = 〈Q,Σ, q0, F, δ〉, consisting of:

• a finite alphabet Σ of input symbols;

• a finite set of states Q = {q0, q1, . . . , qn};
1A more formal treatment of finite state automata and their applications to language is offered

by Mohri et al. (2002). Knight and May (2009) show how finite-state automata can be composed to-
gether to create impressive applications, focusing on transliteration of words and names between
languages with different scripts. Here, we’ll build the formalism from the ground up, starting
with finite-state acceptors, then adding weights, and then adding transduction, finally arriving at
the same sorts of applications.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• a start state q0 ∈ Q;

• a set of final states F ⊆ Q;

• a transition function δ : Q × Σ → 2Q. The transition function maps from a
state and an input symbol to a set of possible resulting states.

Given this definition, M accepts a string ω if there is a path from q0 to any state
qi ∈ F that consumes all of the symbols in ω. If M accepts ω, this means that ω is
in the formal language L defined by M .

Example Consider the following FSA, M1.

Σ ={a, b} (7.1)
Q ={q0, q1} (7.2)
F ={q1} (7.3)
δ ={{(q0, a)→ q0},
{(q0, b)→ q1},
{(q1, b)→ q1}} (7.4)

q0start q1

a

b

b

This FSA defines a language over an alphabet of two symbols, a and b. The
transition function δ is written as a set of tuples: the tuple {(q0, a)→ q0} says that
if you are in state q0 and you see symbol a, you can consume it and stay in q0.
Because each pair of initial state and symbol has at most one resulting state, this
FSA is deterministic: each string ω induces at most one path. Note that δ does not
contain any information about what to do if you encounter the symbol a while in
state q1. In this case, you are stuck, and cannot accept the input string.

What strings does this FSA accept? We begin in q0, but we have to get to q1,
since this is the only final state. We can accept any number of a symbols while in
q0, but we require a b symbol to transition to q1. Once there, we can accept any
number of b symbols, but if we see an a symbol, there is nothing we can do. So
the regular expression corresponding to the language defined by M1 is a∗bb∗. To
see this, consider what M1 would do if it were fed each of the following strings:
aaabb; aa; abbba; bb.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Regular languages* Can every formal language be recognized by some finite
state automata? No. Finite state automata can only recognize regular languages.
The classic example of a non-regular language is anbn; this language includes only
those strings that contain n copies of symbol a, followed by n copies of symbol
b. The pumping lemma demonstrates that this language cannot be accepted by
any FSA. The proof is by contradiction. Suppose M is an FSA that accepts the
language anbn. By definition M must have a finite number of states; if we choose
a string ambm such that m is bigger than the number of states in M , then the path
throughM must contain a cycle, and the transitions on this cycle must accept only
the symbol a. But if there is a cycle, then we can repeat the cycle any number of
times, “pumping up” the number of a symbols in the string. The automaton M
must therefore also accept strings am′bm, with m′ > m. But these strings are not
in the language anbn, so we arrive at a contradiction. The proof will be covered in
detail by any textbook on theory of computation (e.g., Sipser, 2012).

Determinism

• In a deterministic (D)FSA, the transition function is defined so that δ : Q ×
Σ→ Q. This means that every pair of initial state and symbol can transition
to at most one resulting state.

• In a nondeterministic (N)FSA, δ : Q × Σ → 2Q. This means that a pair
of initial state and symbol can transition to multiple resulting states. As a
consequence, an NFSA may have multiple paths to accept a given string.

• We can determinize any NFSA using the powerset construction, but the
number of states in the resulting DFSA may be exponential in the size of
the original NFSA.

• Any regular expression can be converted into an NFSA, and thus into a
DFSA.

The English Dictionary as an FSA We can build a simple “chain” FSA which
accepts any single word. So, we can define the English dictionary with an FSA.
However, we can make this FSA much more compact. (see slides)

• Begin by taking the union of all of the chain FSAs by defining epsilon transi-
tions (transitions that do not consume an input symbol) from the start state
to chain FSAs for each word (5303 states / 5302 arcs using a 850 word dic-
tionary of “basic English”).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Eliminate the epsilon transitions by pushing the first letter to the front (4454
states / 4453 arcs)

• Determinize (2609 / 2608)

• Minimize (744 / 1535). The cost of minimizing an acyclic FSA is O(E). This
data structure is called a trie.

Operations In discussing talked about three operations: union, determinization
and minimization. Other important operations are:

Intersection only accept strings in both FSAs: ω ∈ (M1∩M2) iff ω ∈M1∩ω ∈M2.

Negation only accept strings not accepted by FSA M : ω ∈ (¬M) iff ω /∈M .

concatenation accept strings of the form ω = [ω1ω2], where ω1 ∈M1 and ω2 ∈M2.

FSAs are closed under all these operations, meaning that resulting automaton
is still an FSA (and therefore still defines a regular language).

FSAs for Morphology

Now for some morphology. Suppose that we want to write a program that accepts
only those words that are constructed in accordance with English derivational
morphology:

• grace, graceful, gracefully

• disgrace, disgraceful, disgracefully, ...

• Google,Googler,Googleology,...

• *gracelyful, *disungracefully, ...

As we saw in the English dictionary example, we could just make a list, and
then take the union of the list using ε-transitions. The list would get very long,
and it would not account for productivity (our ability to make new words like
antiwordificationist). So let’s try to use finite state machines instead. Our FSA will
have to encode rules about morpheme ordering, called morphotactics.

Every word must have a stem, so we do not want to accept proposed words
like dis- or -ly. This suggests that we should have at least two states: one for
before we have seen a stem, and one for after. Assuming the alphabet Σ consists
of all English morphemes, we can define a transition function so that it is only
possible to transition from q0 to q1 by consuming a stem morpheme; by defining

(c) Jacob Eisenstein 2014-2016. Work in progress.
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q0start q1
grace

thought
dis- -ful

-ly

Figure 7.1: First try at modeling English morphology

q0start qN qAdj qAdv
grace

thought
dis-

-ful -ly

Figure 7.2: Second try at modeling English morphology, this time distinguishing
parts-of-speech

F = {q1}, we can ensure that every word has a stem. For prefixes, we can allow
self-transitions in q0 on prefix morphemes; we can do the same in q1 for suffix
morphemes.

The resulting FSA is shown in Figure 7.1 will accept grace, disgrace, graceful
disgraceful, and even disgracefully (with two self-transitions in q1). However, it
will also accept *gracelyful and *gracerly. To deal with these cases, we need to
think about what the suffixes are doing. The suffix -ful converts the noun grace
into an adjective graceful; it does the same for words like thoughtful and sinful.
The suffix -ly converts the adjective graceful to the adverb gracefully (to see the
difference, compare the ballet was graceful to the ballerina moved gracefully.) These
examples suggest that we need additional states in our FSA, such as qnoun, qadjective,
and qadverb. Each of these is a potential final state, and the suffixes allow transitions
between them. This FSA is shown in Figure 7.2.

However, with a little more thought, we see that this approach is still too sim-
ple. First, not every noun can be made into an adjective: *chairful and *monkeyful
are perhaps suggestive of some kind of poetic meaning, but would not be recog-
nized as standard English. Second, many nouns are made into adjectives using
different suffixes, such as music+al, fish+y, and elv+ish. We need to create ad-
ditional noun states to distinguish these noun groups, so as to avoid accepting

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 7.3: A fragment of a finite-state acceptor for derivational morphology.
From Julia Hockenmaier’s slides.

ill-formed words like *musicky and *fishful. We could continue to refine the FSA,
coming ever-closer to an accurate model of English morphotactics. A fragment of
such an FSA is shown in Figure 7.3.

This approach makes a key assumption: every word is either in or out of the
language, with no wiggle room. Perhaps you agreed that musicky and fishful were
not valid English words; but if forced to choose, you probably find a fishful stew or
a musicky tribute preferable to behaving disgracelyful. To take the argument further,
here are some Google counts for various derivational forms:

• superfast: 70M; ultrafast: 16M; hyperfast: 350K; megafast: 87K

• suckitude: 426K; suckiness: 378K

• nonobvious: 1.1M; unobvious: 826K; disobvious: 5K

Given this diversity of possible realizations of the same idea, rather than asking
whether a word is acceptable, we might like to ask how acceptable it is. But fi-
nite state acceptors gives us no way to express preferences among technically valid
choices. We will need to augment the formalism for this.

(c) Jacob Eisenstein 2014-2016. Work in progress.



120 CHAPTER 7. FINITE-STATE AUTOMATA

7.2 Weighted Finite State Automata

A weighted finite-state automaton M = 〈Q,Σ, π, ξ, δ〉 consists of:

• A finite set of states Q = {q0, q1, . . . , qn}
• A finite alphabet Σ of input symbols

• Initial weight function, π : Q→ R

• Final weight function ξ : Q→ R

• A transition function δ : Q× Σ×Q→ R

We have departed from the FSA formalism in three ways:

• Every state can be a start state, with score πq.

• Every state can be an end state, with score ξq.

• Transitions are possible between any pair of states on any input, with a score
δqi,ω,qj .

Now, we can score every path through a weighted finite state acceptor (WFSA)
by the sum of the weights for the transitions, plus the scores for the initial and
final states. The shortest path algorithm finds the minimum-cost path through a
WFSA for a string ω, with time complexityO(E+V log V ), where E is the number
of edges and V is the number of vertices (Cormen et al., 2009).

Weighted finite state automata (WFSAs) are a generalization of unweighted
FSAs: for any FSA M we can build an equivalent WFSA by setting πq =∞ for all
q 6= q0, ξq = ∞ for all q /∈ F , and δqi,ω,qj for all transitions {(q1, ω) → q2} that are
not permitted by the transition function of M .

Applications of WFSAs

We can use WFSAs to score derivational morphology as suggested above. But
let’s start with some simpler examples.

Edit distance

An edit distance is a function of two strings, which quantifies their similarity:
for example, she and he differ by only the addition of a single letter, while you
and me differ on every letter. There are a huge number of ways to compute edit

(c) Jacob Eisenstein 2014-2016. Work in progress.
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q0start qe qd qi qt
e:0 d:0 i:0 t:0

*:1 *:1 *:1 *:1 *:1

ε:1 ε:1 ε:1

Figure 7.4: A weighted finite state acceptor for computing edit distance from the
word edit.

distance (Manning et al., 2008), with applications in information retrieval, bioin-
formatics, and beyond.

Here we consider a simple edit distance, which computes the minimum num-
ber of character insertions, deletions, and substitutions required to get from one
word to another. Insertions and deletions are penalized by a cost of one; substi-
tutions have a cost of two. To compute this cost, we build a WFSA with one state
for every letter in the word, plus an initial state q0: for example, for the word edit,
we build a machine with states q0, qe, qd, qi, qt.

• The initial cost for q0 is zero; for every other state, the initial cost is infinite.

• The final cost for qt is zero; for every other state, the final cost is infinite.

• We define the transition function as follows:

– The cost for “correct” symbols and rightward moves is zero: for exam-
ple, δq0,e,qe = 0, and δqi,t,qt = 0.

– The cost for self-transitions is one, regardless of the symbol: for exam-
ple, δqd,∗,qd = 1. These self-transitions correspond to insertions.

– The cost for epsilon transitions to the right is one: for example, δqe,ε,qd =
1. These transitions correspond to deletions.

– The cost of all other transitions is∞.

The machine is shown in Figure 7.4. The total edit distance for a string is the
sum of costs across the best path through machine. Note that we did not define
a cost for substitutions (e.g., from him to ham), because substitutions can be per-
formed by a combination of insertion and deletion, for a total cost of two. How-
ever, some edit distances assign a cost of one to substitutions; can you see how to
modify the WFSA to compute such an edit distance?

(c) Jacob Eisenstein 2014-2016. Work in progress.
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N-gram language models

Weighted finite state acceptors can also be used to compute probabilities of se-
quences — for example, the probability of a word sequence from an n-gram lan-
guage model. To do this, we define the states and transitions so that each transi-
tion is equal to a condition probability, δqi,ωm,qj = p(qi, ωm | qj), so that the product
is equal to the joint probability of the state sequence and the string,

p(q1:M ,ω1:M) =
M∏
m

p(qm, ωm | qm−1). (7.5)

For example, to construct a unigram language model over a vocabulary V of
size V , we need just a single state. All transitions are self-transitions, with proba-
bility equal to the unigram word probability, δq0,w,q0 = p1(w).

To construct a bigram language model, we need to model the conditional prob-
ability p(wm | wm−1). To do this in a WFSA, we must create V different states: one
for each context. Then we define the transition function as,

δqi,wm,qj =

{
p(wm | wm−1 = i), j = m

0, otherwise.
(7.6)

Because each state represents a context, we require the transition function to en-
sure that we are in the right state after observing wm: thus, we assign zero prob-
ability to all other transitions. The start function captures the probability p(w |
〈START〉), and the final state function captures the probability p(〈STOP〉 | w). Thus,
the bigram probability of any string is computed by the product of transition
scores,

p2(w1:M) =p(w1 | 〈START〉)×
(

M∏
m=2

p(wm | wm−1)

)
× p(〈STOP〉 | wM) (7.7)

=πw1 ×
(

M∏
m=2

δqwm−1 ,wm,qwm

)
× ξwM . (7.8)

Can you see how to construct a trigram language model in the same way?

Interpolated n-gram language model

Knight and May (2009) show how to implement an interpolated bigram/unigram
language model using a WFSA. Recall that an interpolated bigram language model

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 7.5: WFSA implementing an interpolated bigram/unigram language
model (Knight and May, 2009). [todo: maybe redraw this for clarity?]

computes probability,

p̂(wm | wm−1) = λp1(wm) + (1− λ)p2(wm | wm−1), (7.9)

with p̂ indicating the interpolated probability, p2 indicating the bigram probabil-
ity, and p1 indicating the unigram probability.

Note that Equation 7.9 involves both the multiplication and addition of proba-
bilities. Knight and May (2009) achieve this through the use of non-determinism.
The basic idea is shown in Figure 7.5. At each of the top row of states in Figure 7.5,
there are two possible ε-transitions, which consume no input. With score λ, we
transition to the generic state U , which “forgets” the local context; transitions out
of U are scored according to the unigram probability model p1. With score 1 − λ,
we transition to one of the context-remembering states, S ′, T ′, H ′, E ′. Each of these
states encodes the bigram context, and outgoing transitions are scored according
to the bigram probability model p2.

Any given path through this WFSA will have a score that multiplies together
the probabilities of generating the words in the input, as well as the decisions
about whether to use the unigram or bigram probability models. However, due to
the non-determinism, each input string will have many possible paths to accep-
tance. Let’s write these paths as sequences z1, z2, . . . , zM , with each zm ∈ {1, 2},
indicating whether the unigram or bigram model was chosen to generating wm.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Then the string b,a will have the following paths and scores:

score(1, 1, 1) =λ× p1(b)× λ× p1(a)× λ× p1(〈STOP〉) (7.10)
=λ3p1(a)p1(b)p1(〈STOP〉) (7.11)

score(1, 1, 2) =λ2(1− λ)p1(b)p1(a)p2(〈STOP〉 | a) (7.12)
score(1, 2, 1) =λ2(1− λ)p1(b)p2(a | b)p1(〈STOP〉) (7.13)
score(1, 2, 2) =λ(1− λ)2p1(b)p2(a | b)p2(〈STOP〉 | a) (7.14)
score(2, 1, 1) =λ2(1− λ)p2(b | 〈START〉)p1(a)p1(〈STOP〉) (7.15)
score(2, 1, 2) =λ2(1− λ)p2(b | 〈START〉)p1(a)p2(〈STOP〉 | a) (7.16)
score(2, 2, 1) =λ2(1− λ)p2(b | 〈START〉)p2(a | b)p1(〈STOP〉) (7.17)
score(2, 2, 2) =(1− λ)3p2(b | 〈START〉)p2(a | b)p2(〈STOP〉 | a), (7.18)

where 〈START〉 is the special start symbol and 〈STOP〉 is the special stop symbol.
Each of these scores is a joint probability p(w1:M , z1:M); summing over them gives∑
z1:M

p(w1:M , z1:M) = p(w1:M), which is the desired marginal probability under
the interpolated language model. Thus, in this case, we want not the score of the
single best path, but the sum of the scores of all paths that accept a given input
string.

7.3 Semirings

We have now seen three examples: an FSA for derivational morphology, and WF-
SAs for edit distance and language modeling. Several things are different across
these examples.

Scoring

• In the derivational morphology FSA, we wanted a boolean “score”: is the
input a valid word or not?

• In the edit distance WFSA, we wanted a numerical (integer) score, with
lower being better.

• In the interpolated language model, we wanted a numerical (real) score,
with higher being better.

Nondeterminism

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• In the derivational morphology FSA, we accept if there is any path to a ter-
minating state.

• In the edit distance WFSA, we want the score of the single best path.

• In the interpolated language model, we want to sum over non-deterministic
choices.

Semiring notation allows us to combine all of these different possibilities into
a single formalism.

Formal definition

A semiring is a system (K,⊕,⊗, 0, 1)

• K is the set of possible values, e.g. {R+ ∪∞}, the non-negative reals union
with infinity

• ⊕ is an addition operator

• ⊗ is a multiplication operator

• 0 is the additive identity

• 1 is the multiplicative identity

A semiring must meet the following requirements:

• (a⊕ b)⊕ c = a⊕ (b⊕ c), (0⊕ a) = a, a⊕ b = b⊕ a
• (a⊗ b)⊗ c = a⊗ (b⊗ c), a⊗ 1 = 1⊗ a = a

• a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c), (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)
• a⊗ 0 = 0⊗ a = 0

Semirings of interest :
where ⊕log(a, b) is defined as log(ea + eb).
Semirings allow us to compute a more general notion of the “shortest path”

for a WFSA.

• Our initial score is 1

• When we take a step, we use ⊗ to combine the score for the step with the
running total.

• When nondeterminism lets us take multiple possible steps, we combine their
scores using ⊕.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Name K ⊕ ⊗ 0 1 Applications

Boolean {0, 1} ∨ ∧ 0 1 identical to an unweighted
FSA

Probability R+ + × 0 1 sum of probabilities of all
paths

Log-probability R ∪ −∞∪∞ ⊕log + −∞ 0 log marginal probability
Tropical R ∪ −∞∪∞ min + ∞ 0 best single path

Example Let’s see how this works out for our language model example.

score({a, b, a}) = 1⊗
(
λ⊗ p2(a|∗)⊕ (1− λ)⊗ p1(a)

)
⊗
(
λ⊗ p2(b|a)⊕ (1− λ)⊗ p1(b)

)
⊗
(
λ⊗ p2(a|b)⊕ (1− λ)⊗ p1(a)

)
Now if we plug in the probability semiring, we get

score({a, b, a}) = 1×
(
λp2(a|∗) + (1− λ)p1(a)

)
×
(
λp2(b|a) + (1− λ)p1(b)

)
×
(
λp2(a|b) + (1− λ)p1(a)

)
But if we plug in the log probability semiring, we need the edge weights to

be equal to log p1, log p2, log λ, and log(1− λ). Then we get:

score({a, b, a}) = 0 + log
(
exp(log λ+ log p2(a|∗)) + exp(log(1− λ) + log p1(a))

)
+ log

(
exp(log λ+ log p2(b|a)) + exp(log(1− λ) + log p1(b))

)
+ log

(
exp(log λ+ log p2(a|b)) + exp(log(1− λ) + log p1(a))

)
= 0 + log(λp2(a|∗) + (1− λ)p1(a))

+ log(λp2(b|a) + (1− λ)p1(b))

+ log(λp2(a|b) + (1− λ)p1(a)),

which is exactly equal to the log of the score from the probability semiring.

• The score on any specific path will be the semiring product of all steps along
the path.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• The score of any input will be the semiring sum of the scores of all paths that
successfully process the input.

• What happens if we use the tropical semiring?

7.4 Finite state transducers

Finite state acceptors can determine whether a string is in a language, and weighted
finite state acceptors can compute a score for every string from a given alphabet.
We now consider a family of automata which can transduce one string into an-
other. Formally, finite state transducers (FSTs) define regular relations over pairs
of strings. We can think of them in two different ways:

• Recognizer: An FST accepts a pair of strings (input and output) if the pair is
in the regular relation defined by the transducer.

• Translator: An FST takes an input string, and returns an output, such that
the input/output pair is in the regular relation.

Like FSAs, finite-state transducers are defined as tuples. In this case, we define
M = 〈Q,Σ,∆, q0, F, δ, σ〉, including:

• a finite set of states Q = {q0, q1, . . . , qn};

• the finite alphabets Σ for input symbols and ∆ for output symbols;

• an initial state q0 ∈ Q, and a set of final states F ⊆ Q;

• a transition function δ : 〈Q× Σ∗〉 → 〈Q×∆∗〉.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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qinitstart

qreg

qneed-e

qplural

wit/wit

wish/wish +Pl/+es

+Pl/+s

Figure 7.6: A finite state transducer for pluralizing English words.

Example Consider the following FST, shown in Figure 7.6, which performs plu-
ralization of some English words:

Q ={q0, qregular, qneeds-e, qpluralized} (7.19)
N ={aardvark, . . . , wish, wit, . . . , zyzzyva2}(the set of all English nouns) (7.20)
Σ =N ∪ {+PL} (7.21)
∆ =N ∪ {+s, +es} (7.22)
q0 =q0 (7.23)
F ={qregular, qneeds-e, qpluralized} (7.24)
δ = {(〈q0, aardvark〉 → 〈qregular, aardvark〉),

(〈q0,wish〉 → 〈qneeds-e,wish〉),
(〈q0,wit〉 → 〈qregular,wit〉),
. . .

(〈qregular, +PL〉 → 〈qpluralized,+s〉)
(〈qneeds-e, +PL〉 → 〈qpluralized,+es〉) (7.25)

This machine will accept the pairs 〈wit+PL,wits〉, 〈wish+PL,wishes〉, 〈wit,wit〉,
but not the pairs 〈wit+PL,wites〉, 〈wish+PL,wishs〉, 〈wish+PL,wish〉. Thus, it cor-
rectly handles a small part of English orthography for pluralization; with a dif-
ferent word list, it could also be used to conjugate verbs to third-person singular.
Consider how you might modify this FST to perform lemmatization.

Non-determinism Unlike non-deterministic finite state acceptors, not all non-
deterministic finite state transducers (NFSTs) can be determinized. However, spe-

(c) Jacob Eisenstein 2014-2016. Work in progress.
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cial subsets of NFSTs called subsequential transducers can be determinized effi-
ciently (see 3.4.1 in Jurafsky and Martin (2009)).

7.5 Weighted FSTs

Weights can be added to FSTs in much the same way as they are added to FSAs.
For any pair 〈q ∈ Q, s ∈ Σ∗〉, we have a set of possible transitions, 〈q ∈ Q, t ∈
∆∗, ω ∈ K〉, with a weight ω in the domain defined by the semiring. Table 7.1
shows the relationship between FSAs, FSTs, and their weighted generalizations.

acceptor transducer

unweighted FSA: Σ∗ → {0, 1} FST: Σ∗ → Σ∗

weighted WFSA: Σ∗ → K WFST: Σ∗ → 〈Σ∗,K〉

Table 7.1: A unified view of finite state automata

Example In section 7.2, we saw how to build an FSA that would compute the
edit distance from any single word. With WFSTs, we can build a general edit
distance computer, which computes the edit distance between any pair of words.

• Q0
a−→
a
Q0 : 0

• Q0
a−→
ε
Q0 : 1

• Q0
ε−→
a
Q0 : 1

The shortest path for a pair of strings 〈s, t〉 in this transducer has a score equal
to the minimum edit distance between the strings (in the tropical semiring). We
can think of each path as defining a potential alignment between s and t. That is,
there are many ways to transduce she into he; in the minimum edit distance path,
we have the alignment 〈s, ε〉, 〈h, h〉, 〈e, e〉.

Operations on FSTs

FSTs are:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Closed under union. If T1 recognizes the relation R1 and T2 recognizes the
relation R2, then there exists an FST that recognizes the relation R1 ∪R2.

• Closed under inversion. If T1 recognizes the relation R1 = {si, ti}i, then
there exists an FST that recognizes the relation defined by {ti, si}i, effectively
switching the inputs and outputs.

• Closed under projection. If T1 recognizes the relation R1 = {si, ti}i, then
there exist FSTs that recognize the relations defined by {si, ε}i and {ε, ti}i.
Note that these relations ignore either the input or the output, and so are
equivalent to finite state acceptors (FSAs).

• Not closed under difference, complementation, and intersection;

• Closed under composition, as described below.

FST composition is the basis for implementing the noisy channel model in
FSTs, and can be used to support dozens of cool applications. Through composi-
tion, we can create finite state cascades that link together several simple models;
closure guarantees that the resulting model is still a WFST.

Finite state composition

Suppose we have a transducer T1 from Σ∗ to Γ∗, and another transducer T2 from
Γ∗ to ∆∗. Then the composition T1 ◦ T2 is an FST from Σ∗ to Γ∗. More formally,

Unweighted definition iff 〈x, z〉 ∈ T1 and 〈z, y〉 ∈ T2, then 〈x, y〉 ∈ T1 ◦ T2.

Weighted definition

(T1 ◦ T2)(x, y) =
⊕
z∈Σ∗

T1(x, z)⊗ T2(z, y) (7.26)

Note that weighted composition in the Boolean semiring is identical to un-
weighted composition.

Designing algorithms for automatic FST composition is relatively straightfor-
ward if there are no epsilon transitions; otherwise it’s more challenging (Allauzen
et al., 2009). Luckily, software toolkits like OpenFST take care of this for you.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Example

• T1 : Q0
x−→
a
Q0, Q0

y−→
b
Q0

• T2 : Q1
a−→ Q1, Q1

b−→ Q2, Q2
b−→ Q2

• T1 ◦ T2 : Q1
x−→ Q1, Q1

y−→ Q2, Q2
y−→ Q2

For simplicity T2 is written as a finite-state acceptor, not a transducer. Accep-
tors are a special case of transducers, where the output alphabet is ∆ = {ε}.

7.6 Applications of finite state composition

Edit distance

Consider the general edit distance computer developed in section 7.5. It assigns
scores to pairs of strings. If we compose it with an FSA for a given string (e.g.,
tech), we get a WFSA, who assigns score equal to the minimum edit distance from
tech for the input string.

• Composing an FST with a FSA yields a FSA.

• A very useful design pattern is to build a decoding WFSA by composing a
general-purpose WFST with an unweighted FSA representing the input.

• The best path through the resulting WFSA will be the minimum cost / max-
imum likelihood decoding.

Transliteration

English is written in a Roman script, but many languages are not. Transliteration
is the problem of converting strings between scripts. It is especially important for
names, which don’t have agreed-upon translations.

A simple transliteration system can be implemented through the noisy-channel
model.

• T1 is an English character model, implemented as a transducer so that strings
are scored as log pr(c1, c2, . . . , cM).

• T2 is a character-to-character transliteration model. This can be based on
explicit rules,3 or on conditional probabilities log pt(c

(f) | c(r)).
3http://en.wikipedia.org/wiki/Romanization_of_Russian

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• T3 is an acceptor for a given string that is to be transliterated.

The machine T1 ◦ T2 ◦ T3 scores English character strings based on their ortho-
graphic fluency (T1) and adequacy (T2).

Suppose you were given an Roman-script character model and a set of foreign-
script strings, but no equivalent Roman-script strings. How would you use EM to
learn a transliteration model?

Knight and May (2009) provide a more complex transliteration model, which
transliterates between Roman and Katakana scripts, using a deep cascade that
includes models of the underlying phonology. In their model,

Word-based translation

Machine translation can be implemented as a finite-state cascade. A simple ap-
proach is to compose three automata:

• T1 is a language model, implemented as a transducer, where every path in-
puts and outputs the same string, with a score equal to log p(w1, w2, . . . , wM).
This model’s responsibility is to tell us that p(Coffee black me pleases much)�
p(I like black coffee a lot).

• T2 is the translation machine. It contains a single state, and every transition
takes a word from the source language and outputs a word in the target
language. The weights are typically set to p(w(t) | w(s)). This model should
assign a high probability to p(cafe | coffee), and a low probability to p(cafe |
tea).

Suppose we are translating Spanish to English. Then T1 maps from English
to English, since it is a language model in English; T2 maps from English
to Spanish. By the definition of finite state composition (Equation 7.26), the
scores of the paths through these two transducers will be combined with
the ⊗ operator; in the probability semiring, this means we will compute
p(w(e))p(w(s) | w(e)) = p(w(s),w(e)).

• T3 is a deterministic finite-state acceptor, which accepts only the sentence
to be translated. By composing T1 ◦ T2 ◦ T3, we get a weighted finite-state
acceptor for sentences in the target language (in our example, English).

Recall that the composition T1◦T2 represents the joint probability p(w(s),w(e)).
The effect of T3 is to “lock”w(s) to the sentence to be translated. The shortest

(c) Jacob Eisenstein 2014-2016. Work in progress.
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path in the composed machine T1 ◦ T2 ◦ T3 thus computes,

ŵ(e) =arg max
w(e)

p(w(s),w(e)) (7.27)

=arg max
w(e)

p(w(e) | w(s)), (7.28)

which is the maximum-likelihood translation.

• Finally, note that we will need to allow ε-transitions in the translation model
to handle cases like the translation of mucho to a lot. This introduces non-
determinism to the finite-state cascade; again, we can think of this in terms of
possible alignments between the source and target languages. The shortest-
path algorithm computes the maximum likelihood translation while implic-
itly summing over all alignments.

7.7 Discriminative structure prediction
Now suppose we would like to use perceptron to learn to perform morphological
segmentation. Imagine we are given a set of words x1:N and their true segmenta-
tions y1:N . We would like to use perceptron to learn the weights of a WFST. How
can we do it?

Recall that perceptron relies on computing a feature function f(x,y). We will
make this feature vector exactly equal to the finite-state transitions taken in the
shortest-path transduction ofx to y. That is, each potential transition (Qi, ω)→ Qo

corresponds to some entry j in the vector f(x,y), and the value fj(x,y) is equal
to the number of times that transition was taken. Although FSTs can manipulate
arbitrarily long strings, there will still be only a finite number of possible transi-
tions, since both the state space and the alphabet are finite. The scores for these
transitions can then be formed into the vector of weights θ, so that the score of the
best path from x to y can be represented as the inner product θ>f(x,y).

Let these transitions be represented in the weighted FST T . Given an instance
x, we build a chain acceptor Ax. By composing T and Ax, we obtain a WFSA in
which the shortest path corresponds to the prediction ŷ, and the transitions on
this path are the feature vector f(x, ŷ). We then compute the score of the best
scoring path for accepting the true y segmentation in this machine; the transitions
on this path form the feature vector f(x,y). Given these two feature vectors, the
perceptron update is as usual: θ(t+1) ← θ(t) + f(x,y) − f(x, ŷ). Weight averag-
ing and passive-aggressive can be applied here, just as they were applicable in
straightforward classification.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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But unlike classification, we have now learned a function for making predic-
tions over an infinite set of labels: all possible morphological segmentations for
all possible words. We were able to do this by designing a feature function that
shares features across different labels: if y and ŷ are nearly the same, then they
will involve many of the same finite-state transitions, and so the feature vector
f(x,y) and f(x, ŷ) will be nearly the same too. This is a powerful idea that will
enable us to apply the tools of classification to a huge range of problems in lan-
guage technology, including part-of-speech tagging, parsing, and even machine
translation.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 8

Part-of-speech tagging

Words can be grouped into rough classes based on syntax.

• Why is colorless green ideas sleep furiously more acceptable than ideas colorless
furiously green sleep?

• Why is teacher strikes idle children ambiguous?

In both examples, word classes can provide an explanation.

• Word classes have strong ordering constraints:

– J J N V R is relatively likely. This is the tag sequence for colorless green
ideas sleep furiously. The abbreviation J means adjective,N means noun,
V means verb, and R means adverb.

– N J R J V is very unlikely in English. Do you see why?

• Ambiguity about word class leads to very different interpretations:

(8.1) teacher/N strikes/N idle/V children/N
(8.2) teacher/N strikes/V idle/J children/N (ouch!)

So clearly we have intuitions about a few parts-of-speech already: noun, verb,
adjective, adverb. Jurafsky and Martin (2009) describe these as the four major
open word classes, although apparently not all languages have all of them.

What other parts of speech are there?

• The Penn Treebank defines a set of 45 POS tags for English.1

1http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
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• The Brown corpus defines a set of 87 POS tags for English.2

• Petrov et al. (2012) define a “universal” set of 12 tags, which are supposed to
apply across many languages.

To understand the linguistic differences between these tagsets, let’s look at an
example:

(8.3) My name is Ozymandias, king of kings:
Look on my works, ye Mighty, and despair!

The part-of-speech tags for this couplet from Ozymandias are shown in Ta-
ble 8.1.

Tagset granularity

All tagsets distinguish basic categories like nouns, pronouns, verbs, adjectives,
and punctuation. The Brown tagset includes a number of fine-grained distinc-
tions:

• specific tags for the be, do, and have verbs, which the other two tagsets just
lump in with other verbs;

• distinct tags for possessive determiners (my name) and possessive pronouns
(mine);

• distinct tags for the third-person singular pronouns (e.g., it, he) and other
pronouns (e.g., they, we, I).

In contrast, the Universal tagset aggressively groups categories that are distin-
guished in the other tagsets:

• all nouns are grouped, ignoring number and the proper/common distinc-
tion (see below);

• all verbs are grouped, ignoring inflection;

• preposition and postpositions are grouped as “adpositions”;

• all punctuation is grouped;

• coordinating and subordinating conjunctions (e.g. and versus that) are grouped.
2http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Brown PTB Universal

My possessive determiner
(DD$)

possessive pronoun
(PRP$)

pronoun
(PRON)

name noun, singular, common
(NN)

NN NOUN

is verb “to be” 3rd person,
singular (BEZ)

verb 3rd person, singular
(VBZ)

VERB

Ozymandias proper noun, singular
(NP)

proper noun, singular
(NNP)

NOUN

, comma (,) comma (,) punctuation (.)

king NN NN NOUN

of preposition (IN) preposition (IN) adposition
(ADP)

kings noun, plural, common
(NNS)

NNS NOUN

: colon (:) mid-sentence punc (:) .

Look verb, base: uninflected
present, imperative, or
infinite (VB)

VB VERB

on IN IN ADP

my DD$ PRP$ PRON

works NNS NNS NOUN

ye personal pronoun, nomi-
native, non 3S (PPSS)

personal pronoun, nomi-
native (PRP)

PRON

mighty adjective (JJ) JJ adjective (ADJ)

, comma (,) comma (,) punctuation (.)

and coordinating conjunction
(CC)

CC conjunction
(CONJ)

despair VB VB VERB

Table 8.1: Part-of-speech annotations from three tagsets for the first couple of the
poem Ozymandias.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The Penn Treebank strikes a middle ground between these two relative extremes.
But which is right? It depends. The Brown tags can be useful for certain appli-
cations, and they may have strong tag-to-tag relations that make tagging easier,
as described in the next chapter). But they are more expensive to annotate. The
Universal tags are intended to generalize across many languages and many types
of text, and should be easier to annotate.

Figure 8.1: [todo: attribution?]

8.1 Details about parts-of-speech
As usual, Bender (2013) provides a useful linguistic perspective.

• Nouns describe entities and concepts

– Proper nouns name specific people and entities: Georgia Tech, Janet,
Buddhism. In English, proper nouns are usually capitalized. The Penn
Treebank (PTB) tags are: NNP (singular), NNPS (plural).

– Common nouns cover all other nouns. In English, they are often pre-
ceded by determiners, e.g. the book, a university, some people. Common
nouns decompose into two main types:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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∗ Count nouns have a plural and need an article in the singular, dogs,
the dog;
∗ Mass nouns don’t have a plural and don’t need an article in the

singular:

(8.4) snow is cold

(8.5) gas is expensive

– Pronouns refer to specific noun phrases or entities or events.

∗ Personal pronouns refer to people or entities: you, she, I, it, me. The
PTB tag is PRP.
∗ Possessive pronouns are pronouns that indicate possession: your,

her, my, its, one’s, our. The PTB tag is PRP$.
∗ Wh-pronouns (WP) are used in question forms, and as relative pro-

nouns:

(8.6) Where are you going?

(8.7) The girl who played with fire.

Unlike other nouns, the set of possible pronouns cannot be expanded.
It is a closed class. Can you think of other closed class word groups?

• Verbs describe activities, processes, and events. For example, eat, write, sleep
are all verbs.

– The Penn Treebank differentiates verbs by morphology: VB (infinitive),
VBD (past), VBG (present participle), VBN (past participle), VBZ (present
3rd person singular), VBP (present, non-3rd person singular).

– Modals are a closed subclasses of verbs, such as (should, can, will, must).
They get PTB tag MD.

– The verb to be requires special treatment, as it must appear with a pred-
icative adjective or noun, e.g.

(8.8) She is hungry.

(8.9) We are Georgians.

The verbs is and are in these cases are called copula. The Brown Tagset
distinguishes copula, but the PTB does not. More generally, in light
verb constructions, the meaning is largely shaped by a predicative ad-
jective, e.g. he got fired, [todo: more examples].

(c) Jacob Eisenstein 2014-2016. Work in progress.
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– Auxiliary verbs include be, have, will, which form complex tenses in
English, e.g. we will have done it twice. Recall from chapter 6 that English
makes extensive use of auxiliary verbs to determine the tense, while
other languages, such as French, rely more on morphology.

∗ Another auxiliary verb is do, as used in questions and negation, e.g.

(8.10) Did you eat yet?

(8.11) We did not take your bagels.

∗ The Brown corpus has special tags for HAVE and DO, but the PTB
does not.

• Adjectives describe properties of entities: in the Ozymandias eaxmple, the
adjectives include antique, vast, trunkless. In English, adjectives can be used
in two ways:

– Attributive: an antique land;
– Predicative: the land was antique.

Adjectives may be gradable, meaning that they have a comparative form
(e.g., bigger, smellier) superlative form (biggest, smelliest). Adjectives like an-
tique are not gradable.

– With big, we can move to comparative form by adding the suffix -est.
This is an example of agglutinative morphology, since the comparative
morpheme is added to the stem as an affix. But there are adjectives
in English where the relationship between the base and comparative
forms is not agglutinative, but fusional. One example good, better, best;
can you think of any others?

– The PTB distinguishes these forms with three tags: JJ, JJR, JJS.

• Adverbs describe properties of events.

– Manner: slowly, slower, fast, hesitantly
– Degree: extremely, very, highly
– Adverbs may be directional or locative. In the following examples, the

bolded words are all adverbs.

(8.12) She lives downstairs.

(8.13) I study here.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(8.14) Go left at the first traffic light.

– Adjectives also include temporal information, such as yesterday, Mon-
day, and soon.

– Besides verbs, adverbs may also modify sentences, adjectives, or other
adverbs.

(8.15) Apparently, the very ill man walks extremely slowly.

In this example, very modifies the adjective ill, slowly modifies the verb
walks, extremely modifies the adverb slowly, and apparently modifies the
entire sentence that follows it.

– Like adjectives, adverbs may also be gradable. The PTB distinguishes
graded adjectives with the tags RB, RBR, RBS.

• Prepositions are a closed class of words that can come before noun phrases,
forming a prepositional phrase that relates the noun phrase to something
else in the sentence.

– I eat sushi with soy sauce. The prepositional phrase attaches to the noun
sushi.

– I eat sushi with chopsticks. The prepositional phrase here attaches to the
verb eat.

The preposition To gets its own tag TO, because it forms the infinitive with
bare form verbs (VB), e.g. I want to eat. All other prepositions are tagged IN
in the PTB.

• Coordinating conjunctions (PTB tag: CC) join two elements,

(8.16) vast and trunkless legs
(8.17) She plays backgammon or she does homework.
(8.18) She eats and drinks quickly.
(8.19) Sandeep lives north of Midtown and south of Buckhead.
(8.20) Max cooked, and Abigail ate, all the pizza.

• Subordinating conjunctions introduce a subordinate clause, e.g.

(8.21) She thinks that Chomsky is wrong about language models.

The PTB tag here is IN.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Particles are words that come with verbs and can change their meaning to a
new phrasal verb, e.g.,

(8.22) Come on.

(8.23) He brushed himself off

(8.24) Let’s check out that new restaurant.

Particles are a closed class, and are tagged RP in the PTB.

• Determiners (PTB tag: DT) are a closed class of words that precede noun
phrases.

– Articles: the, an, a
– Demonstratives: this, these, that
– Quantifiers: some, every, few
– Wh-determiners: e.g., Which bagel should I choose?, Do you know when it

will be ready?

• Oddballs

– Existential there, e.g. There is no way out of here, gets its own tag, EX.
– So does the possessive ending ’s, which is POS. Recall that possessive

pronouns don’t have this ending, so they get a special tag, PRP$.
– Other special tags are reserved for numbers (CD), list items (LS), com-

mas (,), and other non-alphabetic symbols.

8.2 Part of speech tagging
Part of speech tags relate to many other linguistic phenomena:

• Lexical semantics: can/V vs can/N, teacher strikes children, etc

• Pronunciation: inSULT/V vs INsult/N, conTENT/J vs CONtent/N

• Translation: park/v→ garer, park/N→ parque

• NP chunking: grep {JJ | NN}* {NN | NNS}

This means that part-of-speech tagging is a useful preprocessing step for down-
stream applications. So the logical next question is: how can we build an auto-
matic POS tagger?

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Observation 1: it’s easy.

– In English, 60% of word types have only one possible POS tag.
– If you choose the majority POS tag for each token, you get 90% right.

• Observation 2: it’s not easy: a few words have a lot of possible POS tags.

(8.25) We’re taking it back/RB.

(8.26) The bar is in the back/NN.

(8.27) Go back/RP home. [todo: adverb?]

(8.28) He backs/VBP all the conservative candidates.

(8.29) The back/JJ roads are safer.

• Observation 3: 90% is not actually very good. 0.910 ≈ .3, so you will only
get 30% of ten-word sentences correct. Sentences have exponentially many
possible POS sequences. For example, the four-word sentence below has 36
possible tag sequences.

VBD VB
VBN VBZ VBP VBZ
NNP NNS NN NNS

fed raises interest rates

To get an idea of how we can solve part-of-speech tagging, let’s look at a
tougher poem, Jabberwocky:

(8.30) ’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

Forget twas. What about slithy and toves? Can you guess the part of speech?
You probably don’t know what these words mean, for the very good reason that
they are not real words. But you might still have a good guess about their syntactic
class. What information are you using to make these guesses?

• Word identity: you do know that and is CC and the is DET.

• Context

(c) Jacob Eisenstein 2014-2016. Work in progress.
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– JJ NN is a frequently observed pattern in English; So are DET JJ and
DET NN.

– DET VB is rarely observed in English.

• Morphology

– The suffix -s usually indicates a noun or a verb.
– The suffix -able indicates an adjective — 98% of the time!
– The suffix -ly often indicates an adverb.
– The prefix un- often indicates an adjective or a verb.

But these not rules, just hints: exceptions include uncle, rely, and stable. We
therefore need to combine these intuitions with other features of the sen-
tence.

Let’s put morphology on hold for a minute. Suppose we have an annotated
corpus, with tagged sentences, {(w1:Ni ,y1:Ni)}1:T .

• We can estimate the likelihood of a word given a tag, for example by using
relative frequency estimation:

p(w | y) =
count(w, y)

count(y)
. (8.1)

As in language modeling and Naı̈ve Bayes, smoothing is usually advisable.
• Given this same annotated corpus, we can also compute p(ym | ym−1), which

is a sort of language model over tags.

p(ym | ym−1) =
count(ym−1, ym)

count(ym−1)
(8.2)

Let’s combine these ideas via a generative story

• For word m, draw tag ym ∼ Categorical(θym−1)

• Then draw word wm ∼ Categorical(φym)

We’ve built a generative model that explains our observationsw through a bigram
generative model over the tags. Under this model, we can compute,

p(y | w) ∝p(w,y) (8.3)
=p(w | y)p(y) (8.4)

=
M∏
m

p(wm | ym)p(ym | ym−1) (8.5)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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This is a hidden Markov model.

• It’s Markov because the probability of ym depends only on ym−1 and not any
of the previous history.

• It’s hidden because y1:M is unknown when we decode a string w1:M .

Hidden Markov models are an extremely well-known concept in natural lan-
guage processing. But in fact, they are just a special case of finite state transduc-
tion. Can you see how they relate?

(c) Jacob Eisenstein 2014-2016. Work in progress.





Chapter 9

Sequence labeling

In sequence labeling, we want to assign tags to words, or more generally, to dis-
crete elements in a sequence. There are many applications of sequence labeling in
natural language processing:

• Part-of-speech tagging: Go/V to/P Georgia/N Tech/N next/J year/N ./.

• Named entity recognition:1 Go/O to/O Georgia/B-ORG Tech/I-ORG next/B-
DATE year/I-DATE ./O

• Phrase chunking: Go/B-VP to/B-PP Georgia/B-NP Tech/I-NP next/B-NP
year/I-NP ./O

In classification, we would choose each tag independently, ym⊥yn | wm,∀m,n.
But in sequence labeling, we choose the sequence of tags jointly. Probabilistically,
we might try to choose ŷ = arg maxy∈YM p(y | w). As we will see later, we can
also write this in the form of a linear predictor:

ŷ = arg max
y∈YM

θ>f(x,y) (9.1)

In either case, we have an immediate problem: finding the best scoring tag
sequence in the set YM . As the notation suggests, the number of possible tag se-
quences is exponential in the length of the sequence; we saw this in the previous
chapter, where the short example Fed raises interest rates has 36 possible part-of-
speech tag sequences! This exponential growth means we will need clever algo-
rithms to compute arg maxy∈YM ; we cannot possibly enumerate all possibilities.

1These examples show BIO notation, in which spans such as ORG (organization) or NP (noun
phrase) are delimited using prefixes B- and I-. The prefixes indicate whether each token is at the
beginning or inside of the span; the tag O is reserved for tokens that are outside any span. For
now, we will just think of B-ORG, I-ORG, O, etc, as separate tags; see chapter 18 for more.
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9.1 Hidden Markov Models
Let’s first think about tagging as a probabilistic model. Specifically, we want to
maximize p(y | w) ∝ p(y,w), where w are words and y are tags. This is equiva-
lent to Naı̈ve Bayes, but for sequence labeling.

As in Naı̈ve Bayes, we define the probability distribution p(w,y) through a
generative story,

• For word m, draw tag ym ∼ Categorical(λym−1)

• Then draw word wm ∼ Categorical(φym)

Under this model, we can compute

p(y | w) ∝p(w,y) (9.2)
=pe(w | y;φ)pt(y;λ) (9.3)

=
M∏
m

pe(wm | ym;φ)pt(ym | ym−1;λ) (9.4)

This is a hidden Markov model (HMM). It’s “Markov” because the probability
of ym depends only on ym−1 and not any of the previous history. It’s “hidden”
because ym is unknown.

• The probability pe(wm | ym;φ) is the emission probability, since the words
are treated as emissions from the tags.

• The probability pt(ym | ym−1;λ) is the transition probability, since it assigns
probability to each possible tag-to-tag transition.

Both of these probabilities are typically computed from relative frequency estima-
tion on a labeled corpus,

φk,i ,P (Wm = i | Ym = k) =
count(Wm = i, Ym = k)

count(Ym = k)

λk,k′ ,P (Ym = k′ | Ym−1 = k) =
count(Ym = k′, Ym−1 = k)

count(Ym−1 = k)
.

Smoothing is more important for the emission probability than the transition prob-
ability, because the event space is much larger. Smoothing techniques such as
additive smoothing, interpolation, and backoff (see chapter 5) can all be applied
here.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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[todo: make figure]

Figure 9.1: Graphical representation of the hidden Markov model

The HMM generative story is often represented as a graphical model, as shown
in Figure 9.1. Although graphical models and finite-state models both use circles
and arrows, the meaning is completely different; here the nodes represent random
variables, and the edges represent probabilistic dependencies.

The HMM independence assumptions The generative story assumes that the
words are conditionally independent given the tags,

wn⊥{wm6=n} | yn.
Conditional independence is not the same as independence. We do not have
p(wn, wm) = p(wn)p(wm), because the tags are related to each other. For example,
suppose that (a) nouns always follow determiners, (b) the is always a determiner
and (c) bike is always a noun. Then

P (Wm = the,Wm+1 = bike) =
∑

ym+1,ym

P (Wm = the,Wm+1 = bike, ym+1, ym) (9.5)

=
∑

ym+1,ym

P (Wm+1 = bike | ym+1, ym,Wm = the) (9.6)

× P (ym+1 | ym,Wm = the)P (ym |Wm = the)P (Wm = the)
(9.7)

=
∑
ym+1

P (Wm+1 = bike | ym+1) (9.8)

×
∑
ym

P (ym+1 | ym)P (ym |Wm = the)P (Wm = the) (9.9)

=P (Wm+1 = bike | ym+1 = NOUN)× 1× 1× P (Wm = the)
(9.10)

>P (Wm+1 = bike)P (Wm = the). (9.11)

Since bike is mainly used as a noun, the conditional probability p(bike | N) is
greater than the marginal p(bike).

Another way to think about independence is that if we are told one tag, it
affects all of our other tagging decisions.

• For example, in the sentence teacher strikes idle children, we might choose tag
sequence NN VBZ JJ NNS.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• But if are given y3 = VBP, then suddenly y2 = VBZ looks like a bad choice
because pT (VBZ,VBP) is very small.

• So we might now choose y2 = NNS.

• This change might cascade back to y1, etc (not in this case, but it could hap-
pen in theory)

A classifier-based tagger, which treated the tags as IID, might ignore these de-
pendencies, and produce a tag sequence that contained unlikely transitions like
VBZ,VBP. A better alternative might be to tag the text from left-to-right; we
could then condition on the previous tag, choosing

ym = arg max
y

pe(wm|ym)pt(ym|ym−1) (9.12)

But this approach is “greedy,” and can mistakenly commit to bad tagging de-
cisions. For example, in teacher strikes strand children, we might initially choose
y2 = VBZ, because this is more common than the noun sense of strikes. However,
we are then stuck, because strand has low probability as anything but a verb, yet
the verb-verb transition also has low probability. The greedy tagger is unable to
recover the globally optimal sequence, NN NNS VBP NNS, without backtrack-
ing. This is why we need joint inference over y1:M to find ŷ = arg maxy p(w,y).
The key challenge is to search over the exponential number of tag sequences effi-
ciently.

9.2 Algorithms for sequence labeling

Finite state transduction

To see whether efficient joint inference is possible, we first formulate the problem
in terms of finite-state transduction.

• Transducer E has one state, and transduces from tags to words. Each edge
begins and ends in the same state, and has cost δ(e)

w/y,q0→q0 = pe(w | y).

• Transducer T has #|Y| states (assuming a bigram model), and transduces
tags to tags, with δ(t)

y/y,qym−1→qym
= pt(ym | ym−1).

Now, recall the definition of finite state composition,

(T ◦ E)(y, x) =
⊕
z

T (y, z)⊗ E(z, x). (9.13)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Since T only accepts identical tag pairs 〈y, y〉, we can ignore
⊕

; there is only one
possible z = y. The result of T ◦ E is a WFST that transduces tags to words, with
edge weights equal to,

δ
(t◦e)
wm/ym,qym−1→qym

=δ
(e)
w/ym,q0→q0 ⊗ δ

(t)
ym/ym,qym−1→qym

=p(w | ym)⊗ p(ym | ym−1)

=p(w | ym)p(ym | ym−1)

=p(w, ym | ym−1).

Suppose we wanted to work with log probabilities instead. Then,

δ
(t◦e)
wm/ym,qym−1→qym

= log p(w | y)

δ
(t)
y/y,qym−1→qym

= log p(ym | ym−1)

a⊗ b ..=a+ b

δwm/ym,qym−1→qym = log p(wm | ym)⊗ log p(ym | ym−1)

= log p(wm | ym) + log p(ym | ym−1)

= log p(wm, ym | ym−1).

Can you see how many states the resulting FST will have?
To decode an input sentencew1:M , we compose this FST with a chain acceptor

S. This FSA should accept only the sequence w1:M . The composition T ◦ E ◦ S
yields a trellis-shaped weighted finite state acceptor (WFSA).

• Number of columns = M , length of input.

• Number of rows = T , number of tags.

• Edges from states 〈m, t1〉 to 〈m+ 1, t2〉 have the score,

δ
(t◦e)
wm+1/t2,qm,t1→qm+1,t2

=δ
(t)
t2/t2,qt1→qt2

⊗ δ(e)
t2/wm+1,q0→q0

=P (Ym+1 = t2 | Ym = t1) (9.14)
× P (Wm+1 = wm+1 | Ym+1 = t2). (9.15)

Each path in the trellis corresponds to a unique sequence of tags, y1:M , and every
sequence of tags has a unique path. The score of the path is equal to p(w1:M ,y1:M)
by construction. If we define

⊕
= max (as in the tropical semiring), then the score

of the semiring shortest path is equal to maxy p(w1:M ,y1:M).

(c) Jacob Eisenstein 2014-2016. Work in progress.



152 CHAPTER 9. SEQUENCE LABELING

The algorithmic question is: given that there are exponential number of possi-
ble paths, can we still find the best score (and therefore the best path) in polyno-
mial time?

• How expensive is it to construct the trellis?

– Generic composition is polynomial, but it depends on the vocabulary
size.

– But since we know what the trellis is supposed to look like, we can
just build it directly. This requires constant time per edge, ignoring the
vocabulary size.

– How big is the trellis? O(MT ) states, O(MT 2) edges.

• How expensive is it find the shortest path in the trellis?:
Generic shorest path has a time cost ofO(V log V+E), where V is the number
of vertices and E is the number of edges. In this case, we have V = MT
vertices and E = MT 2 edges. The time cost is therefore O(MT logMT +
MT 2), and the space cost is O(V ) = O(MT 2).

• To summarize:

– building the trellis is polynomial;
– shortest path is polynomial;
– therefore, there must be a poly-time algorithm to find the best tag se-

quence, despite the apparently exponential number of paths.

The Viterbi algorithm

The Viterbi algorithm is a special-purpose best-path algorithm for FSTs in the
shape of a trellis. It has a time cost of O(MT 2) and a space cost of O(MT ). This
time cost improvement is important, because Viterbi has linear time complexity in
the length of the sequence M , unlike the generic shortest-path algorithm, which
is O(M logM).

To understand the algorithm, note that the Markov assumption ensures that
we can decompose the likelihood recursively.

p(w1:M ,y1:M) = p(wM | yM)× p(yM | yM−1)× p(w1:M−1,y1:M−1)

• Given ym−1, we can choose ym without considering any other element of the
history.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Algorithm 5 Viterbi algorithm with probabilities
for k ∈ {0, . . . K} do

v[0, k] = 1

for m ∈ {1, . . . ,M} do
for k ∈ {0, . . . , K} do

v[m, k] = maxk′ p(wm | Ym = k)× P (Ym = k | Ym−1 = k′)× v[m− 1, k′]
b[m, k] = arg maxk′ p(wm | Ym = k)× P (Ym = k | Ym−1 = k′)× v[m− 1, k′]

yM+1 = arg maxk v[M,k] + p(YM+1 = 〈STOP〉 | Ym = k)
for m ∈ {M, . . . 1} do

ym = b[m, ym+1]

• Suppose we know the best path to ym = k. The best path to ym+1 = k′ through
ym = k must include the best path to ym = k.

• Suppose we know the score (probability) of the best path to each ym = k,
which we write vm(k) = maxy1...ym−1 p(w1:m,y1:m−1, ym = k). We can then
compute the score of the best path to ym+1 = k′:

vm+1(k′) = max
y1:m

p(w1:m+1,y1:m, ym+1 = k′) (9.16)

=pe(wm+1 | ym+1 = k′) max
y1:m

Pt(Ym+1 = k′ | ym)p(w1:m,y1:m) (9.17)

=pe(wm+1 | ym+1 = k′) max
ym=k

Pt(Ym+1 = k′ | Ym = k) max
y1:m−1

p(w1:m,y1:m−1, ym = k)

(9.18)

=pe(wm+1 | ym+1 = k′) max
ym=k

Pt(Ym+1 = k′ | Ym = k)vm(k) (9.19)

The base case is v0(〈START〉) = 1, with zero probability for everything else.
Viterbi is summarized in Algorithm 5.

We can generalize this recurrence using semiring notation:

vm+1(k′) = δ
(e)
wm+1,ym+1=k′ ⊗

(⊕
k

δ
(t)
k→k′ ⊗ vm(k)

)
(9.20)

Then if we want to move to log-probabilities, we have

vm+1(k′) = log pE(wm+1 | ym+1 = k′)⊗
(⊕

k

log pT (k → k′)⊗ vm(k)

)
(9.21)

= log pE(wm+1 | ym+1 = k′) + max
k

log pT (k → k′) + vm(k) (9.22)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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We will frequently use a semiring in which the edge weights are log probabil-
ities and ⊗ is addition. This is partly because addition is notationally clearer than
multiplication, and because in practical settings, you will use the log probabilities
to avoid underflow. Note that we are setting ⊕ = max, as in the tropical semiring.
This means that the score of the best tag sequence overall is vM(〈STOP〉). To find
the best tag sequence, we just need to keep back-pointers, from vm(k) to vm−1(k′):

vm+1(k′) = max
k

log pE(wm+1 | Ym+1 = k′) + logPT (Ym+1 = k′ | Ym = k) + vm(k) (9.23)

= log pE(wm+1 | ym+1 = k′) +

(
max
k

logPT (Ym+1 = k′ | Ym = k) + vm(k)

)
(9.24)

bm+1(k′) =arg max
k

log pE(wm+1 | Ym+1 = k′) + logPT (Ym+1 = k′ | Ym = k) + vm(k)

(9.25)

=arg max
k

logPT (Ym+1 = k′ | Ym = k) + vm(k) (9.26)

The computation of the back-pointer doesn’t depend on the emission probabil-
ity pE(wm+1 | Ym+1 = k′), since Ym is conditionally independent from wm+1 given
Ym+1. In the probability semiring, we had ⊕ as addition; in the log-probability
semiring, it was log addition. What happens if we try these addition operators?
We’ll see in a moment.

Example

Table 9.1: log p(w | y) [todo: cannot seem to use underscores in mathmode here,
some weird gb4e issue]

they can fish

See the slides for how the Viterbi algorithm works in this example.

The forward algorithm

In an influential survey, Rabiner (1989) defines three problems for hidden Markov
models:

Decoding Find the best tags y for a sequence w.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Table 9.2: log p(ym | ym−1)

N V END

START -1 -2 −∞
N -3 -1 -2
V -1 -3 -2

Likelihood Compute the marginal probability p(w) =
∑
y p(w,y).

Learning Given only unlabeled data {w1,w2, . . . ,wD}, estimate the transition
and emission distributions.

The Viterbi algorithm solves the decoding problem. We’ll talk about the learn-
ing problem in section 9.5. Let’s now consider how to compute the likelihood
p(w) =

∑
y p(w,y). Recall that the Viterbi algorithm can be written in semiring

notation,

vm+1(k′) =
⊕
k

pE(wm+1 | Ym+1 = k′)⊗ P (Ym+1 = k′ | Ym = k)⊗ vm(k). (9.27)

In the Viterbi algorithm, we used a semiring in which a ⊕ b is defined as
max(a, b), and a ⊗ b is defined as a × b. Now let us consider a semiring in which
we redefine a⊕ b to be equal to a + b; if the associated variables refer to probabil-
ities then ⊕ corresponds to adding variables. In this semiring, we will denote the
variables on the trellis as αm(k), indicating the value for tag k at token m. Let us
take the inductive hypothesis that αm(k) = p(w1:m, Ym = k); as we will show, this
enables us to recursively compute the desired joint probability, p(w1:M).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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αm+1(k′) =
⊕
k

pE(wm+1 | Ym+1 = k′)⊗ P (Ym+1 = k′ | Ym = k)⊗ αm(k) (9.28)

=
∑
k

pE(wm+1 | Ym+1 = k′)× P (Ym+1 = k′ | Ym = k)× αm(k) (9.29)

=
∑
k

p(wm+1, Ym+1 = k′ | Ym = k)× αm(k) (9.30)

=
∑
k

p(wm+1, Ym+1 = k′ | Ym = k)× p(w1:m, Ym = k) (9.31)

=
∑
k

p(w1:m+1, Ym+1 = k′, Ym = k) (9.32)

=p(w1:m+1, Ym+1 = k′). (9.33)

In the base case, α1(k) = pE(w1 | Y1 = k)PrT (Y1 = k | Y0 = 〈START〉). Finally, we
have,∑

k

αM(k)× pT (〈STOP〉 | YM = k) =p(w1:M | YM = k)× pT (〈STOP〉 | YM = k)

(9.34)

=
∑
k

p(w1:M , Ym = k, YM+1 = 〈STOP〉) (9.35)

=p(w1:M). (9.36)

This recurrence is called the forward algorithm. In practice, log-probabilities
are more numerically stable, so we use a semiring in which,

a⊗ b =a+ b (9.37)

a⊕ b = log(ea + eb). (9.38)

This definition of semiring addition ensures that log p(x) ⊕ log p(y) = log(p(x) +
p(y)).

The forward algorithm can be extended to tag trigrams in exactly the same way
as the Viterbi algorithm. As in Viterbi, the time complexity isO(MK2) for the tag-
bigram forward algorithm, and O(MK3) for the tag-trigram forward algorithm.
Unlike Viterbi, there is no need to keep backpointers in the forward algorithm.

Applications of the forward algorithm

Why would we want to compute the joint probability p(w1:M)? There are a few
reasons:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Word class language models Remember the question of how to compute the prob-
ability of an “unseen” grammatical sentence like p(colorless green ideas sleep furiously).
In this case, we don’t care about the specific tags, we just want to know
the probability of the utterance, so we can compare it with an unseen un-
grammatical sentence, p(Furiously sleep ideas green colorless). The forward al-
gorithm can be used for this purpose.

Comparing HMMs Suppose we have a few HMMs, each of which could have
generated the observations. If each HMM corresponds to a different expla-
nation of the input, then we might like to know which HMM is most likely
to be responsible for the observations. The forward algorithm can be used
for this purpose, in a sort of sequence-level version of Naı̈ve Bayes. This
approach is sometimes used in gesture recognition (Starner and Pentland,
1997).

Computing marginal probabilities The main practical reason for using the for-
ward algorithm is that it can help us compute marginal probabilities for in-
dividual tags p(ym | w1:M) and for tag bigrams, p(ym, ym+1 | w1:M). These
marginal probabilities are needed for learning in conditional random fields,
described in section 9.4. Note that here we condition on the entire word
sequences w1:M , so these quantities cannot be computed directly from the
forward algorithm, which can only tell us p(w1:m | ym). The required proba-
bilities are obtained by using the forward algorithm in combination with an
analogous backward algorithm.

9.3 Discriminative models of sequence labeling

In practice, probabilistic generative models are rarely used for part-of-speech tag-
ging or other supervised sequence labeling tasks in NLP. This is because there are
two things that probabilistic generative models cannot easily give us: rich features
and fine-grained context.

Rich features Recall the example of the Jabberwocky poem from chapter 8:

(9.1) ’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe

(c) Jacob Eisenstein 2014-2016. Work in progress.
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You probably didn’t know many of these words, yet it was not so hard to see
what some of their tags should be. How did we do it? Recall that the HMM can
incorporate two sources of information:

• Word-tag probabilities, via pE(wm | yn).

• Local context, via pT (ym | ym−1).

Local context is helpful, but the word-tag probabilities will be worthless for words
like brillig, slithy, toves, gyre, etc. For these words, we might rely on guesses about
the morphology. But morphological features are difficult to incorporate in a gen-
erative model, because they break the Naive Bayes assumption:

p(mimsy, -sy | JJ) 6= p(mimsy | JJ)p(-sy | JJ) (9.39)

Similarly, in named entity recognition, capitalization is a particularly important
feature. This is what allows us to distinguish classically ambiguous cases like I
bought an apple and I bought an Apple computer.

More advanced HMMs incorporate morphological, orthographic, and typo-
graphic features by creating a more complex pE(w | y) emission probability. For
example, the TNT Tagger took this approach, and is one of the best generative
taggers (Brants, 2000). However, incorporating morphological features while pre-
serving conditional independence is extremely challenging, making inference com-
plex.

Fine-grained context In addition to word-internal features, we might want more
fine-grained context. For example, in the PTB, this and these are both tagged DT.
But this is likely to be followed by a singular noun NN, and these is likely to be
followed by a plural noun NNS. So we might like to add word-context features to
the probability p(ym | ym−1, wm−1).

How can we incorporate these overlapping features? The solution is to build
sequence labeling models based on the perceptron and logistic regression classi-
fiers. The first model is called structured perceptron, since the label space con-
sists of structures rather than individual labels (Collins, 2002). The second model
is called a conditional random field (CRF), due to its relation to Markov random
fields (Lafferty et al., 2001). In this model, we explicitly compute p(y | w).

In addition to incorporating overlapping features, these models have another
advantage: they are discriminative, directly maximizing the conditional probabil-
ity p(y | w), or minimizing the perceptron loss. As in standard classification, this
criterion is more closely connected to the accuracy metrics that we usually care
about.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Tagging with features

These observations suggest that we construct a feature vector f(w,y), and then
perform tagging by solving the maximization problem,

ŷ =arg max
y∈YM

θ>f(w,y). (9.40)

This is analogous to the linear classification decision rule from chapter 1. But
unlike classification, here we cannot solve the maximization problem by enumer-
ating all tag sequences. We must again use the Viterbi algorithm. To do this, we
make one key assumption: that the feature vector f(w,y) decomposes into a sum
of local feature vectors,

f(w,y) =
M∑
m=1

f(w, ym, ym−1,m). (9.41)

This ensures that,

θ>f(w,y) =θ>
M∑
m=1

f(w, ym, ym−1,m) (9.42)

=
M∑
m=1

θ>f(w, ym, ym−1,m), (9.43)

so that the total score for a tag sequence can be computed as a sum of local scores.
Note that we are constrained to consider only adjacent tags 〈ym, ym−1〉, but we can
consider any word in the sequence. Including the index m as an argument to the
local feature function ensures that we can build features that access the “current”
word wm and its immediate neighbors.

This locality constraint permits a broad range of features:

• Word-tag features, e.g. 〈W : slithy, JJ〉
• Adjacent tag-tag features, e.g. 〈T : JJ,NNS〉
• Suffix-tag features, e.g., 〈M : -es,NNS〉
• Previous-word features, e.g., 〈P1 : the, JJ〉
• Next-word features, e.g., 〈N1 : slithy,DT〉
• We can consider arbitrarily distant words, e.g. 〈Ym,Wm−15〉, because this still

fits in the constraint, θ>f(w,y) =
∑

m θ
>f(w, ym, ym−1,m).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Example Suppose we have the tagging DT JJ NNS for the sequence the slithy
toves in Jabberwocky, so that

w =. . . and the slithy toves
y =. . . CC DT JJ NNS.

Assuming that we have word-tag features, tag-tag features, and suffix features,
then the feature vector is,

f(the slithy toves,DT JJ NNS) ={〈W : the,DT〉, 〈M : ∅,DT〉, 〈T : 〈START〉,DT〉
〈W : slithy, JJ〉, 〈M : -thy, JJ〉, 〈T : DT, JJ〉
〈W : toves,NNS〉, 〈M : -es,NNS〉, 〈T : JJ,NNS〉
〈T : NNS, 〈STOP〉〉}.

Viterbi for tagging with features

With the locality assumption in hand, we can now restate the tagging problem as,

ŷ =arg max
y∈YM

θ>f(w,y) (9.44)

=arg max
y∈YM

M∑
m=1

θ>f(w, ym, ym−1,m). (9.45)

Let us redefine the Viterbi variables as,

vm+1(k) = max
y1:m

θ>f(w, ym+1 = k, ym,m+ 1) +
m∑
n=1

θ>f(w, yn, yn−1, n), (9.46)

so that vm(k) indicates the score of the best tag sequence ending in Ym+1 = k. We
can then compute these variables recursively.

vm+1(k) = max
y1:m

θ>f(w, ym+1 = k, ym,m+ 1) +
m∑
n=1

θ>f(w, yn, yn−1, n) (9.47)

= max
k′∈Y

θ>f(w, ym+1 = k, ym = k′,m+ 1)

+ max
y1:m−1

θ>f(w, ym = k′, ym−1,m) +
m−1∑
n=1

θ>f(w, yn, yn−1, n) (9.48)

= max
k′∈Y

θ>f(w, ym+1 = k, ym = k′,m+ 1) + vm(k′). (9.49)

So to compute vm(k), we have to iterate over all ym−1 = k′,

(c) Jacob Eisenstein 2014-2016. Work in progress.



9.4. LEARNING DISCRIMINATIVE SEQUENCE LABELING MODELS 161

• build the feature vector f(w, ym = k, ym−1 = k′,m);

• compute the inner product θ>f(w, ym = k, ym−1 = k′,m);

• add it to vm−1(k′);

• take the max over all k′.

This only works because of the assumption that the feature function decom-
poses over local parts of the sequence! If we wanted a feature that considered
arbitrary parts of the tag sequence, there would be no way to incorporate it into
the recurrence relation.

As in the hidden Markov model, we can maintain a set of backpointers bm(k)
to store arg maxk∈Y at each position in the trellis,

bm(k) =arg max
k′∈Y

θ>fm(w, k, k′,m) + vm−1(k′). (9.50)

The optimal tag sequence can then be read directly from these back-pointers.

9.4 Learning discriminative sequence labeling
models

There are two main approaches to learning discriminative sequence labeling mod-
els: structured perceptron and conditional random fields. These approaches map
directly to the perceptron and logistic regression classifiers.

Structured perceptron

Remember the perceptron update:

ŷ = arg max
y∈Y

θ>f(x, y) (9.51)

θ(t+1) ← θ(t) + f(x, y)− f(x, ŷ) (9.52)

We can apply exactly the same update in the case of structure prediction,

ŷ = arg max
y∈YM

θ>f(w,y) (9.53)

θ(t+1) ← θ(t) + f(w,y)− f(w, ŷ) (9.54)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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This is called structured perceptron, because it learns to predict structured out-
put y. The key difference is that instead of computing ŷ by enumerating the entire
set Y , we use the Viterbi algorithm to search this set efficiently.

As before, weight averaging is crucial to get good performance (Collins, 2002).
We can use Passive-Aggressive (Crammer et al., 2006) or other ideas from large-
margin training, computing the step size by dividing a non-negative loss `(yi, ŷ)
by the squared norm of the difference in the feature vectors, ||f(yi,wi)−f(ŷ,wi)||2.
A reasonable choice of loss function is the Hamming loss, which is the number
of incorrect tag predictions (Taskar et al., 2003; Tsochantaridis et al., 2004). When
large-margin training is applied, it is sometimes called a max-margin markov net-
work (M3N ; Taskar et al., 2003).

Conditional random fields

Structured perceptron works well in practice, but sometimes we need probabili-
ties p(y | w). To fill this gap, the Conditional Random Field (CRF; Lafferty et al.,
2001) is a probabilistic conditional model for sequence labeling; just as structured
perceptron is built on the perceptron classifier, conditional random fields are built
on the logistic regression classifier. The basic probability model is,

p(y | w) =
eθ
>f(y,w)∑

y′∈Y(w) e
θ>f(y′,w)

. (9.55)

This is almost identical to logistic regression, but because the label space is
now tag sequences, we require efficient algorithms for both decoding (searching
for the best tag sequence given a sequence of words w and a model θ) and for
normalizing (summing over all tag sequences). To obtain algorithms, we will
make the same locality assumption as in the structure perceptron.

Names∗ The name “Conditional Random Field” is derived from Markov ran-
dom fields, a general class of models in which the probability of a configuration
of variables is proportional to a product of scores across pairs (or more generally,
cliques) of variables in a factor graph. In sequence labeling, the pairs of variables
include all adjacent tags 〈ym, ym−1〉. The probability is conditioned on the words
w1:M , which are always observed; this conditioning is what motivates the name.

Decoding in CRFs

Decoding — finding the tag sequence ŷ that maximizes p(y | w) — can be per-
formed with the Viterbi algorithm. The key observation is that the decoding prob-

(c) Jacob Eisenstein 2014-2016. Work in progress.



9.4. LEARNING DISCRIMINATIVE SEQUENCE LABELING MODELS 163

lem does not depend on the denominator of p(y | w),

ŷ =arg max
y

log p(y | w)

=arg max
y
θ>f(y,w)− log

∑
y′∈Y(w)

eθ
>f(y′,w)

=arg max
y
θ>f(y,w).

This is identical to the decoding problem for structured perceptron, so the
same Viterbi recurrence as defined in Equation 9.49 can be used.

Learning in CRFs

As with logistic regression, we learn the weights θ by minimizing the regularized
negative log conditional probability,

` =
N∑
i=1

− log p(yi | wi;θ) + λ||θ||2, (9.56)

=−
N∑
i

θ>f(wi,yi) + log
∑

y′∈Y(wi)

exp
(
θ>f(wi,y

′)
)

+ λ||θ||2, (9.57)

where λ controls the amount of regularization. As in logistic regression, the gra-
dient includes is a difference between observed and expected feature counts:

d`

dθj
=

N∑
i

fj(wi,yi)− E[fj(wi,y)], (9.58)

where fj(wi,yi) refers to the count of feature j for word sequence wi and tag
sequence yi. For example:

• If feature j is 〈T : CC,DT 〉, then fj(wi,yi) is the count of times DT follows
CC in the sequence yi.

• If feature j is 〈M : -thy, JJ〉, then fj(wi,yi) is the count of words ending in
-thy in wi that are tagged JJ in yi.

The expected feature counts are computed by summing over all possible labelings
of the word sequence,

E[fj(wi,y)] =
∑

y∈Y(wi)

P (y | wi;θ)fj(wi,y) (9.59)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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This looks bad: we have to sum over an exponential number of labelings again.
To solve this problem, we again rely on the assumption that the overall feature
vector decomposes into a sum of local feature vectors,

fj(w,y) =
∑
m

fj(w, ym, ym−1,m). (9.60)

This means we can compute the expectation as,

E[fj(w,y)] =
∑

y∈Y(w)

p(y | w;θ)fj(w,y) (9.61)

=
∑

y∈Y(w)

p(y | w;θ)
M∑
m

fj(w, ym, ym−1,m) (9.62)

=
M∑
m

∑
y∈Y(w)

p(y | w;θ)fj(w, ym, ym−1,m) (9.63)

=
M∑
m

Y∑
k,k′

∑
y:Ym−1=k′,Ym=k

p(y | w;θ)fj(w, k, k
′,m) (9.64)

=
M∑
m

Y∑
k,k′

fj(w, k, k
′,m)

∑
y:Ym−1=k′,Ym=k

p(y | w;θ) (9.65)

=
M∑
m

Y∑
k,k′

fj(w, k
′, k,m)P (Ym−1 = k′, Ym = k | w;θ) (9.66)

The term P (Ym−1 = k′, Ym = k | w;θ) is a tag bigram marginal: it is the
probability of traversing the trellis edge 〈m − 1, k′〉 → 〈m, k〉, conditioned on the
entire word sequence w1:M . From the definition of conditional probability, it can
be written as,

P (Ym−1 = k′, Ym = k | w1:M) =
P (Ym−1 = k′, Ym = k,w1:M)

p(w1:M)
, (9.67)

where the denominator is the marginal p(w1:M) =
∑
y p(w,y1:M). (This normal-

ization term is often called the partition function, for reasons that relate to the
historical origin of Markov random fields in statistical mechanics (Bishop, 2006).)
Let us now consider how to compute each of these terms efficiently.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Computing the numerator In the numerator,

P (Ym−1 = k′, Ym = k,w1:M) =
∑

y:Ym=k,Ym−1=k′

∏
n

ψn(yn, yn−1), (9.68)

where we use the shorthand notation,

ψn(yn, yn−1) , exp
(
θ>f(w, yn, yn−1, n)

)
. (9.69)

This term is sometimes referred to as a potential, in another analogy from statis-
tical mechanics.

Now, in Equation 9.68, we are summing over all tag sequences that include the
transition (Ym−1 = k′) → (Ym = k). Because we are only interested in sequences
that include this arc, we can decompose this sum into three parts: the sum over
prefixes y1:m−1, the transition, and the sum over suffixes ym:M ,

∑
y:Ym=k,Ym−1=k′

M∏
n=1

ψn(yn, yn−1) =
∑

y1:m−1:Ym−1=k′

m−1∏
n=1

ψn(yn, yn − 1)

× ψm(k, k′)

×
∑

ym:M :Ym=k

M∏
n=m+1

ψn(yn, yn − 1). (9.70)

The result is product of three terms: a score for getting to the position (Ym−1 =
k′), a score for the transition from k′ to k, and a score for finishing the sequence
from (Ym = k). By defining these terms recursively, it is possible to avoid explicitly
computing the sum over an exponential number of tag sequences.

Let us define the first term as a forward variable,

αm(k) =
∑

y1:m:Ym=k

m∏
n=1

ψn(yn, yn − 1) (9.71)

=
∑
k′

ψm(k, k′)
∑

y1:m−1:Ym−1=k′

m−1∏
n=1

ψn(yn, yn − 1) (9.72)

=
∑
k′

ψm(k, k′)αm−1(k′). (9.73)

Thus, we compute the forward variables while moving from left-to-right over
the trellis. This forward recurrence is analogous to the forward recurrence defined

(c) Jacob Eisenstein 2014-2016. Work in progress.
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in section 9.2. If we set ψm(k, k′) = pE(wm | Ym = k)PrT (Ym = k | Ym−1 = k′), we
exactly recover the HMM forward variable αm(k) = p(w1:m, Ym = k).

The third term of Equation 9.70 can also be defined recursively, this time mov-
ing over the trellis from right-to-left. The resulting recurrence is called the back-
ward algorithm:

βm−1(k) ,
∑

ym−1:M :Ym−1=k

M∏
n=m

ψn(yn, yn − 1) (9.74)

=
∑
k′

ψm(k′, k)
∑

ym:M :Ym=k′

M∏
n=m+1

ψn(yn, yn − 1) (9.75)

=
∑
k′

ψm(k′, k)βm(k′). (9.76)

In practice, numerical stability requires that we use log-potentials rather than
potentials, logψm(ym, ym−1) = θ>f(w, ym, ym−1,m). Then the sums must be re-
placed with log-sum-exp:

logαm(k) = log
∑
k′

exp (logψm(k, k′) + logαm−1(k′)) (9.77)

log βm−1(k) = log
∑
k′

exp (logψm(k′, k) + log βm(k′))). (9.78)

Both the forward and backward algorithm operate on the trellis, which implies
a space complexity O(()MK). Because they require computing a sum over K
terms at each node in the trellis, their time complexity is O(()MK2).

Computing the normalization term The normalization term, sometimes abbre-
viated as Z, can be written as,

Z ,
∑
y

p(w,y) (9.79)

=
∑
y

exp
(
θ>f(w,y)

)
(9.80)

=
∑
y

M∏
m=1

exp
(
θ>f(w, ym, ym−1,m)

)
(9.81)

=
∑
y

M∏
m=1

ψm(ym, ym−1). (9.82)

(c) Jacob Eisenstein 2014-2016. Work in progress.



9.4. LEARNING DISCRIMINATIVE SEQUENCE LABELING MODELS 167

This term can be computed directly from either the forward or backward prob-
abilities:

Z =
∑
y

M∏
m=1

ψm(ym, ym−1) (9.83)

=αM+1(〈STOP〉) (9.84)
=β0(〈START〉). (9.85)

CRF learning: wrapup Having computed the forward and backward variables,
we can compute the desired marginal probability as,

P (Ym−1 = k′, Ym = k | w1:M) =
αm−1(k′)ψm(k, k′)βm(k)

Z
. (9.86)

This computation is known as the forward-backward algorithm. From the result-
ing marginals, we can compute the feature expectations E[fj(w,y)]; from these
expectations, we compute a gradient on the weights ∂L

∂θ
. Stochastic gradient de-

scent or quasi-Newton optimization can then be applied. As the optimization
algorithm changes the weights, the potentials change, and therefore so do the
marginals. Each iteration of the optimization algorithm therefore requires recom-
puting the forward and backward variables for each training instance. 2

Aside: Maximum Entropy Markov Models (MEMMs)∗

Suppose we define

p(y | w) =
M∏
m

p(ym | w1:M , y1:m−1) (9.87)

≈
M∏
m

p(ym|w1:M , ym−1). (9.88)

We can then define each local probability p(ym | w1:M , ym−1) as a logistic regression
model,

p(ym | w1:M , ym−1) =
exp(θ>f(w1:M , ym, ym−1))∑
y′∈Y exp(θ>f(w1:m, y′, ym−1))

. (9.89)

2The CRFsuite package implements several learning algorithms for CRFs (http://www.
chokkan.org/software/crfsuite/).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Recall that logistic regression is sometimes called maximum entropy, and ob-
serve that we are making a Markov assumption. Thus the name Maximum En-
tropy Markov Model.

Inference in the MEMM can again be performed with the Viterbi algorithm.
The local decision model p(ym | w1:M , ym−1) can be trained as a standard logistic
regression classifier. The problem with this model is that learning to optimize
individual tagging decisions is not the same as learning to produce optimal tag
sequences. The local classifier is trained with the true value of ym−1, not the value
likely to be produced by the classifier — so, not necessarily the value that we
are most likely to see in a test set tagging situation. This introduces a problem
that Lafferty et al. (2001) call label bias. Put another way, the MEMM allows
structured prediction, but it does not perform structured learning.

9.5 Unsupervised sequence labeling*
In unsupervised sequence labeling, we want to induce a Hidden Markov Model
from a corpus of unannotated text w1,w2, . . . ,wN ; this is an example of the gen-
eral problem of structure induction, which is the unsupervised version of struc-
ture prediction. The tags that result from unsupervised sequence labeling might
be useful for some downstream task, or for better understanding the language’s
inherent structure; or, we might want to do probability density estimation for se-
quences, as in gesture or activity recognition (Mitra and Acharya, 2007). Another
reason would be to do semi-supervised learning, imputing tag sequences for un-
labeled data. For part-of-speech tagging, often we use a tag dictionary which
lists the allowed tags for each word, simplifying the problem (Christodoulopou-
los et al., 2010).

In any case, we can perform unsupervised learning by using the Baum-Welch
algorithm, which combines forward-backward with expectation-maximization (EM).
In the M-step, we compute the HMM parameters from expected counts:

P (W = i | Y = k) = φk,i =
E[count(W = i, Y = k)]

E[count(Y = k)]

P (Ym = k | Ym−1 = k′) = λk′,k =
E[count(Ym = k, Ym−1 = k′)]

E[count(Ym−1 = k′)]

The expected counts are computed in the E-step, using the forward and back-
ward variables as defined in Equation 9.73 and Equation 9.76. Because we are

(c) Jacob Eisenstein 2014-2016. Work in progress.
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working in a hidden Markov model, we define the potentials as,

ψm(k, k′) = pE(wm | Ym = k;φ)PrT (Ym = k | Ym−1 = k′;λ). (9.90)

The expected counts are then,

E[count(W = i, Y = k)] =
∑
m

P (Ym = k | w1:M)δ(Wm = i) (9.91)

=
∑
m

P (Ym = k,w1:m)p(wm+1:M | Ym = k)

p(w1:M)
δ(wm = i)

(9.92)

=
1

αM(〈STOP〉)
∑
m

αm(k)βm(k)δ(wm = i) (9.93)

We use the chain rule to separate w1:m and wm+1:M , and then use the defini-
tions of the forward and backward variables. In the final step, we normalize by
p(w1:M) = αM(〈STOP〉) = β0(〈START〉).

E[count(Ym = k, Ym−1 = k′)] =
∑
m

P (Ym = k, Ym−1 = k′ | w1:M) (9.94)

∝
∑
m

P (Ym−1 = k′,w1:m−1)P (wm+1:M | Ym = k)

× P (wm, Ym = k | Ym−1 = k′) (9.95)

=
∑
m

P (Ym−1 = k′,w1:m−1)P (wm+1:M | Ym = k)

× p(wm | Ym = k)P (Ym = k | Ym−1 = k′) (9.96)

=
∑
m

αm−1(k′)βm(k)φk,wmλk′→k (9.97)

Again, we use the chain rule to separate out w1:m−1 and wm+1:M , and use the
definitions of the forward and backward variables. The final computation also
includes the parameters φ and λ, which govern (respectively) the emission and
transition properties between wm, ym, and ym−1. Note that the derivation only
shows how to compute this to a constant of proportionality; we would divide by
p(w1:M) to go from the joint probability P (Ym−1 = k′, Ym = k,w1:M) to the desired
conditional P (Ym−1 = k′, Ym = k | w1:M). As in the CRF, the joint probability
p(w1:M) is given by the forward variable αM+1(〈STOP〉) or the backward variable
β0(〈START〉).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Linear dynamical systems

The forward-backward algorithm can be viewed as Bayesian state estimation in a
discrete state space. In a continuous state space, ym ∈ R, the equivalent algorithm
is the Kalman Smoother. It also computes marginals p(ym | x1:M), using a similar
two-step algorithm of forward and backward passes. Instead of computing a table
of values at each step (αm(k) and βm(k)), we would compute a probability density
function qym(ym;µm,Σm), characterized by a mean µm and a covariance Σm around
the latent state. Connections between the Kalman Smoother and the forward-
backward algorithm are elucidated by Minka (1999) and Murphy (2012).

Alternative unsupervised learning methods

As noted in section 4.4, expectation-maximization is just one of many techniques
for structure induction. One alternative is to use a family of randomized algo-
rithms called Markov Chain Monte Carlo (MCMC). In these algorithms, we com-
pute a marginal distribution over the latent variable y empirically, by drawing
random samples. The randomness explains the “Monte Carlo” part of the name;
typically, we employ a Markov Chain sampling procedure, meaning that each
sample is drawn from a distribution that depends only on the previous sample
(and not on the entire sampling history). A simple MCMC algorithm is Gibbs
Sampling, in which we iteratively sample each ym conditioned on all the oth-
ers (Finkel et al., 2005):

p(ym | y−m,w1:M) ∝ p(wm | ym)p(ym | y−m). (9.98)

Gibbs Sampling has been applied to unsupervised part-of-speech tagging by Gold-
water and Griffiths (2007). Beam sampling is a more sophisticated sampling algo-
rithm, which randomly draws entire sequences y1:M , rather than individual tags
ym; this algorithm was applied to unsupervised part-of-speech tagging by Van Gael
et al. (2009).

EM is guaranteed to find only a local optimum; MCMC algorithms will con-
verge to the true posterior distribution p(y1:M | w1:M), but this is only guaran-
teed in the limit of infinite samples. Recent work has explored the use of spectral
learning for latent variable models, which use matrix and tensor decompositions
to provide guaranteed convergence under mild assumptions (Song et al., 2010;
Hsu et al., 2012).

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 10

Context-free grammars

So far we’ve explored finite-state models, which are capable of defining regular
languages (and regular relations).

• representations: (weighted) finite state automata

• probabilistic models: HMMs (as a special case), CRFs

• algorithms: Viterbi, Forward-Backward, O(MK2) time complexity.

• linguistic phenomena:

– morphology
– language models
– part-of-speech disambiguation
– named entity recognition (chunking)

Clearly there are formal languages that are not describable using finite-state
machinery, such as the classic anbn. But is the finite-state representation enough
for natural language?

10.1 Is English a regular language?
In this section, we consider a proof that English is not regular, and therefore, no
finite-state automaton could perfectly model English syntax. The proof begins by
noting that regular languages are closed under intersection.

• K ∩ L is the set of strings in both K and L
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• K ∩ L is regular iff K and L are regular

The proof strategy is as follows:

• Let K be the set of grammatical English sentences

• Let L be some regular language

• Show that the intersection is not regular

We’re going to prove this using center embedding, as shown in the examples
below:

(10.1) The cat is fat.

(10.2) The cat that the dog chased is fat.

(10.3) *The cat that the dog is fat.

(10.4) The cat that the dog that the monkey kissed chased is fat.

(10.5) *The cat that the dog that the monkey chased is fat.

Proof sketch:

• K is the set of grammatical english sentences.
It excludes examples (10.3) and (10.5).

• L is the regular language the cat (that N)+V +
t is fat. It is crucial to see that

this language is itself regular, and could be recognized with a finite-state
acceptor.

• The language L ∩K is the cat (that N)nV n
t is fat. This language is homomor-

phic to anbn, which is known not to be regular. Since L is regular and L ∩K
is not regular, it follows that K cannot be regular.

It is important to understand that the issue is not just infinite repetition or
productivity; FSAs can handle productive phenomena like the big red smelly plastic
figurine. It is specifically the center-embedding phenomenon, because this leads
to the same structure as the classic anbn language. What do you think of this
argument?

Is deep center embedding really part of English?

Karlsson (2007) searched for multiple (phrasal) center embeddings in corpora
from 7 languages:

(c) Jacob Eisenstein 2014-2016. Work in progress.



10.1. IS ENGLISH A REGULAR LANGUAGE? 173

• Very few examples of double embedding

• Only 13 examples of triple embedding (none in speech)

• Zero examples of quadruple embeddings

Note that we can build an FSA to accept center-embedding up to any finite depth.
So in practice, we could build an FSA that accepts any center-embedded sentence
that has ever been written. Does that defeat the proof? Chomsky and many lin-
guists distinguish between

Competence the fundamental abilities of the (idealized) human language pro-
cessing system;

Performance real utterances produced by speakers, subject to non-linguistic fac-
tors such as cognitive limitations.

Even if English as performed is regular, the underlying generative grammar may
be context-free... or beyond.

How much expressiveness do we need?

Shieber (1985) makes a similar argument, showing that case agreement in Swiss-
German cross-serial constructions is homomorphic to a formal languagewambnxcmdny,
which is weakly non-context free. In response to the objection that all attested con-
structions are finite, Shieber writes:

Down this path lies tyranny. Acceptance of this argument opens the
way to proofs of natural languages as regular, nay, finite.

Regardless of what we think of these theoretical arguments, the fact is that in
practice, many real constructions appear to be much simpler to handle in context-
free rather than finite-state representations. For example,

(10.6) The processor has 10 million times fewer transistors on it than todays typical
microprocessors, runs much more slowly, and operates at five times the volt-
age...

The verbs has, runs, and operates agree with the subject the processor; we want to
accept this sentence, but reject all sentences in which this subject-verb agreement
is lost. Handling this in a finite state representation would building separate com-
ponents for third-person singular and non-third-person singular forms, and then

(c) Jacob Eisenstein 2014-2016. Work in progress.
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replicating essentially all of verb-related syntax in each component. A grammar
— formally defined in the next section — would vastly simplify things:

S → NN VP
VP → VP3S | VPN3S | . . .

VP3S → VP3S, VP3S, and VP3S | VBZ | VBZ NP | . . .

10.2 Context-Free Languages
The Chomsky Hierarchy Every automaton defines a language, and different
classes of automata define different classes of languages. The Chomsky hierarchy
formalizes this set of relationships:

• finite-state automata define regular languages;

• pushdown automata define context-free languages;

• Turing machines define recursively-enumerable languages.

In the Chomsky hierarchy, context-free languages (CFLs) are a strict general-
ization of regular languages.

regular languages context-free languages

regular expressions context-free grammars (CFGs)
finite-state machines pushdown automata
paths derivations

Context-free grammars define CFLs. They are sets of permissible productions
which allow you to derive strings composed of surface symbols. An important
feature of CFGs is recursion, in which a nonterminal can be derived from itself.

More formally, a CFG is a tuple 〈N,Σ, R, S〉:

N a set of non-terminals
Σ a set of terminals (distinct from N )
R a set of productions, each of the form

A→ β, where A ∈ N and β ∈ (Σ ∪N)∗

S a designated start symbol

Context free grammars provide rules for generating strings.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• The left-hand side (LHS) of each production is a non-terminal ∈ N
• The right-hand side (RHS) of each production is a sequence of terminals or

non-terminals, {n, σ}∗, n ∈ N, σ ∈ Σ.

A derivation t is a sequence of steps from S to a surface string w ∈ Σ∗, which is
the yield of the derivation. A derivation can be viewed as trees or as bracketings,
as shown in Figure 11.4.

If there is some derivation t in grammar G such thatw is the yield of t, thenw
is in the language defined by the grammar. Equivalently, for grammar G, we can
write that |TG(w)| ≥ 1. When there are multiple derivations of w in grammar G,
this is a case of derivational ambiguity; if any such w exists, then we can say that
the grammar itself is ambiguous.

Example The grammar below handles the case of center embedding:

S → NP VP1 (10.1)
NP → the NP | NP RELCLAUSE (10.2)

RELCLAUSE → that NP Vt (10.3)
Vt → ate | chased | befriended | . . . (10.4)
N → cat | dog | monkey | . . . (10.5)

VP1 → is fat (10.6)

Here we are using a shorthand, where α → β | γ implies two productions,
α→ β and α→ γ.

Semantics Ideally, each derivation will have a distinct semantic interpretation,
and all possible interpretations will be represented in some derivation.

(NP(NP Ban (PP on (NP nude dancing )))

(PP on (NP Governor’s desk )))

(NP Ban (PP on (NP(NP nude dancing )

(PP on (NP Governor’s desk )))))

In practice, this is quite hard to achieve with context-free grammars. For ex-
ample, Johnson (1998) notes that there are three possible derivations for the verb
phrase ate dinner on the table with a fork:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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S
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NNS

chopsticks
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with

NP

NN
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VBZ
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She

(S(NP(PRP She)(VP(VBZ eats)
(NP(NP(NN sushi))(PP (INwith)(NP(NNS chopsticks)))))))
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(PP(INwith)(NP(NNS chopsticks))))))

Figure 10.1: Two derivations of the same sentence, shown as both parse trees and
bracketings

(c) Jacob Eisenstein 2014-2016. Work in progress.
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“flat” (ate dinner (on the table) (with a fork))

“two-level” ((ate dinner) (on the table) (with a fork))

“adjunction” (((ate dinner) (on the table)) (with a fork))

In this case, there doesn’t seem to be any meaningful difference between these
derivations. The grammar could avoid this problem by limiting its set of produc-
tions, but this change might cause problems in other cases.

10.3 Constituents
Our goal in using context-free grammars is usually not to determine whether a
string is in the language defined by the grammar, but to acquire the derivation
itself, which should explain the organization of the text and give some clue to
its meaning. Therefore, a key question in grammar design is how to define the
non-terminals.

Every non-terminal production yields a contiguous portion of the input string.
For example, the VP non-terminal in Figure 11.4 (both parses) yields the substring
eats sushi with chopsticks, and the PP non-terminal yields with chopsticks. These
substrings, which are bracketed in the figure, are known as constituents. The
main difference between the two parses in Figure 11.4 is that the second parse
includes sushi with chopsticks as a constituent, and the first parse does not.

In a given string, which substrings should be constituents? Linguistics offers
several tests for constituency, including: substitution, coordination, and move-
ment.

Substitution

Constituents generated by the same non-terminal should be substitutable in many
contexts:

(10.7) (NP The ban ) is on the desk.

(10.8) (NP The Governor’s desk ) is on the desk.

(10.9) (NP The ban on dancing on the desk ) is on the desk.

(10.10) *(PP On the desk ) is on the desk.

A more precise test for whether a set of substrings constitute a single category
is whether they can be replaced by the same pronouns.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(10.11) (NP It ) is on the desk.

What about verbs?

(10.12) I (V gave ) it to Anne.
(10.13) I (V taught ) it to Anne.
(10.14) I (V gave ) Anne a fish
(10.15) *I (V taught ) Anne a fish

This suggests that gave and taught are not substitutable. We might therefore
need non-terminals that distinguish verbs based on the arguments they can take.
The technical name for this is subcategorization.

Coordination

Constituents generated by the same non-terminal can usually be coordinated using
words like and and or:

(10.16) We fought (PP on the hills ) and (PP in the hedges ).
(10.17) We fought (ADVP as well as we could ).
(10.18) *We fought (ADVP as well as we could ) and (PP in the hedges ).

Like all such tests, coordination does not always work:

(10.19) She (VP went ) (PP to the store ).
(10.20) She (VP came ) (PP from the store ).
(10.21) She (? went to ) and (? came from ) the store.

Typically we would not think of went to and came from as constituents, but they
can be coordinated.

Movement Valid constituents can be moved as a unit, preserving grammatical-
ity. There are a number of ways in which such movement can occur in English.

Passivization (10.22) (The governor) banned (nude dancing on his desk)
(10.23) (Nude dancing on his desk) was banned by (the governor)

Wh- movement (10.24) (Nude dancing was banned) on (the desk).
(10.25) (The desk) is where (nude dancing was banned)

Topicalization (10.26) (He banned nude dancing) to appeal to conservatives.
(10.27) To appeal to conservatives, (he banned nude dancing).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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10.4 A simple grammar of English
A goal of grammar design is to thread the line between two potential problems:

Overgeneration deriving strings that are not grammatical.

Undergeneration failing to derive strings that are grammatical.

To avoid undergeneration in a real language, we would need thousands of pro-
ductions. Designing such a large grammar without overgeneration is extremely
difficult.

Typically, grammars are defined in conjunction with large-scale treebank an-
notation projects.

• An annotation guideline specifies the non-terminals and how they go to-
gether.

• The annotators then apply these guidelines to data.

• The grammar rules can then be read off the data.

The Penn Treebank (PTB) contains one million parsed words of Wall Street Journal
text (Marcus et al., 1993).

In the remainder of this section, we consider a small grammar of English.

Noun phrases

Let’s start with noun phrases:

(10.28) She sleeps (Pronoun)
(10.29) Arlo sleeps (Proper noun)

These examples suggest that pronouns and proper nouns are substitutable, so
we can define a production,

NP →PRP | NNP, (10.7)

where NP stands for noun phrase. In this grammar, we will treat part-of-speech
tags as the terminal vocabulary, but we could easily extend this to words by defin-
ing productions,

PRP →she | he | I | you . . . (10.8)
NNP →Arlo | Abigail . . . (10.9)

What else could be a noun phrase?

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(10.30) A lobster sleeps

(10.31) The lobster sleeps

(10.32) Lobsters sleep

(10.33) *Lobster sleeps

The first two examples show that we can have common nouns (NN) as long as
they are preceded by determiners (DT). We can also have plural nouns (NNS). But
we cannot have common nouns without determiners — the final example doesn’t
work unless Lobster is a proper name.

We can handle these cases by defining a new nonterminal, NOM, which stands
for nominal. A nominal is a constituent that cannot be a noun phrase by itself, but
requires a determiner. We then add two productions:

NP → DT NOM | NNS (10.10)
NOM → NN | NNS (10.11)

Notice that these productions also allow The lobsters sleep, using the NOM →
NNS production.

Noun phrases may also contain various modifiers.

(10.34) The blue fish sleeps (adjective)

(10.35) The four crabs sleep (cardinality)

We could try to handle these cases by adding to the nominal productions,

NOM → JJ NOM | CD NOM (10.12)

where JJ is an adjective and CD is a cardinality. Note that these productions are
recursive, because NOM appears on the right-hand side. This means we can use
the production to create a nominal with an infinite number of modifiers. This
works for adjectives (the angry blue plastic lobster), but not for cardinals: *the four
three crabs is ungrammatical, so this grammar now overgenerates. We would need
to further refine the grammar to handle this case properly, as well as to avoid
undergenerating cases like four crabs sleep.

Modifiers can also come at the end of the noun phrase:

(10.36) The girl from Omaha sleeps (prepositional phrase)

(10.37) Cats in Catalonia cry (prepositional phrase)

(10.38) The student who ate 15 donuts sleeps (relative clause)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(10.39) Mary from Omaha sleeps
(10.40) Cats who are in Catalonia cry
(10.41) ?Mary who ate 15 donuts sleeps

These examples suggest that prepositional phrases (from Omaha, in Catalonia)
can be attached to the end of any noun phrase. For relative clauses (. . . who ate 15
donuts), the situation is somewhat less clear. If we accept examples like (10.41),
then we can handle both of these cases by adding the following NP productions,

NP → NP PP | NP RELCLAUSE (10.13)

We again have recursion: because the NP tag appears on the right side of the
production, it is possible generate infinitely long noun phrases, like the student
from the city in the state below the river . . . .

So overall, we can summarize the NP fragment of the grammar as,

NP →PRP | NNP | DT NOM | NP PP | NP RELCLAUSE

NOM →NN | ADJP NOM | CD NNS | NNS

Are we done? Not close. We still haven’t handled cardinal numbers in sat-
isfactory way, and we are leaving out important details like number agreement,
causing the grammar to overgenerate examples like Mary sleep. The process of
grammar design would involve continuing to probe at the grammar with these
sorts of examples until we handled as many as possible.

Adjectival and prepositional phrases

The noun phrase grammar mentioned prepositional phrases, such as

(10.42) cats from Catalonia
(10.43) pizza in the refigerator
(10.44) pizza in the old, broken refigerator
(10.45) the red switch under the panel next to the radiator

These examples suggest that prepositional phrases are formed by placing a prepo-
sition before any noun phrase — including noun phrases that already contain
prepositional phrases, as in (10.45). This suggests the simple production,

PP →P NP. (10.14)

The noun phrase fragment also includes adjective modifiers, like the blue lob-
ster. But in fact, adjectives can combine into phrases.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(10.46) the large blue fish
(10.47) the very funny hat

The first example, we have two adjectives; in the second, we have an adverb
followed by an adjective. This suggests the following productions:

ADJP →JJ | RB ADJP | JJ ADJP (10.15)
NOM → ADJP NN | ADJP NNS (10.16)

Notice that if we instead added NOM → ADJP NOM, we would be intro-
ducing a considerable amount of ambiguity to the grammar. This would give us
two different ways of generating multiple adjectives: by a series of NOM produc-
tions, or a series of ADJP productions. The proposed solution here increases the
number of production rules, but decreases the number of ways to derive the same
string.

Verb phrases

Let’s now consider the verb and its modifiers.

(10.48) She sleeps
(10.49) She sleeps restlessly
(10.50) She sleeps at home
(10.51) She eats sushi
(10.52) She gives John sushi

Each of these examples requires a production,

VP →V | VP RB | VP PP | V NP | V NP NP (10.17)

But what about *She sleeps sushi or *She speaks John Japanese? We need a more
fine-grained verb non-terminal to handle these cases.

VP →VP RB | VP PP (10.18)
VP →V-INTRANS | V-TRANS NP | V-DITRANS NP NP (10.19)

V-INTRANS →sleeps | talks | eats | . . . (10.20)
V-TRANS →eats | knows | gives | . . . (10.21)

V-DITRANS →gives | tells | . . . (10.22)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Notice that many verbs can be produced by multiple non-terminals: because
we could have Mary eats and Mary eats sushi, we have to be able to derive eats from
both V-INTRANS and V-TRANS.

To complete this fragment, we would also need to handle modal and auxiliary
verbs that create complex tenses, like She will have eaten sushi but not *She will have
eats sushi.

Sentences

We can now define the part of the grammar that deals with entire sentences. Per-
haps the simplest type of sentence includes a subject and a predicate,

(10.53) She eats sushi

To handle this we simply need,

S → NP VP. (10.23)

This rule can handle a number of other examples, like she gives Alice the sushi,
she eats, etc. But things get more complex when we consider that sentences can be
embedded inside other sentences:

(10.54) Sometimes, she eats sushi

(10.55) In Japan, she eats sushi

We therefore add two more productions,

S → ADVP S (10.24)
S → PP S (10.25)

What about *I eats sushi, *She eat sushi? To handle these, we need additional
productions that enforce subject-verb agreement:

S →NP.3S VP.3S | NP.N3S VP.N3S

In some languages, there are many other forms of agreement. Feature gram-
mars provide a notation that can capture this kind of agreement, while remaining
in the context-free class of languages.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Coordination

As mentioned above, one test for constituency is whether constituents of the same
proposed type can be coordinated using words like and and or. For example,

(10.56) She eats (sushi) and (candy)

(10.57) She (eats sushi) and (drinks soda)

(10.58) (She eats sushi) and (he drinks soda)

(10.59) (fresh) and (tasty) sushi

These examples motivate, respectively, the following productions,

NP →NP CC NP (10.26)
VP →VP CC VP (10.27)

S →S CC S (10.28)
ADJP →ADJP CC ADJP (10.29)

CC →and | or | . . . (10.30)

We would need a little more cleverness to properly cover coordinations of
more than two elements.

Odds and ends

Consider the example,

(10.60) I gave sushi to the girl who eats sushi.

This is a relative clause, which we already hinted at in the section on noun phrases.
It requires its own non-terminal.

RELCLAUSE →WP VP (10.31)
WP →who | that | which | . . . (10.32)

Here are some related examples:

(10.61) I took sushi from the man offering sushi.

(10.62) I gave sushi to the woman working at home.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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This is a gerundive postmodifier, which again requires its own non-terminal.

NOM →NOM GERUNDVP (10.33)
GERUNDVP →VBG | VBG NP | VBG PP | . . . (10.34)

VBG →offering | working | talking | . . . (10.35)

Finally, we need to deal with questions, such as can she eat sushi? (and notice
it’s not can she eats sushi).

S →AUX NP VP (10.36)
AUX →can | did | . . . (10.37)

Clearly this is just a small fragment of all the productions and non-terminals
we would need to generate all observed English sentences. And as we will see,
even this grammar fragment suffers from significant ambiguity. It is this issue that
we will tackle in chapter 11.

10.5 Grammar equivalence and normal form
There may be many grammars that express the same context-free language.

• Grammars are weakly equivalent if they generate the same strings.

• Grammars are strongly equivalent if they generate the same strings and
assign the same phrase structure to each string.

In Chomsky Normal Form (CNF), all productions are either:

A→BC
A→a

All CFGs can be converted into a CNF grammar that is weakly equivalent —
meaning that it generates exactly the same set of strings. As we will soon see,
this conversion is very useful for parsing algorithms.

In CNF, all productions have either two or zero non-terminals on the right-
hand size. To deal with productions that have more than two non-terminals on
the RHS, we create new “dummy” non-terminals. For example, if we have W →
X Y Z, we can replace this production with two productions: X → W X\W and
X\W → Y Z, where X\W is a new dummy non-terminal. Figure 10.2 conveys
this idea in a real example.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 10.2: Binarization of the VP → V NP PP production

Note that people with claws was not a constituent in the original grammar, but it
is a constituent in the binarized grammar. Therefore, after parsing it is important
to take care to “un-binarize” the resulting parse.

What about unary productions, such as NP → NNS? While we could easily
deal with this in the grammar, as we will see, in practice it is best dealt with by
modifying the parsing algorithm itself.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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CFG Parsing

Parsing is the task of identifying the correct derivation for a sentence in a context-
free language. Here are some possible approaches:

Top-down Start with the start symbol, and see if it is possible derive the sentence.

Bottom-up Combine the observed symbols using productions from the grammar,
replacing them with the appropriate left-hand side. Continue applying this
process until only the start symbol is left.

Left-to-right Move through the input, incrementally building a parse tree.

Before we get into these different possibilities, let us consider whether exhaus-
tive search is possible. Suppose we only have one non-terminal, X, and it has
binary productions

X →X X
X →the girl | ate sushi | . . .

How many different ways could we derive a sentence in this language? This
is equal to the number of binary bracketings of the words in the sentence, which
is a Catalan number. Catalan numbers grow super-exponentially in the length of
the sentence, Cn = (2n)!

(n+1)!n!
. As with sequence labeling, we cannot search the space

of possible derivations naı̈vely; we will again rely on dynamic programming to
search efficiently by reusing shared substructures.
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11.1 CKY parsing

The CKY algorithm1 is a bottom-up approach to parsing in a context free gram-
mar. It efficiently tests whether a string is in a language, without considering all
possible parses. The algorithm first forms small constituents, and then tries to
merge them into larger constituents.

Let’s start with an example grammar:

S →VP NP
NP →NP PP | we | sushi | chopsticks
PP →P NP

P →with
VP →V NP | V PP

V →eat

Suppose we encounter the sentence We eat sushi with chopsticks.

• The first thing that we notice is that we can apply unary terminal produc-
tions to obtain the part-of-speech sequence NP VP NP P NP.

• Next, we can apply a binary production to merge the first NP VP into an S.

• Or we could merge VP NP into VP . . .

• . . . and so on.

The CKY algorithm systematizes this approach, incrementally constructing a
table t in which each cell t[i, j] contains the set of nonterminals that can derive the
span wi:j−1. If S ∈ t[0,M ], then w is in the language defined by the grammar.

Algorithm 6 gives the details. We begin by filling in the diagonal: the entries
t[m,m + 1] for all m ∈ {0 . . .M − 1}. These are filled with terminal productions
that yield the individual tokens; for the word w2 = sushi, we fill in t[2, 3] = {N},
and so on. Next we fill in cells spanning length 2: t[0, 2], t[1, 3], . . . , t[M − 2,M ].
These are filled in by looking for binary productions capable of producing at least
one entry in the cells corresponding to left and right children. Next we fill in cells
spanning length 3, and so on. For each of these cells we have to search over the
split point k, which divides the left and right children of the non-terminal that
yields the entire span. Finally we arrive at ` = M , which corresponds to the cell

1The name is for Cocke-Kasami-Younger, the inventors of the algorithm. It is sometimes called
chart parsing, because of its chart-like data structure.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Algorithm 6 The CKY algorithm for parsing with context-free grammars
1: for m ∈ {0 . . .M − 1} do
2: t[m,m+ 1]← {X : X → wm ∈ R}
3: for ` ∈ {2 . . .M} do
4: for m ∈ {0 . . .M − `} do
5: for k ∈ {m+ 1 . . .m+ `− 1} do
6: t[m,m+`]← t[m,m+`]∪{X : (X → Y Z) ∈ R∧Y ∈ t[m, k]∧Z ∈ t[k,m+`]}

We eat sushi with chopsticks

We NP S S ∅ S

eat V VP ∅ VP

sushi NP ∅ NP

with P PP

chopsticks NP

Figure 11.1: An example completed CKY chart. There are two paths to VPin posi-
tion t[1, 5], one in black and another in dashed blue.

t[0,M ]. If we can find a split point k such that we can produce an element in t[0, k]
and an element in t[k,M ] as productions from S, then we can successfully parse
the sentence. Figure 11.1 shows the chart that arises from parsing the sentence we
eat sushi with chopsticks using the grammar defined above.

The CKY algorithm assumes that all productions with non-terminals on the
RHS are binary. What do we do when this is not true?

• For productions with more than two elements on the right-hand side, we bi-
narize, creating additional non-terminals. For example, if we have the pro-
duction VP → V NP NP (for ditransitive verbs), we might convert to VP →
VPditrans/NP NP, and then add the production VPditrans/NP → V NP.

• What about unary productions like S → VP → V → eat? To handle this
case, we compute the unary closure of each non-terminal. For example, if the
grammar includes S → VP and VP → V, then we add S → V to the unary
closure of S. Then for each entry t[i, j] in the table, for each non-terminal
A ∈ t[i, j], we add all elements of the reflexive unary closure for A to t[i, j].

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Complexity

Space The space complexity is O(M2#|N |). We are building a table of size M2,
and each cell must hold up to #|N | elements, where #|N | is the number of
non-terminals.

Time The time complexity isO(M3#|R|). At each cell, we search overO(M) split
points, and #|R| productions, where #|R| is the number of production rules
in the grammar.

Notice that these are considerably worse than the finite-state algorithms of
Viterbi and forward-backward, which are linear time; generic shortest-path for
finite-state automata has complexity O(M logM). As usual, these are worst-case
asymptotic complexities. But in practice, things can be worse than worst-case!
(See Figure 11.2) This is because longer sentences tend to “unlock” more of the
grammar — they involve non-terminals that do not appear in shorter sentences.

Figure 11.2: Figure from Dan Klein’s lecture slides

11.2 Ambiguity in parsing
In many applications, we don’t just want to know whether a sentence is grammat-
ical, we want to know what structure is the best analysis. Unfortunately, syntactic
ambiguity is endemic to natural language:2

Attachment ambiguity we eat sushi with chopsticks, I shot an elephant in my pajamas.

Modifier scope southern food store

Particle versus preposition The puppy tore up the staircase.
2Examples borrowed from Dan Klein’s slides

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Complement structure The tourists objected to the guide that they couldn’t hear.

Coordination scope “I see,” said the blind man, as he picked up the hammer and saw.

Multiple gap constructions The chicken is ready to eat

These forms of ambiguity can combine, so that a seemingly simple sentence
like Fed raises interest rates can have dozens of possible analyses, even in a minimal
grammar. Real-size broad coverage grammars permit millions of parses of typical
sentences. Faced with this ambiguity, classical parsers faced a tradeoff:

• achieve broad coverage but admit a huge amount of ambiguity;

• or settle for limited coverage in exchange for constraints on ambiguity.

The problem of syntactic parsing is to find the best choice among the many legal
parses for a given sentence. We will now explore some data-driven solutions to
this problem.

Local solutions

Some ambiguity can be resolved locally. Consider the following examples,

(11.1) [ imposed [ a ban [ on asbestos ]]]

(11.2) [ imposed [ a ban ][ on asbestos ]]

This is a case of attachment ambiguity: do we attach the prepositional phrase
on asbestos to the verb imposed, or the noun phrase a ban. To solve this problem,
Hindle and Rooth (1990) proposed a likelihood ratio test:

LR(v, n, p) =
p(p | v)

p(p | n)
=

p(on | imposed)

p(on | ban)
(11.1)

where they select VERB attachment if LR(v, n, p) > 1.
But the likelihood-ratio approach ignores important information, like the phrase

being attached.

(11.3) ...[ it [ would end [ its venture [with Maserati]]]]
(11.4) ...[ it [ would end [ its venture ][with Maserati]]]

The likelihood ratio gets this example wrong,

• p(with | end) = 607
5156

= 0.118

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• p(with | venture) = 155
1442

= 0.107

Other features (e.g., Maserati) argue for noun attachment, since entities such as
Maserati tend to participate in ventures, rather than being used as instruments
to bring about an ending (which is what the verb phrase attachment implies).
To combine these sorts of features into a single predictive model, we will need
machine learning.

Machine learning solutions Ratnaparkhi et al. (1994) propose a classification-
based approach, using logistic regression (maximum entropy):

p(Noun attachment | would end its venture with Maserati) =

eθ
>f(noun-attach,would end its venture with Maserati)

eθ>f(noun-attach,would end its venture with Maserati) + eθ>f(verb-attach,would end its venture with Maserati)

Features include n-grams and word classes from hierarchical word clustering (see
chapter 15); accuracy is roughly 80%.

Collins and Brooks (1995) argued that attachment depends on four heads:

• the preposition (with)

• the VP attachment site (end)

• the NP attachment site (venture)

• the NP to be attached (Maserati)

They propose a backoff-based approach:

• First, look for counts of the tuple 〈with, Maserati, end, venture〉
• If none, try 〈with, Maserati, end〉+ 〈with,end,venture〉+ 〈with,Maserati, venture〉
• If none, try 〈with, Maserati〉+ 〈with,end〉+ 〈with,venture〉
• If none, try 〈with〉

Accuracy of this method is roughly 84%. This approach of combining relative
frequency estimation, smoothing, and backoff was very characteristic of 1990s sta-
tistical NLP.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Beyond local solutions

Framing the problem as attachment ambiguity is limiting. It assumes the parse is
mostly done, leaving just a few attachment ambiguities to solve. But realistic sen-
tences have more than a few syntactic interpretations, and attachment decisions
are interdependent. For example, consider the sentence,

(11.5) Cats scratch people with claws with knives.

We may want to attach with claws to scratch, as would be correct in the sentence
in Cats scratch people with claws. But then we have nowhere to attach with knives.
Only by considering these decisions jointly can we make the right choice. The
task of statistical parsing is to produce a single analysis that resolves all syntactic
ambiguities.

11.3 Probabilistic Context-Free Grammars

In a probabilistic context-free grammar (PCFG), each production X → α is as-
sociated with a probability p(α | X). These probabilities are conditioned on
the left-hand side, so they must normalize to one over possible right-hand sides,∑

α′ p(α′ | X) = 1. For example, for the verb phrase productions, we might have,

VP →V 0.3

VP →V NP 0.6

VP →V NP NP 0.1

which would indicate that transitive verbs are twice as common as intransitive
verbs, which in turn are three times more common than ditransitive verbs.

Given probabilities on the productions, we can then score the probability of a
derivation as a product of the probabilities of all of the productions. Consider the
PCFG in Table 11.1 and the parse in Figure 11.3.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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S → NP VP 0.9
S → S CC S 0.1

NP → N 0.2
NP → DT N 0.3
NP → N NP 0.2
NP → JJ NP 0.2
NP → NP PP 0.1

VP → V 0.4
VP → V NP 0.3
VP → V NP NP 0.1
VP → VP PP 0.2

PP → P NP 1.0

Table 11.1: A fragment of an example probabilistic context-free grammar (PCFG)

The probability of this parse is:

p(τ,w) =P (S → NP VP)

× P (NP → N)× P (N → they)

× P (VP → VP PP)

× P (VP → V NP)× P (V → eat)
× P (NP → N)× P (N → sushi)
× P (PP → P NP)× P (P → with)

× P (NP → N)× P (N → chopsticks) (11.2)
=0.9× 0.2× 0.2× 0.3× 0.2× 1.0× 0.2

× probability of terminal productions (11.3)

Now if we consider the alternative parse in which the prepositional phrase at-
taches to the noun, all of these probabilities are the same, with one exception:
instead of the production VP → VP PP, we would have the production NP →
NP PP. Since P (VP → VP PP) > P (NP → NP PP) in the PCFG, the verb phrase
attachment would be preferred.

This example hints at a big problem with PCFG parsing on non-terminals such
as NP, VP, and PP: we will always prefer either VP or PP attachment, without
regard to what is being attached! This problem is addressed later in the chapter.

(c) Jacob Eisenstein 2014-2016. Work in progress.



11.3. PROBABILISTIC CONTEXT-FREE GRAMMARS 195
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Figure 11.3: An example derivation

More formally, for a given sequencew, we want to select the parse τ that max-
imizes p(τ | w).

arg max
τ

p(τ | w) =arg max
τ

p(τ,w)

p(w)

=arg max
τ

p(τ,w)

=arg max
τ

p(w | τ)p(τ)

=arg max
τ :w=yield(τ)

p(τ)

As in CFGs, the yield of a tree is the string of terminal symbols that can be read
off the leaf nodes. The set {τ : w = yield(τ)} is exactly the set of all derivations of
w in a CFG G.

Estimation

As in supervised HMMs, estimation is easy (for now!). We can estimate the pro-
duction probabilites directly from a treebank, using relative frequency estimation.
For example,

P (VP → VP PP) =
count(VP → VP PP)

count(VP)

Three basic problems for PCFGs

Let τ ∈ T be a derivation, w be a sentence, and λ a PCFG.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Sequences Trees

model HMM PCFG
decoding Viterbi algorithm CKY
decoding complexity O(M2|K|) O(M3|R|)
likelihood forward algorithm inside algorithm
marginals forward-backward inside-outside

Table 11.2: Relationships between generative probabilistic models of sequences
and trees

Algorithm 7 CKY algorithm with weighted productions
for m ∈ {0, . . . ,M − 1} do

for all X ∈ tags(wj) do
t[m,m+ 1, X]← P (X → wm)

for ` ∈ {2 . . .M} do
for m ∈ {0, . . . ,M − `} do

for k ∈ {m+ 1, . . . ,m+ `− 1} do
for all (X → Y Z) ∈ R do

t[m,m+`,X]← t[m,m+`,X]
⊕

(ψX→Y Z ⊗ t[m, k, Y ]⊗ t[k,m+ `, Z])

• Decoding: Find τ̂ = arg maxτ p(τ,w;λ)

• Likelihood: Find p(w;λ) =
∑

τ p(τ,w;λ)

• (Unsupervised) Estimation: Find arg maxλ p(w1...N | λ)

These three problems are analogous to the problems identified by Rabiner
(1989) for Hidden Markov Models. More analogies between these models are
identified in Table 11.2.

CKY with weights

It is not difficult to extend CKY to include probabilities or other weights. Let us
write ψX→Y Z for the score for the production X → Y Z. In the PCFG, this score
is simply a probability, ψX→Y Z = P (X → Y Z); in a more general weighted
context-free grammar (WCFG), the score may be some other quantity, such as a
log-potential score θ>f(X → Y Z). Algorithm 7 shows how to perform CKY
parsing in a WCFG.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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In the boolean semiring, we have ⊕ = ∨, ⊗ = ∧, and ψX→Y Z = True if
X → Y Z is a production in the grammar. The ⊕ operation ensures that we take
a disjunction over all split-points k and all children Y and Z; the ⊗ operations
require that we can derive the span wm:k−1 from Y , and the span wk:m+`−1 from
Z. Let’s write X ; wi:j if it is possible to derive the substring wi:j from the non-
terminal X . If Y ; wm:k−1 and Z ; wk:m+`−1, and X → Y Z is in the grammar,
then X ; wm:m+`−1.

In the “tropical” probability semiring, we have⊕ = max,⊗ = ×, andψX→Y Z =
P (X → Y Z). Let’s writeψ(X ; wi:j) for the probability of the highest-probability
derivation of wi:j from the non-terminal X . Then,

if t[Y,m, k] =ψ(Y ; wm:k−1) (11.4)
and t[Z, k,m+ `] =ψ(Z ; wk:m+`−1) (11.5)

then ψ(X ; wm:m+`−1) = max
Y,Z,k

P (X → Y Z)× t[Y,m, k]× t[Z, k,m+ `] (11.6)

The inside algorithm computes the probability of producing a span of textwi:j

from a non-terminal X . To do this, we move to a semiring where ⊕ = +,

t[X, i, j] =
∑
Y,Z,k

P (X → Y Z)P (Y → wi:k)P (Z → wk+1:j) (11.7)

=P (X → wi:j). (11.8)

The relationship between CKY and the Inside Algorithm is perfectly analogous
to the relationship between Viterbi and the Forward Algorithm, and is carried out
by exactly the same change of semirings.

11.4 Parser evaluation
Before continuing to more advanced parsing algorithms, we need to consider how
to measure parsing performance. Suppose we have a set of reference parses — the
ground truth — and a set of system parses that we would like to score. A simple
solution would be per-sentence accuracy: the parser is scored by the proportion of
sentences on which the system and reference parses exactly match.3 But we would
like to assign partial credit for correctly matching parts of the reference parse. The
PARSEval metrics do that, scoring each system parse via:

3Most parsing papers do not report results on this metric, but Finkel et al. (2008) find that a
near-state-of-the-art parser finds the exact correct parse on 35% of sentences of length ≤ 40, and
on 62% of parses of length ≤ 15 in the Penn Treebank.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 11.4: Suppose that the left parse is the system output, and the right parse
is the ground truth; the precision is 0.75 and the recall is 1.0.

Precision, the fraction of brackets in the system parse that match a bracket in the
reference parse.

Recall, the fraction of brackets in the reference parse that match a bracket in the
system parse.

As in chapter 3, the F-measure is the harmonic mean of precision and recall, F =
2∗P∗R
R+P

.
In labeled precision and recall, the system must also match the non-terminals

for each bracket; in unlabeled precision and recall, it is only required to match the
bracketing structure.

In Figure 11.4, suppose the top tree is the system parse and the bottom tree is
the reference parse. We have the following spans:

• S → w1:5: true positive

• VP → w2:5: true positive

• NP → w3:5: false positive

• PP → w4:5: true positive

So for this parse, we have a (labeled and unlabeled) precision of 3
4

= 0.75, and
a recall of 3

3
= 1.0, for an F-measure of 0.86. The best automatic CFG parsers get an

F-score of approximately 0.92 on the Penn Treebank (PTB) today (McClosky et al.,
2006).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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11.5 Improving PCFG parsing
Regardless of the parsing algorithm, pure PCFG parsing on Penn Treebank non-
terminals (e.g., NP, VP) doesn’t work well: Johnson (1998) shows that a PCFG
estimated from treebank production counts gets an F-measure of only F = 0.72.
Why?

Problems with PCFG parsing

Substitutability Recall that substitutability is a criterion for constituency. Are
NPs really substitutable? No, because some pronouns cannot be both subjects
and objects (Figure 11.5).

S

VP

NP

NN

bear

DT

the

VBD

heard

NP

PRP

She

S

VP

NP

PRP

she

VBD

heard

NP

NN

bear

DT

The

Figure 11.5: A grammar that allows she to take the object position wastes proba-
bility mass on ungrammatical sentences.

We might address this problem by splitting the NP tag into nominitive (she)
and oblique (her) cases, but this distinction is only relevant for pronouns: other
nouns can appear in either position.

A related point is that we have no flexibility on PP attachment. If P (NP →
NP PP) > P (VP → VP PP), we will always prefer NP attachment; if not, we
will always prefer VP attachment. More fine-grained NP and VP categories might
allow us to make attachment decisions more accurately.

Semantic preferences In addition to grammatical constraints such as case mark-
ing, we have semantic preferences: for example, that conjoined entities should be
similar. In Figure 11.6, you probably prefer the left parse, which conjoins France
and Italy, rather than the right parse, which conjoins wine and Italy. But it is im-
possible for a PCFG to distinguish these parses! They contain exactly the same
productions, so the resulting probabilities will be the same, no matter how you
define the probabilities of each production.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 11.6: The left parse is preferable because of the conjunction of phrases
headed by France and Italy.

Subsumption There are several choices for annotating PP attachment

Johnson (1998) shows that even though the two-level representation is chosen in
the annotation, it can never be produced by a PCFG because the production is

(c) Jacob Eisenstein 2014-2016. Work in progress.
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subsumed.

P (NP → NP PP) = 0.112 (11.9)
P (NP → NP PP PP) = 0.006 (11.10)

P (NP → NP PP)P (NP → NP PP) = (0.112)2 ≈ 0.013 (11.11)

The probability of applying the NP → NP PP production twice is greater than
the probability of the two-PP production, so this production will never appear in
a PCFG parse. Johnson shows that 9% of all productions are subsumed and can
be removed from the grammar!

Modern generative parsing algorithms improve on pure PCFG parsing by au-
tomatically refining the non-terminals. There are three main ways to do this:

Tree transformations The annotated parse trees are automatically transformed so
that the production probabilities are more useful for automatic parsing.

Lexicalization Each non-terminal is labeled with a head word, indicating the
most syntactically important word in the constituent that the non-terminal
derives.

Unsupervised machine learning The original non-terminal set is automatically
refined into more precise categories that make PCFG parsing easier. One
way to do this is by expectation-maximization (chapter 4).

The first two approaches are discussed in the remainder of this section; non-
terminal refinement is discussed in section 11.6.

Tree transformations

Johnson (1998) proposed a series of heuristic transformations to the Penn Tree-
bank annotations. At training time, he applies these transformations to the train-
ing data, and learn the probabilities of the PCFG productions. This parser is then
applied to the test data. The resulting parses must then be detransformed so that
they can be evaluated against the original ground truth.

Flattening The first transformation is to “flatten” nested noun phrases to be
more like verb phrase structures, as shown in Figure 11.7.

Flattened rules are of course still context-free, but by reducing recursion, they
allow more specific probabilities to be learned. This can eliminate the problems
with rule subsumption that we saw earlier.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 11.7: Johnson (1998) “flattens” nested noun phrases to remove internal
structure.[todo: bigger arrow]
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Figure 11.8: Parent annotation in a CFG derivation

Parent annotation Context-free grammars assume that the probability of each
production depends only on the identity of the non-terminal on the left-hand side,
and not on anything else in the derivation. But in PTB-style analysis of English
grammar, the observed probability of productions often depends on the parent of
the element on the left-hand side. For example, in the PTB, noun phrases are much
more likely to be modified by prepositional phrases when they are in the object
position (e.g., They amused the students from Georgia) than in the subject position
(e.g., The students from Georgia amused them). In PCFG terms, this means that the
NP → NP PP production is more likely if the entire consistuent is the child of a
VP than if it is the child of S.

P (NP → NP PP) =11% (11.12)
P (NP UNDER S → NP PP) =9% (11.13)

P (NP UNDER VP → NP PP) =23% (11.14)

We can capture this phenomenon via parent annotation: augmenting each non-
terminal with the identity of its parent (Figure 11.8). This is sometimes called
vertical Markovization, since we introduce a Markov dependency between each
node and its parent (Klein and Manning, 2003).

Parent annotation weakens the PCFG independence assumptions. This could
help accuracy by making more fine-grained distinctions, which better capture real

(c) Jacob Eisenstein 2014-2016. Work in progress.
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lingusitic phenomena. But it could also hurt accuracy, because each production
probability must be estimated from less data.

In practice, the transformations proposed by Johnson (1998) do improve per-
formance on PTB parsing:

• Standard PCFG: 72% F-measure, 14,962 rules

• Parent-annotated PCFG with flattening: 80% F-measure, 22,773 rules [todo:
double check that flattening is included too]

• In principle, parent annotation could have increased the grammar size much
more dramatically, but many possible productions never occur, or are sub-
sumed.

Lexicalization

Recall that some of the problems with PCFG parsing that were suggested above
have to do with meaning — for example, preferring to coordinate constituents
that are of the same type, like cats and dogs rather than cats and houses. A simple
way to capture semantics is through the words themselves: we can annotate each
non-terminal with head word of the phrase.

Head words are deterministically assigned according to a set of rules, some-
times called head percolation rules. In many cases, these rules are straightfor-
ward: the head of a NP → DT N production is the noun, the head of a S →
NP VP production is the head of the VP, etc. But as always, there are a lot of
special cases.

A fragment of the head percolation rules used in many parsing systems are
found in Table 11.3.4

Non-terminal Direction Priority

S right VP SBAR ADJP UCP NP
VP left VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP
NP right N* EX $ CD QP PRP . . .
PP left IN TO FW

Table 11.3: A fragment of head percolation rules

The meaning of these rules is that to find the head of an S constituent, we first
look for the rightmost VP child; if we don’t find one, we look for the rightmost

4From http://www.cs.columbia.edu/˜mcollins/papers/heads

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 11.9: Lexicalization can address ambiguity on coordination scope (upper)
and PP attachment (lower)

SBAR child, and so on down the list. Verb phrases are headed by left verbs (the
head of can walk home is walk, since can is tagged MD), noun phrases are headed
by the rightmost noun-like non-terminal (so the head of the red cat is cat), and
prepositional phrases are headed by the preposition (the head of at Georgia Tech
is at). Some of these rules are somewhat arbitrary — there’s no particular reason
why the head of cats and dogs should be dogs — but the point here is just to get
some lexical information that can support parsing, not to make any deep claims
about syntax.

Given these rules, we can lexicalize the parse trees for some of our examples,
as shown in Figure 11.9.

• In the upper part of Figure 11.9, we see how lexicalization can help solve
coordination scope ambiguity; if,

P (NP → NP(France) CC NP(Italy)) > P (NP → NP(wine) CC NP(Italy)),
(11.15)

we should get the right parse.

• In the lower part of Figure 11.9, we see how lexicalization can help solve

(c) Jacob Eisenstein 2014-2016. Work in progress.
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attachment ambiguity. Here we assume that,

P (VP(meet)→ α PP(on))�P (NP(President)→ β PP(on)) (11.16)
P (VP(meet)→ α PP(of))�P (NP(President)→ β PP(of)) (11.17)

In plain English: Meeting are on things; Presidents are of things.

• Recall that verbs may be intransitive, transitive, or ditransitive. Lexical-
ization can help distinguish these cases, as shown by the lexicalized PCFG
probabilities for the ditransitive VP production,

P (VP → V NP NP) =0.00151 (11.18)
P (VP(said)→ V(said) NP NP) =0.00001 (11.19)
P (VP(gave)→ V(gave) NP NP) =0.01980. (11.20)

Overall, lexicalization had a major impact on parsing accuracy, as shown in
Table 11.4. According to Eugene Charniak, one of the early proponents of lexical-
ized PCFG parsing: “To do better, it is necessary to condition probabilities on the
actual words of the sentence. This makes the probabilities much tighter.”5

Vanilla PCFG 72%
Head-annotated PCFG (Johnson, 1998) 80%
Lexicalized PCFGs (Collins, 1997, 2003; Charniak, 1997) 87-89%

Table 11.4: Penn Treebank parsing accuracies

Algorithms for lexicalized parsing

In principle, we could perform lexicalized PCFG parsing with the CKY algo-
rithm, by expanding the non-terminals to include the cross-product of all PTB
non-terminals and all words. Then our grammar would include rules like:

VP(scratch)→VP(scratch)NP(people) (11.21)
VP(scratch)→VP(scratch)NP(themselves) (11.22)
VP(scratch)→VP(scratch)NP(Abigail) (11.23)

. . . . . . (11.24)

5The quote is from a workshop at Johns Hopkins University in 2000.

(c) Jacob Eisenstein 2014-2016. Work in progress.



206 CHAPTER 11. CFG PARSING

In a sense, we have gone from N non-terminals (S,VP, . . .) to N × V non-
terminals (S(scratch), S(eat),VP(scratch),VP(eat), . . .). This would imply O(N3V 3)
possible productions. Since one of the two children must have the same head
word as the parent, the situation is slightly better: O(N3V 2). But since the vocab-
ulary size is at least 104 in most reasonable scenarios, this is still not practical.

With a little thought, it should be clear that the complexity need not depend on
V . All the words are already given, so the only question is which word position
in h ∈ {1 . . .M} is the head of each non-terminal, and not which word type w ∈ V
is the head. We can implement this intuition by modifying the CKY algorithm,
building a different chart structure. We will still work bottom-up, but now we
need one additional piece of information: the location of the head word of each
span. We should therefore store the elements t[i, j, h,X], indicating a span over
the substring wi:j−1, headed by wh (h ∈ i . . . j − 1), with parent node X .

To recursively construct t[i, j, h,X], we need to consider two possibilities: ei-
ther the head h is in the left child, or it is in the right child. If h is in the left child,
then the split point k must be greater than h. Finally, in addition to maximizing
over the location of the split point, we must also maximize over locations of the
head of the right child, ` ≥ k. We can then compute t`[i, j, h,X], which is the score
of the best derivation X(wh) ; wi,j in which the head word wh is in the left child:

t`[i, j, h,X] = max
k>h

max
k≤`<j

max
X(wh)→Y(wh)Z(w`)

P (X(wh)→ Y(wh)Z(wm))×t[i, k, h, Y ]×t[k, `, j, Z]

(11.25)

If the head h is in the right child, then the split point k must be less than or
equal to h. We must also identify the location of the head of the left child, ` <
k. We can then compute tr[i, j, h,X], which is the score of the best derivation
X(wh) ; wi,j in which the head word wh is in the right child:

tr[i, j, h,X] = max
k≤h

max
i≤`<k

max
X(wh)→Y(w`)Z(wh)

P (X(wh)→ Y(w`)Z(wh))×t[i, k, `, Y ]×t[k, j, h, Z].

(11.26)

Finally, we can compute the score of the overall best derivation X(wh) ; wi,j

as the max of the scores of the best left-headed and right-headed derivations,

t[i, j, h,X] = max (t`[i, j, h,X], tr[i, j, h,X]) . (11.27)

In this headed version of CKY, we are building a table of size O(M3N), where
M is the length of the sentence and N is the number of non-terminals. To fill in
each cell, we must perform O(M2G) operations, taking maxes over two indices

(c) Jacob Eisenstein 2014-2016. Work in progress.
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S(rose)

VP(rose)

VBD(rose)

NP(profits)

NNS(profits)JJ(Corporate)

Figure 11.10: Example of a lexicalized derivation for the CHarniak parser

in the sentence, and over all rules. This would imply a total time complexity of
O(M5NG) — still too slow to be practical, even without the dependency on the
vocabulary size V . However, Eisner and Satta (1999) show that a more clever
algorithm reduces this time cost back to O(M3G). A more serious problem is es-
timation: all this work on parsing algorithms doesn’t save us from computing
probabilities for all O(N3V 2) possible productions. Charniak (1997) and Collins
(1997, 2003) offer practical solutions, which decompose the production probabili-
ties using various independence assumptions.

The Charniak Parser

The Charniak (1997) parser gives a relatively straightforward way to lexicalize
PCFGs. Head probabilities capture “bilexical” phenomena; in the example, ...
meet the President of Mexico, the bilexical probabilities for the pairs 〈meet, of〉 and
〈President, of〉 should help the parser make the right attachment decision. We
can capture this idea by representing the probability of each production X(i) →
Y(j)Z(k), by the product of two factors:

• The rule probability, P (r | wm, tm, tρ(m)), where r is the rule X → Y Z, m
is the index of the head of the left-hand side, tm is the type of the left-hand
side (a non-terminal, such as VP), tρ(m) is the type of the parent of m (again,
a non-terminal).

• The head probability, P (wm | wρ(m), tm, tρ(m)), where wm is a head word.

Consider the example in Figure 11.10. The rule probability for the noun phrase
production is,

P (NP → JJ NNS | wm = rose, tm = NP, tρ(m) = S). (11.28)

The head probability is,

p(profits | wρ(m) = rose, tm = NP, tρ(m) = S). (11.29)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 11.11: The probability of verb phrase complements is highly dependent
on the identity of the verb itself: for example, the verb come frequently takes a
prepositional phrase as a complement (come to the party), while the verb take is
more likely to take a noun phrase complement. Conditioning on the verb identity
can therefore improve parsing accuracy. [todo: attribution for this table]

We would then multiply these probabilities to fill in the chart,

t[1, 3, 2,NP] =P (NP → JJ NNS | wm = rose, tm = NP, tρ(m) = S) (11.30)
× p(profits | wρ(m) = rose, tm = NP, tρ(m) = S). (11.31)

Bilexical probabilities are captured in the head probability, which depends on
the head words of both the parent and child. This parser therefore combines two
ideas that we have seen before:

Head annotation since both the rule and head probabilities depend on the parent
type tρ(m).

Lexicalization since the rule probability depends on the head word wm. These
rule probabilities can capture phenomena like verb complement frames, as
shown in Figure 11.11.

Estimating the Charniak parser The Charniak parser involves fewer parame-
ters than a naive lexicalized PCFG. To estimate the relevant parameters in our

(c) Jacob Eisenstein 2014-2016. Work in progress.
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example, we have

phead(profits | tm = NP, tρ(m) = S, wρ(m) = rose)

=
count(wm = profits, tm = NP, tρ(m) = S, wρ(m) = rose)

count(tm = NP, tρ(m) = S, wρ(m) = rose)
Prule(NP → JJ NNS | wρ(m) = rose, tm = NP, tρ(m) = S)

=
count(NP → JJ NNS, tm = NP, tρ(m) = S, wρ(m) = rose)

count(tm = NP, tρ(m) = S, wρ(m) = rose)

The Penn Treebank provides is still the main dataset for syntactic analysis of
English. Yet its 1M words is not nearly enough data to accurately estimate lexi-
calized models such as the Charniak parser, without smoothing. For example, in
965K annotated constituent spans, there are only 66 examples of WHADJP, and
only 6 of these aren’t how much or how many.[todo: cite?]

In the example above (corporate profits rose), the unsmoothed head probability
is zero, as estimated from the PTB: there are zero counts of profits headed by rose in
the treebank [todo: check]. In general, bilexical counts are going to be very sparse.
But the “backed-off” probabilities give a reasonable approximation. These can be
incorporated via interpolation.

Smoothing the Charniak Parser We compute a smoothed estimate of the head
probability as,

p̂(wm | tm, wρ(m), tρ(m)) =λ1pmle(wm | tm, wρ(m), tρ(m))

+ λ2pmle(wm | tm, cluster(wρ(m)), tρ(m))

+ λ3pmle(wm | tm, tρ(m))

+ λ4pmle(wm | tm), (11.32)

where cluster(wrho(m)) is the cluster of word wρ(m), obtained by applying an auto-
matic clustering method to distributional statistics (Pereira et al., 1993); see chap-
ter 15 for more details.

For example:
p(profit | NP, rose, S) P (corp. | JJ, profit, NP )

p(wm | tm, wρ(m), tρ(m)) 0 .245
p(wm | tm, c(wρ(m)), tρ(m)) .0035 .015
p(wm | tm, tρ(m)) .00063 .0053
p(wm | tm) .00056 .0042

(c) Jacob Eisenstein 2014-2016. Work in progress.
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We have to tune λ1 . . . λ4, and an equivalent set of parameters for the rule prob-
abilities.

The Charniak parser suffers from acute sparsity problems because it estimates
the probability of entire rules. Another extreme would be to generate the children
independently from each other, e.g.

P (S → NP VP) ≈ PL(S → NP)PR(S → VP) (11.33)

Collins (2003) and Charniak (2000) make a compromise: their parsers estimate
lexicalized probabilities that condition on the parent and the head child.

The Collins Parser

The Charniak parser focuses on lexical relationships between children and par-
ents. Motivated by the linguistic theory of lexicalized tree-adjoining grammar (Joshi
and Schabes, 1997), the Collins (2003) parser focuses on relationships between ad-
jacent children of the same parent. We can write each production as,

X → LmLm−1 . . . L1HR1 . . . Rn−1Rn,

whereH is the child containing the head word, eachLi is a child element to the left
of the head, and each Rj is a child element to the right of the head. In the Collins
parser, these elements are generated probabilistically from the head outward. The
outermost elements of L and R are special 〈STOP〉 symbols.

For example, consider the verb phrase,

VP(dumped)

PP(into)

into the river

NP(sacks)

sacks

VBD(dumped)

dumped

To model this rule, we would compute:

p(VP(dumped,VBD)→ [〈STOP〉,VBD(dumped,VBD),NP(sacks,NNS), PP(into, P), 〈STOP〉])

We compute this probability through a hypothesized generative process,

• Generate the head:

P (H | LHS) = P (VBD(dumped,VBD) | VP(dumped,VBD)) (11.34)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Generate the left dependent:

PL(〈STOP〉 | VP(dumped,VBD),VBD(dumped,VBD)) (11.35)

• Generate the right dependent:

PR(NP(sacks,NNS) | VP(dumped,VBD),VBD(dumped,VBD)) (11.36)

• Generate the right dependent:

PR(NP(into, PP ) | VP(dumped,VBD),VBD(dumped,VBD)) (11.37)

• Generate the right dependent:

PR(〈STOP〉 | VP(dumped,VBD),VBD(dumped,VBD)) (11.38)

The rule probability is the product of these generative probabilities. Because
these generative probabilities are defined only over parts of the productions, they
are easier to estimate from limited data. Nonetheless, it is still necessary to smooth
these probabilities by interpolating them with less expressive probability func-
tions. For example,

P̂R(NP(sacks,NNS) | VP(dumped,VBD), dumped,VBD)

=λ1P̂ (NP(sacks,NNS) | VP, dumped,VBD)

+ λ2P̂ (NP(sacks,NNS) | VP,VBD)

+ λ3P̂ (NP(sacks,NNS) | VP) (11.39)

The Collins parser models bilexical dependencies between the head and its
siblings. Bilexical probabilities require counts over pairs of words, a space of
O(V 2) events. It is this large event space that makes these probabilities difficult
to estimate, necessitating smoothing. Is it worth it? Bikel (2004) evaluating the
importance of bilexical probabilities to the performance of the Collins parser. In
general, these bilexical probabilites are rarely available — because most of the
possible bilexical pairs in the test data are unobserved in the training data — but
these bilexical probabilities are indeed active in 29% of the rules in the top-scoring
parses. Still, Bikel finds that bilexical probabilities play a relatively small role in
accuracy: an equivalent parser which conditions on only a single head suffers only
0.3% decrease in F-measure. A completely unlexicalized parser performs consid-
erably worse, indicating that some amount of lexicalization is still necessary for
top performance.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Summary of lexicalized parsing

Lexicalized parsing results in substantial accuracy gains:

Vanilla PCFG 72%
Parent-annotations (Johnson, 1998) 80%
(Charniak, 1997) 86%
(Collins, 2003) 87%

Table 11.5: Accuracies for lexicalized parsers

But lexicalization creates an explosion in the size of the grammar, which re-
quires elaborate smoothing techniques and makes parsing slow. Treebank syntac-
tic categories are too coarse, but lexicalized categories may be too fine; more recent
approaches have sought middle ground. At the same time, natural language pro-
cessing has moved from generative models to more advanced machine learning
techniques in the late 1990s and early 2000s, and researchers have worked to in-
corporate these techniques into parsing. We consider both of these ideas in the
next section.

11.6 Modern constituent parsing

Reranking

Charniak and Johnson (2005) and Collins and Koo (2005) combine generative and
discriminative models for parsing, using the idea of reranking. First, a genera-
tive model is used to identify its K-best parses. Then a discriminative ranker is
trained to select the best of these parses. The discriminative model does not need
to search over all parses — just the bestK identified by the generative model. This
means that it can use arbitrary features — such as structural features that capture
parallelism and right-branching, which could not be easily incorporated into a
bottom-up parsing model. Because learning is discriminative, rerankers can also
use very rich lexicalized feature spaces, relying on regularization to combat over-
fitting. Overall, this approach yields substantial improvements in accuracy on the
Penn Treebank, and can be applied to improve any generative parsing model.

Refinement grammars

Klein and Manning (2003) revisit unlexicalized parsing, expanding on the ideas in

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(Johnson, 1998).
They apply two types of Markovization:

• Vertical Markovization, making the probability of each parsing rule depend
not only on the type of the parent symbol, but also on its parent type. This is
identical to the parent annotation proposed by Johnson (1998). The amount
of vertical Markovization can be written v, with v = 1 indicating a standard
PCFG.

• Horizontal Markovization, where the probability of each child depends on
only some of its siblings. In a standard PCFG h = ∞, since there is no
decomposition on the right-hand side of the rule. In the Collins parser, dif-
ferent settings of h were explored, with h = 1 indicating dependence only
on the head, and h = 2 indicating dependence on the nearest sibling as well
as the head.

A comparison of various Markovization parameters is shown in Figure 11.12:

Figure 11.12: Performance for various Markovization levels (Klein and Manning,
2003).

Second, Klein and Manning note that the right level of linguistic detail is some-
where between treebank categories and individual words. For example:

• Some parts-of-speech and non-terminals are truly substitutable: for exam-
ple, cat/N and dog/N.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• But others are not: for example, on/PP behaves differently from of /PP. This
is an example of subcategorization.

• Similarly, the words and and but should be distinguished from other coordi-
nating conjunctions.

Figure 11.13 shows an example of an error that is corrected through the intro-
duction of a new NP-TMP subcategory for temporal noun phrases.

Figure 11.13: State-splitting creates a new non-terminal called NP-TMP, for tem-
poral noun phrases. This corrects the PCFG parsing error in (a), resulting in the
correct parse in (b).

Automated state-splitting Klein and Manning (2003) use linguistic insight and
error analysis to manually split PTB non-terminals so as to make parsing easier.
Later work by Dan Klein and his students automated this state-splitting process,
by treating the “refined” non-terminals as latent variables. For example, we might
split the noun phrase non-terminal into NP1, NP2, NP3, . . . , without defining in
advance what each refined non-terminal corresponds to.

Petrov et al. (2006) employ expectation-maximization to solve this problem. In
the E-step, we estimate a marginal distribution q over the refinement type of each
non-terminal. Note that this E-step is subject to the constraints of the original Penn
Treebank annotation: an NP can be reannotated as NP4, but not as VP3. Now, the
marginals are defined as p(X ; wi:j | w1:M), which is the probability that the span
i : j is derived from X , conditioning on the entire sentence w1:M and marginaliz-
ing over all other parts of the derivation. In the forward-backward algorithm, we
computed similar marginals for sequence labeling. In the context of context-free

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Proper nouns
NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco Street
Personal Pronouns
PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

Table 11.6: Examples of automatically refined non-terminals and some of the
words that they generate (Petrov et al., 2006).

grammars, the corresponding algorithm is called inside-outside (Lari and Young,
1990): each marginal is computed as a product of an inside probability defined
in section 11.3), and an outside probability, which is computed recursively from
the top down.

In the M-step, we recompute the parameters of the grammar, based on the
expected counts from the E-step. As usual, this process can be iterated to conver-
gence. To determine the number of refinement types for each tag, Petrov et al.
(2006) apply a split-merge heuristic; Liang et al. (2007) and Finkel et al. (2007)
apply Bayesian nonparametrics.

This approach yielded state-of-the-art accuracy at the time, with an F-measure
of 90.6%. Some examples of refined non-terminals are shown in Table 11.6. The
proper nouns differentiate months, first names, middle initials, last names, first
names of places, and second names of places; each of these will tend to appear in
different parts of grammatical productions. The personal pronouns differentiate
grammatical role, with PRP-0 appearing in subject position at the beginning of
the sentence (note the capitalization), PRP-1 appearing in subject position but not
at the beginning of the sentence, and PRP-2 appearing in object position.

Discriminative parsing

In sequence labeling, discriminative models such as structured perceptron and
conditional random field did much better than the generative hidden Markov
model. We can think of a PCFG parser in our usual framework of structured

(c) Jacob Eisenstein 2014-2016. Work in progress.
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prediction:
τ̂ = arg max

τ
θ>f(τ,w). (11.40)

In this case, the features f(τ,w) count all the CFG productions in τ and the ter-
minal productions to w, and the weights θ count the log-probabilities of those
productions.[todo: explain in more detail how this would work with CKY]

This suggests that we could try to learn the weights θ discriminatively. But if
we are willing to learn the weights discriminatively, we can also add additional
features; we only require a feature decomposition so that f(τ,w) decomposes
across the productions in τ , so that we can still perform CKY parsing to find the
best-scoring parse. For example, under such a decomposition, we could incorpo-
rate lexical features, so that we learn weights for the non-terminal production as
well as for lexicalized forms,

f1 NP(∗)→ NP(*) PP(*)

f2 NP(cats)→ NP(cats) PP(∗)

f3 NP(∗)→ NP(∗) PP(claws)

f4 NP(cats)→ NP(cats) PP(claws)

Through regularization, we can find weights that strike a good balance between
frequently-observed features (f1) and more discriminative features (f4).

This approach was implemented by Finkel et al. (2008) in the context of PCFG
parsing with Conditional Random Fields. They used stochastic gradient descent
for training, with the inside-outside algorithm (analogous to forward-backward,
but for trees) to compute expected feature counts. However, the time complexity
of O(M3) posed serious challenges — recall that CRF sequence labeling can be
trained in linear time. Finkel et al. (2008) address these issues by “prefiltering”
the CKY parsing chart, identifying the productions which cannot be part of any
complete parse.

Carreras et al. (2008) use the averaged perceptron to perform conditional pars-
ing, employing an alternative feature decomposition based on tree-adjoining gram-
mar (TAG). This yields substantially better results, at F = 90.5.

Other parsing models

Table 11.7 summarizes a number of results on parsing. Since the observations
of Johnson (1998) about the poor performance of straightforward PCFG parsing,

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Vanilla PCFG 72%
Parent-annotations (Johnson, 1998) 80%

Lexicalized (Charniak, 1997) 86%
Lexicalized (Collins, 2003) 87%
Lexicalized, reranking, self-training (McClosky et al., 2006) 92.1%

State splitting (Petrov and Klein, 2007) 90.1%

CRF Parsing (Finkel et al., 2008) 89%
TAG Perceptron Parsing (Carreras et al., 2008) 91.1%

Compositional Vector Grammars (Socher et al., 2013a) 90.4%
Neural CRF (Durrett and Klein, 2015) 91.1%

Table 11.7: Penn Treebank parsing scoreboard, circa 2015 (Durrett and Klein, 2015)

the error rate has been reduced from 28% to 8-9% — more than a three-fold error
reduction. One notable alternative not described in detail here is the self-training
parser of McClosky et al. (2006), which automatically labels additional training
instances, and then uses them for learning. Self-training is often considered to be
a risky technique in machine learning, since the automatically-labeled instances
can cause the classifier to “drift” away from the correct model (Blum and Mitchell,
1998).

Recent work has applied neural representations to parsing, representing units
of text with dense numerical vectors (Socher et al., 2013a; Durrett and Klein, 2015).
Neural approahes to natural language processing will be surveyed in chapter 21.
For now, we note that while performance for these models is at or near the state-
of-the-art, neural net architectures have not demonstrated the same dramatic im-
provements in natural language parsing as in other problem domains, such as
computer vision (e.g., Krizhevsky et al., 2012).

(c) Jacob Eisenstein 2014-2016. Work in progress.





Chapter 12

Dependency Parsing

The previous chapter discussed algorithms for analyzing sentences in terms of
nested constituents, such as noun phrases and verb phrases. The combination
of constituency structure and head-percolation rules yields a set of dependencies
between individual words. These dependencies are a more “bare-bones” version
of syntax, leaving out information that is present in the full constituent parse.
Nonetheless, the dependency representation is still capable of capturing impor-
tant linguistic phenomena, such as the prepositional phrase attachment and co-
ordination scope. For this reason, dependency parsing is increasingly used in
applications that require syntactic analysis. While dependency structures can be
obtained as a byproduct of constituent parsing, it is more efficient to extract them
directly. Indeed, accurate dependency parses can be obtained by algorithms with
time complexity that is linear in the length of the sentence. This chapter begins
by overviewing dependency grammar, and then presents the two dominant ap-
proaches to dependency parsing, graph-based and transition-based dependency
parsing.

12.1 Dependency grammar
In lexicalized parsing, non-terminals such as NP are augmented with head words,
as shown in Figure 12.1a. In this sentence, the head of the S constituent is the main
verb, scratch; this non-terminal then produces the noun phrase the cats, whose
head word is cats, and from which we finally derive the word the. Thus, the word
scratch occupies the central position for the sentence, with the word cats playing
a supporting role. In turn, cats occupies the central position for the noun phrase,
with the word the playing a supporting role.

219
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S(scratch)

VP(scratch)

PP(with)

NP(claws)

NNS

claws

IN

with

NP(people)

NNS

people

VB

scratch

NP(cats)

NNS

cats

DT

The

(a) Lexicalized constituency parse

The cats scratch people with claws

(b) Unlabeled dependency tree

Figure 12.1: Dependency grammar is closely linked to lexicalized context free
grammars: each lexical head has a dependency path to every other word in the
constituent.

These relationships, which hold between the words in the sentence, can be
formalized in a directed graph structure. In this graph, there is an edge from
word i to word j iff word i is the head of the first branching node above a node
headed by j. Thus, in our example, we would have scratch→ cats and cats→ the.
We would not have the edge scratch → the, because although cats dominates the
in the graph, cats is not the head of a node that produces a node headed by the.
These edges describe syntactic dependencies, a bilexical relationship between a
head and a dependent, which is at the heart of dependency grammar (Tesnière,
1966).

If we continue to build out this dependency graph, we will eventually reach
every word in the sentence, as shown in Figure 12.1b. In this graph — and in
all graphs constructed in this way — every word will have exactly one incoming
edge, except for the root word, which is indicated by a special incoming arrow
from above. Another feature of this graph is that it is weakly connected, in the
sense that if we replaced the directed edges with undirected edges, there would
be a path between all pairs of nodes. From these properties, it can be shown that
there are no cycles in the graph (or else at least one node would have to have more
than one incoming edge), and therefore, the graph is a tree.

Although we have begun by motivating dependency grammar in terms of lex-
icalized constituent parsing, there is a rich literature on dependency grammar as
a model of syntax in its own right (Tesnière, 1966). Kübler et al. (2009) provides a
comprehensive overview of this literature.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The cats scratch people with claws

root

nsubjdet dobj

prep

pobj

Figure 12.2: A labeled dependency parse

What do the edges mean?

A dependency edge implies an asymmetric syntactic relationship between the
head and dependent words.For a pair like the cats or cats scratch, how do we decide
which is the head? Here are some possible criteria:

• The head sets the syntactic category of the construction: for example, nouns
are the heads of noun phrases, and verbs are the heads of verb phrases.

• The modifier may be optional while the head is mandatory: for example, in
the sentence cats scratch people with clause, the substrings cats scratch and cats
scratch people are grammatical sentences, but with claws is not.

• The head determines the morphological form of the modifier: for example,
in languages that require gender agreement, the gender of the noun deter-
mines the gender of the adjectives and determiners.

As always, these guidelines sometimes conflict, but it is possible to use these basic
principles define fairly consistent conventions at the level of part-of-speech tags,
similar to the head percolation rules from lexicalized constituent parsing.

Edges may be labeled to indicate the nature of the syntactic relation that holds
between the two elements. An example is shown in Figure 12.2. The edge be-
tween scratch and cats is labeled NSUBJ, with scratch as the head; this indicates
that the noun subject of the predicate verb scratch is headed by the word cats. The
edge from scratch to people is labeled with DOBJ; this indicates that the word people
is the head of the direct object. The Stanford typed dependencies have become a
standard inventory of dependency types for English (De Marneffe and Manning,
2008). De Marneffe et al. (2014) propose a more minimal “universal” set of depen-
dencies that is suitable for many languages.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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VP

PP

with a fork

PP

on the table

NP

dinner

V

ate

(a) Flat

VP

PP

with a fork

VP

PP

on the table

VP

NP

dinner

V

ate

(b) Two-level (PTB-style)

VP

PP

with a fork

PP

on the table

VP

NP

dinner

V

ate

(c) Chomsky adjunction

ate dinner on the table with a fork

(d) Dependency representation

Figure 12.3: The three different CFG analyses of this verb phrase all correspond to
a single dependency structure.

Ambiguity and difficult cases

The attachment ambiguity in the sentence shown in Figure 12.2 can be represented
by a single change: replacing the edge from scratch to with by an edge from people
to with. This should give you an idea of why labeled dependency trees are useful:
they tell us who did what to whom.

However, dependency trees are less structurally expressive than lexicalized
CFG derivations. That means they hide information that would be present in
a CFG parse. Often this “information” is in fact irrelevant for any conceivable
linguistic purpose: for example, Figure 12.3 shows three different ways of repre-
senting prepositional phrase adjuncts to the verb ate. Because there is apparently
no meaningful difference between these analyses, the Penn Treebank decides by
convention to use the two-level representation. As shown in Figure 12.3d, these
three cases all look the same in a dependency parse. So if you didn’t think there
was any meaningful difference between these three constituent representations,
you may view this as an advantage of the dependency representation.

Dependency grammar still leaves open some tricky representational decisions.
For example, coordination is a challenge: in the sentence, Abigail and Max like kim-
chi (Figure 12.4), which word is the immediate dependent of the main verb likes?

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Abigail and Max like kimchi

(a) The leftmost coordinated
item is the head.

Abigail and Max like kimchi

(b) The coordinating con-
junction is the head.

Abigail and Max like kimchi

and

(c) The coordinating conjunc-
tion is “collapsed” out.

Figure 12.4: Three alternatives for representing coordination in a dependency
parse

Choosing either Abigail or Max seems arbitrary; for fairness we might choose and,
but this seems in some ways to be the least important word in the noun phrase.
One typical solution is to simply choose the left-most item in the coordinated
structure — in this case, Abigail. Another alternative, as shown in Figure 12.4c,
is a collapsed dependency grammar in which conjunctions are not included as
nodes in the graph, but are instead used to label the edges (De Marneffe et al.,
2006). Popel et al. (2013) survey alternatives for handling this phenomenon across
several dependency treebanks.

The same logic that makes us reluctant to accept and as the head of a coordi-
nated noun phrase may also make us reluctant to accept a preposition as the head
of a prepositional phrase. In the sentence cats scratch people with claws, surely the
word claws is more central than the word with — and it is precisely the bilexical
relations between scratch, claws, and people that help guide us to the correct syn-
tactic interpretation. Yet there are also arguments for preferring the preposition
as the head — as we saw in section 11.5, the preposition itself is what helps us to
choose verb attachment in meet the President on Monday and noun attachment in
meet the President of Mexico. Collapsed dependency grammar is again a possible
solution: we can collapse out the prepositions so that the dependency chain,

President→prep of→pobj Mexico

would be replaced by President→PREP :of Mexico.

Projectivity

The dependency graphs that can be built from all possible lexicalized constituent
parses of a sentence with M words are a proper subset of the spanning trees over
M nodes. In other words, there exist spanning trees that do not correspond to any

(c) Jacob Eisenstein 2014-2016. Work in progress.
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% non-projective edges % non-projective sentences

Czech 1.86% 22.42%
English 0.39% 7.63%
German 2.33% 28.19%

Table 12.1: Frequency of non-projective dependencies in three lan-
guages (Kuhlmann and Nivre, 2010)

lexicalized constituent parse. This is because syntactic constituents are contigu-
ous spans of text, so that the head h of the constituent that spans the nodes from i
to j must have a path to every node in this span. This property is known as pro-
jectivity. Informally, it means that “crossing edges” are prohibited. The formal
definition follows:

Definition 2 (Projectivity). An edge from i to j is projective iff all k between i and j are
descendants of i. A dependency parse is projective iff all its edges are projective.

If we were to annotate a dependency parse directly — rather than deriving
it from a lexicalized constituent parse — such non-projective edges would oc-
cur. Figure 12.5 gives an example of a non-projective dependency graph in En-
glish. This dependency graph does not correspond to any constituent parse. In
languages where non-projectivity is common, such as Czech and German, it is
better to annotate dependency trees directly, rather than deriving them from con-
stituent parses. An example is the Prague Dependency Treebank (Böhmová et al.,
2003), which contains 1.5 million words of Czech, with approximately 12,000 non-
projective edges (see Table 12.1). Even though relatively few dependencies are
non-projective in Czech and German, many sentences have at least one such de-
pendency.

As we will see in the next section, projectivity has important consequences for
the sorts of algorithms that can perform dependency parsing.

12.2 Graph-based dependency parsing

Let y = {〈i, j, r〉} indicate a dependency graph with relation r from head word
wi to dependent word wj . We would like to define a scoring function θ>f(y,w),
where f(y,w) is a vector of features on the dependency graph and sentence, and
θ is a vector of weights. The dependency parsing problem is then the structure

(c) Jacob Eisenstein 2014-2016. Work in progress.
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She ate a pizza yesterday which was vegetarian

Figure 12.5: An example of a non-projective dependency parse in English

prediction problem,
ŷ = arg max

y∈Y(w)
θ>f(y,w). (12.1)

As usual, the number of possible labelings Y(w) is exponential in the length of
the input. In the case of non-projective dependency parsing, the set Y(w) includes
all possible spanning trees over a complete graph with M nodes, where M is the
length of the sentencew. The size of this set is MM−2 (Wu and Chao, 2004). Algo-
rithms that search over this space of possible graphs are known as graph-based
dependency parsers.

In sequence labeling and constituent parsing, it was possible to search effi-
ciently over an exponential space by choosing a feature function that decomposes
into a sum of local feature vectors. A similar approach is possible for dependency
parsing, by requiring the feature function to decompose across dependency arcs
i→ j:

f(y,w) =
∑
〈i,j,r〉∈y

f(w, i, j, r) (12.2)

θ>f(y,w) =
∑
〈i,j,r〉∈y

θ>f(w, i, j, r). (12.3)

Dependency parsers that operate under this assumption are known as arc-factored,
since the overall (exponentiated) score is a product of scores over all arcs. As
described later in this section, the arc-factored assumption enables efficient algo-
rithms for dependency parsing.

Features

Typical features for arc-factored dependency parsing are similar to those used
in sequence labeling and discriminative constituent parsing. They include: the

(c) Jacob Eisenstein 2014-2016. Work in progress.
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length and direction of the dependency arc; the words linked by the dependency
relation; their prefixes, suffixes, and part-of-speech tags (as producted by an auto-
matic tagger); and their neighbors in the sentence. In labeled dependency parsing,
each of these features are also conjoined with the relation type r.

Bilexical features, which include both the head and the dependent, will be
helpful for common words, but will be extremely sparse for rare words. It is
therefore necessary to include features at various levels of detail, such as: word-
word, word-tag, tag-word, and tag-tag. For example, for the arc scratch → cats,
we might have the features,

{wi → wj : scratch→ cats,
wi → tj : scratch→ NNS,
ti → wj : VBP → cats,
ti → tj : VBP → NNS}

Regularized discriminative learning algorithms can then learn to trade off be-
tween features that are rare but highly predictive, and features that are common
but less informative.

As with sequence labeling, it is possible to includes features on neighboring
words without breaking the locality restriction: we can consider features such
as the identity, part-of-speech, and shape of the preceding and succeeding words,
wi−1, wi+1, wj−1, wj+1. What we cannot do (yet) is consider other parts of the graph
y, such as the parent of i (which I will denote wΓ(i)) or the siblings of j, the set
{wj : Γ(j) = i}. This requires higher-order dependency parsing, discussed in
section 12.2.

To give a concrete example, the seminal paper by McDonald et al. (2005a) in-
cludes the following features for an arc between words wi and wj , with part-of-
speech tags ti and tj :

Unigram features 〈wi〉; 〈ti〉; 〈wi, ti〉; 〈wj〉; 〈tj〉; 〈wj, tj〉.

Bigram features 〈wi, ti, wj, tj〉; 〈wi, wj, tj〉; 〈ti, wj, tj〉; 〈wi, ti, tj〉; 〈wi, ti, wj〉; 〈wi, wj〉; 〈ti, tj〉.

“In-between” features 〈ti, tk, tj〉 for all k between i and j.

Neighbor features 〈ti, ti+1, tj−1, tj〉; 〈ti−1, ti, tj−1, tj〉; 〈ti, ti+1, tj, tj+1〉; 〈ti−1, ti, tj, tj+1〉

In addition, all the word features are supplemented with the five-character pre-
fixes for all words longer than five characters (e.g., unconscionable→ uncon). The
bigram features include several varieties of backoff from the most detailed 4-tuple
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feature; McDonald et al. (2005a) note that these backoff features were particularly
helpful, presumably because they improve generalization. The “in-between” fea-
tures activate for all part-of-speech tags between positions i and j in the sentence.
This feature group helps to “rule out situations when a noun would attach to an-
other noun with a verb in between, which is a very uncommon phenomenon.”

Learning

Having formulated graph-based dependency parsing as a structure prediction
problem, we can apply similar learning algorithms to those used in sequence la-
beling. The most direct application is structured perceptron,

ŷ =arg max
y′∈Y(w)

θ>f(w,y′) (12.4)

θ> =θ> + f(w,y)− f(w, ŷ) (12.5)

This is just like sequence labeling, but now arg maxy′∈Y(w) requires a maximization
over all dependency trees for the sentence. Algorithms for performing this search
efficiently are described below. We can apply all the usual tricks from chapter 2:
weight averaging, large-margin, and regularization. McDonald et al. (2005a,b)
were the first to treat dependency parsing as a structure prediction problem, using
MIRA (a close relative of the passive-aggressive algorithm we saw in chapter 2)
to obtain high accuracy parses in both projective and non-projective settings.

Conditional random fields (CRFs) are globally-normalized conditional models
(see chapter 9), and they can be applied to any graphical model in which we can
efficiently compute marginal probabilities over individual random variables — in
this case, we need marginals over the edges. The marginals are required because
the unregularized log-likelihood has a gradient that sums over all possible edges,
taking the difference between the features in the observed dependency parses and
the expected feature counts under p(y | w):

∂L
∂θ

=
∑

(i,j)∈Y

f(w, i, j)−
∑
i,j

p(i→ j | w)f(w, i, j) (12.6)

For projective dependency trees, the marginal probabilities can be computed in
cubic time, using a variant of the inside-outside algorithm (Lari and Young, 1990).
For non-projective dependency parsing, marginals can be computed in cubic time,
using the matrix-tree theorem (Koo et al., 2007; McDonald et al., 2007; Smith and
Smith, 2007). We will not explore algorithms for computing marginals in this
chapter, but they are described in more detail by Kübler et al. (2009).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Algorithms for non-projective dependency parsing

In non-projective dependency parsing, the goal is to identify the highest-scoring
spanning tree over the words in the sentence. The arc-factored assumption en-
sures that the score for each spanning tree will be computed as a sum over scores
for the edges. We can precompute these scores, ψ(i→ j, r) = θ>f(w, i, j, r), before
applying a parsing algorithm. (We must compute O(M2R) such scores, where M
is the length of the sentence and R is the number of dependency relation types,
so this is a lower bound on the time complexity of any exact algorithm for depen-
dency parsing.)

Algorithm 8 Chu-Liu-Edmonds algorithm for unlabeled dependency parsing

1: procedure CHU-LIU-EDMONDS({ψ(i→ j)}i,j∈{1...M})
2: for j ∈ 1 . . .M do
3: hj ← arg maxi ψ(i→ j)

4: τ ← {j, hj}j∈1...M

5: C ← FINDCYCLES(τ)
6: if C = ∅ then return τ
7: else
8: for each cycle c ∈ C do
9: Remove all nodes in the cycle from the graph

10: Add a “super-node” representing the cycle
return CHU-LIU-EDMONDS(G)[todo: how to show this?]

Based on these scores, we build a weighted connected graph. Arc-factored
non-projective dependency parsing is then equivalent to finding the the spanning
tree that achieves the maximum total score,

∑
〈i,j,r〉∈y ψ(i → j, r). The Chu-Liu-

Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967) computes this spanning
tree in time O(M3R). The algorithm, which is sketched in Algorithm 8, operates
recursively. It first identifies the highest scoring incoming edge for each node,
and then checks the graph for cycles. If there are no cycles, the resulting graph
is a spanning tree, and moreover, it is the maximum spanning tree, because there
is no better-scoring incoming edge for each node. If there is a cycle, the cycle is
collapsed into a “super-node”, whose incoming edges have scores equal to the
scores of the best spanning tree that includes both the edge and all nodes in the
cycle.[todo: help].

The algorithm works because it can be proved that the maximum spanning
tree on the contracted graph is equivalent to the maximum spanning tree on the
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a b

c d e

Figure 12.6: An illustration of the MST algorithm on a simple example. Figure
borrowed from McDonald et al. (2005b).

original graph. The basic process is illustrated in Figure 12.6. In part (a), we see
the complete graph, which includes all edge scores ψ(i → j). In (b), we see the
highest scoring incoming edge for each node. In (c), the cycle between John and
saw is contracted, creating new incoming edges with weight 40 from the root, and
weight 31 from Mary. In (d), we find the highest-scoring incoming edge in the
new graph. There are no remaining cycles, so we recover the maximum spanning
tree.

Let us consider the time complexity of unlabeled dependency parsing first. For
each of theM words in the sentence, one must search allM−1 other words for the
highest-scoring incoming edge, for a time complexity ofO(M2). In the worst case,
it is necessary to contract the graph M times. If we redo the search within each
contraction, we face a total cost ofO(M3). Recall that the CKY constituent parsing

(c) Jacob Eisenstein 2014-2016. Work in progress.



230 CHAPTER 12. DEPENDENCY PARSING

algorithm is also cubic time complexity in the length of the sentence. However,
further optimizations are possible, resulting in a complexity of O(M2)(Tarjan,
1977). To generalize the algorithm to labeled dependency parsing, it is neces-
sary only to compute the best scoring label for each possible edge. Because of the
arc-factoring assumption, the edge labels are decoupled from each other, so this
can be done as a preprocessing step, with total complexity of O(M2R).

Algorithms for projective dependency parsing

The Chu-Liu-Edmonds algorithm finds the best scoring dependency tree, but it
does not enforce the projectivity constraint. For languages in which we expect
projectivity — such as English — we may prefer to ensure that the parsing algo-
rithm returns only projective trees. Note that the arc-factored assumption makes
it impossible to learn to produce projective trees, since projectivity cannot be en-
coded in a feature that decomposes over individual arcs.

Recall that it is possible to convert any lexicalized constituent parse directly
into a projective dependency parse. This means that any algorithm for lexicalized
constituent parsing is also an algorithm for projective dependency parsing. One
such algorithm is presented in section 11.5, in which we built a table where the
cell t[i, j, h,X] contains the score of the best derivation of the substring wi:j from
non-terminal X , in which the head is wh. For unlabeled projective dependency
parsing, we can apply a very similar algorithm:

t`[i, j, h] = max
k>h

max
k≤h′<j

t[i, k, h] + t[k, j, h′] + ψ(h→ h′) (12.7)

tr[i, j, h] = max
k≤h

max
i≤h′<k

t[i, k, h′] + t[k, j, h] + ψ(h→ h′) (12.8)

t[i, j, h] = max (t`[i, j, h], tr[i, j, h]) . (12.9)

The goal is for t[i, j, h] to contain the score of the best-scoring projective de-
pendency tree for wi:j , headed by wh. We must first maximize over all h′, which
is the location of an immediate dependent of wh. Projectivity guarantees that the
subtree headed by h′ will extend to one of the endpoints of the entire span: either
from the left endpoint i to some midpoint k, or from some midpoint k to the right
endpoint j. We compute the best score for each of these possibilities separately
in Equation 12.7 and Equation 12.8. Computing each of these scores also involves
maximizing over all possible midpoints k.

We construct the table t from the bottom up: first compute scores for all sub-
trees of size 2, then size 3, and so on. The total size of the table is O(M3), and to
complete each cell we must search overO(M) dependents andO(M) split points.
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Thus, the overall complexity if O(M5). The Eisner (1996) algorithm reduces this
complexity toO(M3) by maintaining multiple tables. For a detailed description of
this algorithm, see Kübler et al. (2009). As with the Chu-Liu-Edmonds algorithm,
the best-scoring label for each edge can be computed as a preprocessing step, with
complexity O(M2R).

Higher-order dependency parsing

Arc-factored dependency parsers can only score dependency graphs as a prod-
uct across their edges. However, it can be useful to consider higher-order fea-
tures, which consider pairs or triples of edges, as shown in Figure 12.7. Second-
order features consider siblings and grandchildren; third-order features consider
grand-siblings (siblings and grandparents together) and tri-siblings.

Figure 12.7: Feature templates for higher-order dependency parsing (Koo and
Collins, 2010)

Why might we need higher-order dependency features? Consider the exam-
ple cats scratch people with claws, where the preposition with could attach to either
scratch or people. In a lexicalized first-order arc-factored dependency parser, we
would have the following feature sets for the two possible parses:

• 〈ROOT→ scratch〉, 〈scratch→ cats〉, 〈scratch→ people〉, 〈scratch→ with〉, 〈with→
claws〉
• 〈ROOT→ scratch〉, 〈scratch→ cats〉, 〈scratch→ people〉, 〈people→ with〉, 〈with→

claws〉

The only difference between the feature vectors are the features 〈scratch → with〉
and 〈people → with〉, but both are reasonable features, both syntactically and se-
mantically. A first-order arc-factored dependency parsing model would therefore
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struggle to find the right solution to this sentence. However, if we add grandcihld
features, then our feature sets include:

• 〈scratch→ with→ claws〉
• 〈people→ with→ claws〉,

The first feature is preferable, so a second-order dependency parser would have a
better chance of correctly parsing this sentence. In general, higher-order features
can yield substantial improvements in dependency parsing accuracy (e.g., Koo
and Collins, 2010).

Projective second-order parsing can still be performed in O(M3) time (and
O(M2) space), using a modified version of the Eisner algorithm. Projective third-
order parsing can be performed inO(M4) time andO(M3) space (Koo and Collins,
2010). Approximate pruning algorithms can reduce this cost significantly by fil-
tering out unpromising edges (Rush and Petrov, 2012).

Given the tractability of higher-order projective dependency parsing, you may
be surprised to learn that non-projective second-order dependency parsing is NP-
Hard! This can be proved by reduction from the vertex cover problem (Neuhaus
and Bröker, 1997). One heuristic solution is to do projective parsing first, and then
post-process the projective dependency parse to add non-projective edges (Nivre
and Nilsson, 2005). More recent work has applied advanced techniques for ap-
proximate inference in graphical models, including belief propagation (Smith and
Eisner, 2008), integer linear programming (Martins et al., 2009), variational infer-
ence (Martins et al., 2010), and Markov Chain Monte Carlo (Zhang et al., 2014).

12.3 Transition-based dependency parsing
Graph-based dependency parsing offers exact inference, meaning that it is possi-
ble to recover the best-scoring parse. But this exactness comes at a price: we can
use only a limited set of features. These limitations are felt more keenly in depen-
dency parsing than in sequence labeling; as we have already seen, second-order
dependency features are critical to correctly identify certain types of attachments.
We may also criticize graph-based parsing on the basis of intuitions about human
language processing: people read and listen to sentences sequentially, incremen-
tally building mental models of the sentence structure and meaning before getting
to the end (Jurafsky, 1996). This seems hard to reconcile with graph-based algo-
rithms, which perform bottom-up operations on the entire sentence, seemingly
requiring the parser to keep every word in memory.
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12.3. TRANSITION-BASED DEPENDENCY PARSING 233

Transition-based algorithms address both of these objections. They work by
moving through the sentence sequentially, while incrementally updating a stored
representation of what has been read thus far. After processing the entire sentence,
they return an analysis of its syntactic structure.

A simple transition-based parser is shift-reduce, an algorithm that you may
have seen

An alternative to exact global inference is transition-based parsing: making a
series of local decisions. We can apply a shift-reduce algorithm, just as we con-
sidered for CFG parsing in ??. The reduce actions are different: rather than com-
bining elements into non-terminals, they create arcs between words, leaving the
head of edge.

• shift: push a word onto the stack

• right-reduce: make a right-facing edge between the top two elements on the
stack

• left-reduce: make a left-facing edge between the top two elements on the
stack

• Alternatively, “arc-eager” dependency parsing distinguishes reduce from
arc-right and arc-left, which create arcs between the top of the stack and the
first element in the queue. Arc-eager parsing is arguably more cognitively
plausible, because it constructs larger connected components incrementally,
rather than having a deep stack with lots of disconnected elements (Abney
and Johnson, 1991; Nivre, 2004).

Shift-reduce potentially suffers from search errors, since an early mistake can
make it impossible to find the best-scoring parse. However, it has been shown to
be both accurate and fast (Nivre, 2004; Nivre et al., 2007) — the time complexity
is linear in the length of the sentence! Another advantage of shift-reduce is that
there is no restriction on the features that can be considered to make each parsing
decision.

Beam search is an improvement on shift-reduce, with the goal of eliminating
search errors. As we move through the sentence, we keep a beam of possible
hypotheses; at each stage, we keep the k best unique hypotheses on the beam.

Learning transition based dependency parsers

For transition-based dependency parsing, learning means training a classifier to
make the correct shift and reduce decisions. We can do this by identifying a series
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Figure 12.8: Google n-grams results for the bigram write code and the dependency
arc write => code (and their morphological variants)

of decisions that is required to produce the correct dependency parse.1 We can
build a training set by treating each decision in the derivation of the correct parse
is a positive instance, and every other possible decision is a negative instance.
However, Huang et al. (2012) offer alternative perceptron learning rules that yield
improvements when learning in the beam search setting.

A key advantage of transition-based parsing is that there is no restriction to
arc-factored features; we can include any feature of the current partial parse, his-
tory of decisions, etc. It is also fast: linear time in the length of the sentence.

12.4 Applications

Dependency parsing is used in many real-world applications: any time you want
to know about pairs of words which might not be adjacent, you can use depen-
dency links instead of typical regular expression search patterns. For example,
we may want to match strings like delicious pastries, delicious French pastries, and
the pastries are delicious2

It is now possible to search Google n-grams by dependency edges; for exam-
ple, finding the trend in how often a dependency edge has appeared over time.
For example, we might be interested in knowing when people started talking
about writing code, but we also want write some code, write the code, write all the

1Spurious ambiguity occurs when multiple decision sequences give the same dependency
parse.

2Note that the copula is is collapsed in many dependency parsing systems, such as the Stanford
dependency parser De Marneffe and Manning (2008).
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code, etc. By searching on dependency edges, we can recover this information,
as shown in Figure 12.8. This capability has implications for research in digital
humanities, as shown by the analysis of Shakespeare performed by Muralidharan
and Hearst (2013).

A classic application of dependency parsing is relation extraction, which is
described in chapter 18. The goal of relation extraction is to identify entity pairs,
such as

〈TOLSTOY,WAR AND PEACE〉
〈MARQUÉZ, 100 YEARS OF SOLITUDE〉
〈SHAKESPEARE,A MIDSUMMER NIGHT’S DREAM〉,

which stand in some relation to each other (in this case, the relation is author-
ship). Such entity pairs are often referenced via consistent chains of dependency
relations. Therefore, dependency paths are often a useful feature in supervised
systems which learn to detect new instances of a relation, based on labeled ex-
amples of other instances of the same relation type (Culotta and Sorensen, 2004;
Fundel et al., 2007; Mintz et al., 2009).

Cui et al. (2005) show how dependency parsing can improve question answer-
ing. For example, you might ask,

(12.1) What % of the nation’s cheese does Wisconsin produce?

Now suppose your corpus contains this sentence:

(12.2) In Wisconsin, where farmers produce 28% of the nation’s cheese, . . .

The location of Wisconsin in the surface form of this string might make it a poor
match for the query. However, in the dependency graph, there is an edge from
produce to Wisconsin in both the question and the potential answer, raising the
likelihood that this span of text is relevant to the question.

A final example comes from sentiment analysis. As discussed in chapter 3, the
polarity of a sentence can be reversed by negation, e.g.

(12.3) There is no reason at all to believe the polluters will suddenly become reasonable.

By tracking the sentiment polarity through the dependency parse, we can bet-
ter identify the overall polarity of the sentence, determining when key sentiment
words are reversed (Wilson et al., 2005; Nakagawa et al., 2010).
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Chapter 13

Logical semantics

A grand ambition of natural language processing, and indeed, all of artificial intel-
ligence, is to convert natural language into a representation that supports seman-
tic inferences.1 Many applications of language technology involve some level of
semantic understanding:

• Answering questions. This includes “real-life” questions like where can a guy
find a decent cup of coffee around here?, and also “quiz show” questions like
what’s the middle name of the mother of the 44th President of the United States?

• Translating a sentence from one language into another, while preserving the
underlying meaning.

• Building a robot that can follow natural language instructions and execute
useful tasks.

• Fact-checking an article by searching the web for contradictory evidence.

• Logic-checking an argument by trying to identify contradictions or unsup-
ported assertions.

Most approaches towards achieving this level of semantic understanding in-
volve converting natural language to some form of meaning representation. Ju-
rafsky and Martin (2009) compare several alternative representations, showing
parallels between several representations that are superficially distinct. There-
fore, we will focus on logical representations: boolean logic, first-order logic, and
the lambda calculus.

1Alternative readings on this topic include the chapter from Jurafsky and Martin (2009), a more
involved “informal” reading from Levy and Manning (2009), and a yet more involved introduction
from Briscoe (2011).
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13.1 Meaning representations
The goal of a meaning representation is to provide a way to express propositions,
while abstracting over the ambiguity and vagueness of natural language. There
are several criteria that a meaning representation should meet:

Verifiability It should be possible to test the truth of assertions in the meaning
representation. Indeed, in truth-conditional semantics, the meaning of a
sentence is said to be identical to its truth conditions: that is, to the set of
facts that must hold in the world for the sentence to be true.

We might imagine that verifiability should be tested against the real world:
for example, if faced with the proposition Alice hates apples, we could verify
it by finding Alice and asking her. However, it is better still to be able to
reason about possible worlds, such as fictional worlds in which Alice (or ap-
ples) might refer to arbitrarily different entities. In model-theoretic seman-
tics, each proposition has a denotation in a model of the world, enabling
propositions to be verified against specific models corresponding to possi-
ble worlds. Why is this useful? Consider that Lois Lane is unaware that
Superman and Clark Kent are the same person — that is, SUPERMAN and
CLARKKENT have different denotations in her model. Model-theoretic se-
mantics makes it possible to interpret statements from her perspective, so
that, for example, it would not be absurd for her to ask Clark to speak with
Superman.2

Truth-conditional semantics allows us to define additional concepts of equiv-
alence and entailment. A statement P is entailed by statementQ iff the truth
conditions for Q imply the truth conditions for P . For example, the state-
ment Alice gives Bob a book about calculus entails the statements Alice gives Bob
a book, Alice gives someone a book, Someone gives Bob a book, etc. Iff P entails Q
and Q entails P , then we can say that P and Q are logically equivalent.

No ambiguity Each sentence in the meaning representation should have exactly
one meaning. In truth conditional semantics, this means that each sentence
in the meaning representation has exactly one corresponding set of truth
conditions.

Clearly this criterion is not met by natural language. Many of the syntactic
ambiguities that we encountered in previous sections have corresponding

2Example from Percy Liang’s nice slides on semantics, http://icml.cc/2015/
tutorials/icml2015-nlu-tutorial.pdf

(c) Jacob Eisenstein 2014-2016. Work in progress.
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semantic ambiguities: consider the truth conditions for the two possible PP
attachments in our example cats scratch people with claws, or the example she
fed her dog biscuits. Natural language also has ambiguity at the lexical level:
the sentence Dong bought a plant would have distinct truth conditions de-
pending on whether plant refers to something like a shrub, or a factory for
producing widgets.

Jurafsky and Martin (2009) mention a converse criterion, canonical form,
which requires that each meaning (set of truth conditions) has a single rep-
resentation. For example, if we consider the database query language SQL
as a meaning representation, then it is easy to design superficially distinct
queries that will return the same results regardless of what database they
are applied to:

(13.1) SELECT RestaurantID, City FROM Restaurants WHERE City
= ’Atlanta’ OR City = ’New York’

(13.2) SELECT RestaurantID, City FROM Restaurants WHERE City
= ’New York’ OR City = ’Atlanta’

In general, it is difficult to design meaning representations in which every
meaning has a single canonical form. However, removing unnecessary flex-
ibility can vastly simplify the computation associated with verifying state-
ments and performing inference (described below).

Expressiveness meaning representation is useful only to the extent that it enables
us to talk about a wide range of different things. This is partly a matter of
the non-logical vocabulary that the representation includes: the set of enti-
ties (e.g., Alice, Bob) and relations (e.g., likes, brother-of ) that can be included
in sentences. However, there are also deeper structural limits on expressive-
ness. Consider the following possibilities:

(13.3) Alice admires Bob

(13.4) Alice admires Bob and Bob trusts Alice

(13.5) Alice admires someone

(13.6) Alice admires someone who trusts her

(13.7) Everyone whom Alice admires trusts someone

(13.8) Not everyone whom Alice admires trusts Bob

(c) Jacob Eisenstein 2014-2016. Work in progress.
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To handle all of these cases, we must have an appropriate logical vocab-
ulary, including boolean connectives and quantifiers. More on this in sec-
tion 13.2.

Inference We would like to be able to combine assertions in our meaning rep-
resentation to infer new facts about the world. For example, given the as-
sertion Bart is Lisa’s brother, we should be able to infer that Someone is Lisa’s
brother. Given the additional information that Lisa is female, we should be
able to infer that Lisa is Bart’s sister — although this inference is of a different
type, since it requires additional knowledge about the relations BROTHER
and SISTER.

How do natural languages like English do on these criteria? They are infinitely
expressive, but highly ambiguous. Because we cannot establish the truth condi-
tions of natural language expressions without ambiguity, it is difficult to speak of
verifying their meaning or drawing further inferences.

But if natural language is not itself a meaning representation, we would still
like to be able to find the most likely meaning, or the set of possible meanings, for
a given natural language sentence. This task is known as semantic parsing, and
it typically rests on the assumption that meaning is determined compositionally,
with the meaning of a sentence determined by the meanings of its constituent ex-
pressions, and the operations that are used to combine them. In particular, we will
assume that the relevant substrings of a sentence correspond to the syntactic con-
stituents identified during CFG-style parsing, and that each parsing production
corresponds to some semantic operation. More on this in section 13.3.

13.2 Logical representations of meaning

We will build a meaning representation on logical semantics, which does a pretty
good job of meeting the criteria established in the previous section.

Propositional logic

The bare bones of logical meaning representation are boolean operations on propo-
sitions:

Propositional symbols We use the symbols P,Q, . . . to represent propositions; for
example, P may correspond to the proposition, bagels are delicious.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Boolean operators We can evaluate the truth of more complex statements through
boolean operators: negation (¬P , which is true if P is false), conjunction
(P ∧ Q, which is true if both P and Q are true), and disjunction (P ∨ Q,
which is true if at least one of P and Q is true). Other operators can be
derived from these: for example, implication (P ⇒ Q) has identical truth
conditions to ¬P ∨ Q; equivalence (P ⇔ Q) has identical truth conditions
to (P ∧ Q) ∨ (¬P ∧ ¬Q). In fact, if we have ¬, then only one of ∧ and ∨ is
needed; we can derive the other.

We can define axioms or inference rules in terms of these boolean connectives
(communtativity, associativity, etc), and then derive further equivalences, which
can support some inferences. For example, suppose P = The music is loud and
Q = Max can’t sleep. Then if we have P ⇒ Q (If the music is loud, Max can’t sleep)
and P (the music is loud), then we haveQ (Max can’t sleep). However, there are other
inferences that we cannot perform with propositional logic alone. For example, let
R = The music is quiet; then we might hope that R⇒ ¬P , but this is not supported
without knowing more about the propositions themselves. For this, we turn to
predicate logic.

Predicate logic

Predicate logic extends our meaning representation with several additional classes
of terms:

Constants These are elements that name individual entities in the model, such
as MAX and THEMUSIC. We say that the denotation of each constant in a
modelM is an element in the model, e.g., JMAXK = d and JTHEMUSICK = m.

Predicates Predicates can be thought of as sets of objects, or equivalently, as func-
tions from objects to truth values. For example CANSLEEP is a predicate,
and we may have JCANSLEEPK = {d,e, . . .}, denoting the set of individuals
who can sleep. We can then test the proposition CANSLEEP(MAX) by asking
whether JMAXK ∈ JCANSLEEPK.

Functions Functions can be thought of as sets of pairs of objects, or equivalently,
as functions from one object to another. For example BROTHER-OF is a func-
tion, so that JBROTHER-OF(LISA)K = JBARTK.

We can now express statements like

ISQUIET(THEMUSIC)⇔ ¬ISLOUD(THEMUSIC), (13.1)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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but this only applies to a specific constant, THEMUSIC, and not more generally.
For example, we might prefer to say that anything that is quiet is not loud. To make
such general statements, we will need two additional elements in our meaning
representation:

Variables These are mechanisms for referring to objectives, which are not locally
specified. We can then write BROTHER-OF(x) or ISLOUD(x), using x here as
an unbound variable.

Quantifiers To bind variables, we use quantifiers. Variables can be used to refer
to some particular unspecified object, or to all possible objectives. Corre-
spondingly, we have two connectives, ∃ and ∀. The statement,

∃x : BROTHER-OF(LISA) = x, (13.2)

uses the existential quantifier ∃ to assert that there is at least one object
which is the brother of Lisa in the model. The statement,

∀x : ISLOUD(x)⇔ ¬ISQUIET(x) (13.3)

uses the universal quantifier ∀ to generalize the relationship between the
predicates ISLOUD and ISQUIET; for this sentence to be true, it must be the
case that for all entities in the model, the predicate ISLOUD only holds in
exactly those cases in which the predicate ISQUIET does not hold.

Lambda calculus

Predicate logic is verifiable, unambiguous, expressive enough for a wide range of
statements, and supports inferences; it does a good job meeting all of the criteria
listed at the beginning of the chapter. But we still need a few more pieces before
we can build logical meanings from natural language sentences.

Recall the assumption of compositionality, which states that the meaning of a
natural language sentence is composed from the meaning of its constituents. Now,
a simple sentence like Max likes dragons has two top-level constituents in a CFG
parse: the NP Max, and the VP likes dragons. The meaning of Max is the constant
MAX, and the meaning of the entire sentence might be LIKES(MAX,DRAGONS).
But what is the meaning of the VP constituent likes dragons?

We will think of the meaning of VPs such as likes dragons as functions which
require additional arguments to form a sentence in predicate logic. The notation
for describing such functions is called lambda calculus, and it involves expres-
sions such as λx.P (x), which indicates a function that takes an argument x and

(c) Jacob Eisenstein 2014-2016. Work in progress.
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then has value P (x). The application of a function λx.P (x) to an argument A is
written

λx.P (. . . , x, . . .)(A) (13.4)
P (. . . , A, . . .), (13.5)

indicating that A is playing the role occupied by the variable x, which is bound
here by the lambda expression. It is crucial to note that P itself may be a lambda
expression, so that application can be performed multiple times.

13.3 Syntax and semantics
We will now extent CFG products to include the meaning of each constituent,
using rules of the form,

X : α→ Y : β Z : γ, (13.6)

where X, Y, Z are syntactic non-terminals and α, β, γ are the meanings associated
with each constituent.

For example, consider the very simple fragment,

S : β(α)→NP : α VP : β (13.7)
VP : β(α)→V : β NP : α (13.8)

Abigail,NP : ABIGAIL (13.9)
Max,NP : MAX (13.10)

likes,V : λy.λx.LIKE(x, y) (13.11)

Lines 13.9-13.11 describe the lexicon, listing the syntactic categories and se-
mantic meanings of individual words. Words may have multiple entries in the
lexicon, depending on their semantics; for example, the verb eats may be intransi-
tive (Abigail eats) or transitive (Abigail eats kimchi), so we need two lexical entries:

eats,V : λx.EAT(x) (13.12)
eats,V : λy.λx.EAT(x, y). (13.13)

Now, given the sentence Max likes Abigail, we get the following analysis,

P =λy.λx.LIKES(x, y)(MAX)(ABIGAIL) (13.14)
=λx.LIKES(x,ABIGAIL)(MAX) (13.15)
=LIKES(MAX,ABIGAIL) (13.16)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Noun phrases

What about sentences with more complex noun phrases like Max has a red bear
or Abigail eats all the spicy snacks? To handle these cases, we’ll need to deal with
determiners, adjectives, and general nouns. Let’s start with a relatively simple
case,

(13.9) A dog likes Max.

The desired analysis is,

(A dog likes Max.).sem = ∃x.DOG(x) ∧ LIKES(x,MAX), (13.17)

where (text).sem indicates the semantics of text.
We already know that the meaning of the verb phrase likes Max is λx.LIKES(x,MAX),

and we would like to apply this function to the argument specified by the noun
phrase. But somehow we have to get to a solution where the outermost term is
the existential quantifier ∃x, and not the predicate LIKES. How can we do it?

The solution is to introduce some additional operations for type-shifting. The
semantic type of the verb phrase likes Max was a function mapping from entities
to truth values, λx.LIKES(x,MAX). We now introduce the type-raising operation
α → λP.P (α), indicating that the semantics α can be replaced with a function
that takes P as an argument, and returns P (α). Applying type-raising to the verb
phrase likes Max, we obtain, λP.P (λx.LIKES(x,MAX)).

Now, how should we think of the noun phrase a dog? The determiner implies
an existential quantifier (there exists some dog...) over all dogs, ∃x.DOG(x). More-
over, we are planning to apply some additional functions to explain what this dog
is doing. So the semantics we want is λP.∃(x)DOG(x) ∧ P (x). We can get there by
appropriately defining the determiner a, and the production NP → DET NN.

NP : β(α)→DET : β NN : α (13.18)

a,DET : λP.λQ.∃x.P (x) ∧Q(x) (13.19)
dog,NN : λx.DOG(x) (13.20)

Note that although we have typically treated the noun as the head of a noun
phrase, it is the determiner whose semantics takes precedence in Equation 13.18.
This enables us to properly assess the meaning of the phrase a dog,

(a dog).sem =(λP.λQ.∃x.P (x) ∧Q(x))(λx.DOG(x)) (13.21)
=λQ.∃(x).DOG(x) ∧Q(x) (13.22)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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So now we have the two pieces,

(a dog).sem =λQ.∃(x).DOG(x) ∧Q(x) (13.23)
(likes Max).sem =λx.LIKES(x,MAX) (13.24)

=λP.P (λx.LIKES(x,MAX)), (13.25)

using type-raising on the verb phrase. We can now combine the pieces, using the
verb phrase semantics as a function on the noun phrase,

(a dog likes Max).sem =(λP.P (λx.LIKES(x,MAX)))(λQ.∃(x).DOG(x) ∧Q(x))
(13.26)

=(λQ.∃(x).DOG(x) ∧Q(x))(λx.LIKES(x,MAX)) (13.27)
=∃(x).DOG(x) ∧ LIKES(x,MAX), (13.28)

which is the desired semantics that we identified above for this sentence. A useful
exercise is to try to do the same kind of analysis for the sentence Max likes a dog.

(a dog).sem =λP.∃x.P (x) ∧ DOG(x) (13.29)
(likes).sem =λy.λz.LIKES(z, y) (13.30)

=λQ.Q(λy.λz.LIKES(z, y)) (13.31)
(likes a dog).sem =(λQ.Q(λy.λz.LIKES(z, y)))(λP.∃x.P (x) ∧ DOG(x)) (13.32)

=(λP.∃x.P (x) ∧ DOG(x))(λy.λz.LIKES(z, y)) (13.33)
=∃x.(λy.λz.LIKES(z, y))(x) ∧ DOG(x) (13.34)
=∃x.λz.LIKES(z, x) ∧ DOG(x) (13.35)

(Max likes a dog).sem =∃x.LIKES(MAX, x) ∧ DOG(x) (13.36)

[todo: double-check this]
Full semantic analysis of natural language requires handling many more phe-

nomena, but the basic strategy of function application and type-shifting covers
much of what is needed. Jurafsky and Martin (2009) provide more details than
presented here, and a book-length treatment is offered by Blackburn and Bos
(2005).

13.4 Semantic parsing
The goal of semantic parsing is to convert natural language statements to a repre-
sentation such as predicate logic with lambda calculus. Zettlemoyer and Collins

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(2005) show that it is possible to train such a system, using labeled data of nat-
ural language sentences and their associated logical meanings. They use a lin-
ear model, in which each syntactic-semantic production has an associated feature
weight, which is learned from labeled data.3 A key point is that a sentence may
be have analyses that produce the same logical interpretation, which is known as
spurious ambiguity. They do not have labeled data for the specific productions,
so they treat this is as a latent variable, and learn using a latent variable percep-
tron, where

z∗ =arg max
z
θ>f(w,y, z) (13.37)

ŷ, ẑ =arg max
y,z

θ>f(w,y, z) (13.38)

θ(t+1) ←θ(t) + f(w,y, z∗)− f(w, ŷ, ẑ), (13.39)

with y indicating the logical interpretation and z indicating the derivation of that
interpretation from the input w.

A more ambitious approach is to train a semantic parser not from sentences
annotated by their logical forms, but rather, from question-answer pairs, e.g.,
〈Where is Georgia Tech?,Atlanta〉. There are now two latent variables: the logical
form y, and the derivation of that logical form, z. We constrain the logical form y
such that its denotation JyK is identical to the denotation of the logical form of the
answer, e.g.,

Jλx.LOCATED-IN(GEORGIATECH, x)K = JATLANTAK. (13.40)

This idea has been implemented by Clarke et al. (2010) and Liang et al. (2013),
yielding systems that can answer questions about geographical relationships with
above 90% accuracy.

3Zettlemoyer and Collins (2005) do not use context-free grammar, but instead use a mildly
context-sensitive formalism called Combinatory Categorial Grammar (CCG). Semantic parsing is
considerably easier to explain in CCG, but would require introducing a new syntactic formalism.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 14

Shallow semantics

“Full” compositional semantics requires representations at least as expressive as
first-order logic. Machine learning approaches have improved robustness, and
recent work has driven down the requirements for manually-created resources.
But coverage is still relatively limited, with best performance in narrow domains
like travel and geography.

Shallow semantics comprises a set of alternative approaches, which trade the
expressiveness of representations like first-order logic for shallower representa-
tions which can be parsed more robustly, with broader coverage.

14.1 Predicates and arguments1

Shallow semantics focuses on predicate-argument relations. For example, the sen-
tence Abigail trusts Max can be interpreted as trusts(ABIGAIL,MAX), where trusts
is a predicate and ABIGAIL and MAX are its arguments. This is exactly the sort of
relation that we saw in first-order logical semantics too, but in shallow semantics
we will typically work without variables and quantification. (Recent explorations
of intermediate representations between FOL and shallow predicate-argument re-
lations are described in Section 14.4.)

To see how shallow semantics can represent meaning, consider these four sen-
tences (borrowed from the slides of a tutorial by Kristina Toutanova and Scott
Yih).

(14.1) [Yesterday]3, [Kristina]0 hit [Scott]1 [with a baseball]2

(14.2) [Scott]1 was hit by [Kristina]0 [yesterday]3 [with a baseball]2

1This section follows closely from J&M 2009
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(14.3) [Yesterday]3, [Scott]1 was hit [with a baseball]2 by [Kristina]0

(14.4) [Kristina]0 hit [Scott]1 [with a baseball]2 [yesterday]3

We don’t need first-order logic to realize that these sentences are semantically
identical. Shallow semantics will suffice: the roles in each sentence are filled by
the same text.

• [Hitter]0: Kristina

• [Person hit]1: Scott

• [Instrument of hitting]2: with a baseball

• [Time of hitting]3: yesterday

The event semantics representation for the sentence Scott was hit by Kristina
yesterday (and all of the other examples) is:

∃e. Hitting(e) ∧Hitter(e,Kristina) ∧ PersonHit(e, Scott)
∧ TimeOfHitting(e, Y esterday)

In this example, Hitter, PersonHit, and TimeOfHitting are roles. We use these
specific roles because of the predicate verb hit. Roles that relate to a specific pred-
icate are called deep roles.

Thematic roles

Without knowing more about deep roles like Hitter, we cannot do much infer-
ence. But building classifiers for every role of every predicate would be a lot of
work, and we would struggle to get enough training data to accomplish this. Is
there a shortcut?

Consider the example Scott was paid by Kristina yesterday. Clearly yesterday is
filling the same role in this example as in Examples section 14.1-item 14.4, describ-
ing the time at which the events occur — regardless of whether the event is hitting
or paying. But arguably, the role-fillers Scott, Kristina and yesterday also have simi-
lar thematic functions as in the earlier sentence about baseballs.

• Kristina is causing the event by performing an action, which she does voli-
tionally (on purpose); we can generalize her thematic role in these examples
as the AGENT of the event.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Scott is the primary experiencer of the effects of the event. We can generalize
his thematic role as the PATIENT.

AGENT and PATIENT are the two best-known examples of thematic roles (Fill-
more, 1968),2 which attempt to generalize across predicates. They are also among
the least controversial (Dowty, 1991); other thematic roles are shown in Table 14.1,
but it is important to emphasize that this particular role inventory is not univer-
sally accepted, or even accepted to the same extent as, say, the Penn Treebank
syntactic categories.

Case frames Different verbs take different thematic roles as arguments. The pos-
sible arguments for a verb is the case frame or thematic grid. For example, for
break:

• AGENT: Subject, THEME: Object
John broke the window.

• AGENT: Subject, THEME: Object, INSTRUMENT: PP (with)
John broke the window with a rock.

• INSTRUMENT: Subject, THEME: Object
The rock broke the window.

• THEME: Subject
The window broke.

When two verbs have similar case frames, this is a clue that they might be
semantically related: (e.g., break, shatter, smash).

Many verbs permit multiple orderings of the same arguments. These are known
as diathesis alternations. For example, give permits the dative alternation,

(14.5) [AGENT Doris] gave [GOAL Cary] [THEME the book].

(14.6) [AGENT Doris] gave [THEME the book] [GOAL to Cary].

Again, similar alternation patterns suggest semantic similarity. For example, verbs
that display the dative alternation include some broad classes:

• “verbs of future having” (advance, allocate, offer, owe)

• “verbs of sending” (forward, hand, mail)

• “verbs of throwing” (kick, pass, throw)
2The idea of thematic roles can be traced to the Sanskrit linguist Pān. ini (7th-4th century BCE!).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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AGENT
The volitional causer
The waiter spilled the soup

EXPERIENCER
The experiencer
The soup gave all three of us a headache.

FORCE
The non-volitional causer
The wind blew my soup off the table.

THEME
The participant most directly affected
The wind blew my my soup off the table.

RESULT
The end product
The cook has prepared a cold duck soup.

CONTENT
The proposition or content of a propositional event
The waiter assured me that the soup is vegetarian.

INSTRUMENT
An instrument used in an event
It’s hard to eat soup with chopsticks.

BENEFICIARY
The beneficiary
The waiter brought me some soup.

SOURCE
Th origin of the object of a transfer event
The stack of canned soup comes from Pittsburgh.

GOAL
The destination of the object of a transfer event
He brought the bowl of soup to our table.

Table 14.1: Definitions and examples of thematic roles (Jurafsky and Martin, 2009)

The purpose of thematic roles is to abstract above verb-specific roles. But it is
usually possible to construct examples in which thematic roles are insufficiently
specific.

• Intermediary instruments can act as subjects:

1. The cook opened the jar with the new gadget.
2. The new gadget opened the jar.

• Enabling instruments cannot:

1. Shelly ate the pizza with the fork.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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2. *The fork ate the pizza.

Thematic roles are bundles of semantic properties, but it’s not clear how many
properties are necessary. For example, AGENTS are usually animate, volitional,
sentient, causal, but any of these properties may be missing occasionally. The
distinction between agents and patients is explored in detail by Dowty (1991).

The Proposition Bank

In the Proposition Bank (PropBank), roles are verb-specific, with some sharing (Palmer
et al., 2005).

• ARG0: proto-agent (has agent-like properties)

• ARG1: proto-patient (has patient-like properties)

• ARG2 . . . ARGN: verb-specific

• 13 universal adjunct-like arguments: temporal, manner, location, cause, nega-
tion, . . .

PropBank contains two main resources:4 “frame files” describing the roles for
each verbal predicate (3,324 such files are included), and labeled sentences, built
on the Penn TreeBank (113,000 such propositions are annotated). Some example
PropBank-style sentence annotations are shown in Figure 14.1. The overlap with
the Penn Treebank makes it possible to test the relationship between semantic
roles and syntactic constituents. Similar PropBanks have been created for other
languages, including Arabic, Chinese, Hindi, and Korean. PropBank is used as
the standard dataset for popular shared tasks on Semantic Role Labeling (SRL);
some of the main approaches are described in section 14.2.

PropBank describes the predicate-argument structure of verbs, but words be-
long to other syntactic categories may have argument structures of their own. A
related resource is NomBank (Meyers et al., 2004), which annotates the arguments
of noun phrases, such as:

(14.7) [ARG0 students’] [REL knowledge] of [ARG1 two-letter consonant sounds]

In this example, the syntactic head is knowledge, and this is also the word that
defines the semantic relation (REL). The “proto-agent” in this case is students’,
and the “proto-patient” is two-letter consonant sounds.

4https://catalog.ldc.upenn.edu/LDC2004T14; http://verbs.colorado.edu/
propbank/framesets-english/scratch-v.html

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 14.1: Examples of PropBank-style annotations, borrowed from the slides of
Toutanova and Yih

14.2 Semantic Role Labeling
Semantic role labeling (SRL) is the task of assigning semantic labels to spans of
text. Labels describe the role of the phrase with respect to the predicate verb. In
practice, this usually means PropBank labels, e.g. Arg0, Arg1, etc, so our goal is
to produce labelings such as those shown in Figure 14.1.

While there are many possible approaches to Semantic Role Labeling (SRL),
an effective solution is to treat it as another case of structured prediction. The
problem has a few components:

1. identify all predicates in the sentence;

2. identify all argument spans;

3. label the argument spans.

Early approaches treated these problems in isolation, but more recent work has
shown that it is best to treat them jointly. Assuming for the moment that we have
identified the predicate, the remaining problem can be viewed as simply tagging
the remaining words in a tagset T = {A0,A1,A2, . . . ,AM-TMP, . . . ,∅}. Thus, the
output of an SRL system might be written,

(14.8) Kristina/A0 hit/PRED Scott/A1 with/A2 a/A2 baseball/A2

This would suggest that SRL can be solved by applying a sequence labeling al-
gorithm such as structured perceptron with Viterbi. But recall that Viterbi is based
on sequential features, f(w,y) =

∑
m f(w, ym, ym−1,m); these features are not

particularly useful in SRL, because sequential constraints and preferences are less
important here than they are in tasks such as part-of-speech tagging and named-
entity recognition — recall examples (section 14.1-item 14.4). In fact, it is better to

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 14.2: Conversion of a constituent parse tree to variables for semantic role
labeling

consider the tree structure offered by a constituent parse of the sentence: in Prop-
Bank, 96% of the arguments correspond to a “gold” constituent (from the manaul
annotation), and 90% correspond to a constituent from an automatic parser (Pun-
yakanok et al., 2008). Therefore we will treat the problem of SRL as a problem
of labeling constituents, rather than labeling words. This transformation is illus-
trated in Figure 14.2.

Given a sentence w and a parse tree τ , our goal is now to assign each yi to a
value in the set T . We optimize a scoring function,

ŷ =arg max
y∈Y(w,τ)

θ>f(y,w, τ) (14.1)

f(y,w, τ) =

constituents(τ)∑
i

f(yi,w, τ), (14.2)

where we assume that the features decompose across labels yi. Notice that the
features may consider any part of the parse tree, since we are not searching over
parse trees. Useful features for this problem include: the predicate verb (which
is given); the syntactic type (e.g., NP, VP), head word, first word, and last word
of the constituent; whether the constituents comes before or after the predicate;
and the syntactic path from the constituent to the predicate. This last feature
describes a series of steps up and down the parse tree: in the example shown
in Figure 14.2, the path from the cats (y1) to the predicate scratch (y21) is written
NP ↑ S ↓ VP ↓ V. The syntactic path feature captures regularities in the syntactic
positions of constituent arguments. For more discussion of features, see Gildea
and Jurafsky (2002) and Surdeanu et al. (2007).

The inference problem defined in Equation 14.1 specifies a search over Y(w, τ),
which is all permissible labelings of the parse tree τ for the sentence w. How

(c) Jacob Eisenstein 2014-2016. Work in progress.
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should we define this set? If every constituent is allowed to have any label in T ,
then we have Y(w, τ) = T #|τ |. But this seems too permissive: it would allow a
single argument to appear in multiple places (for example, both cats and claws la-
beled as A0), and would also allow multi-word constituents like the cats to realize
a different argument from their children, like cats.

Rather than explicitly defining the set Y(w, τ), it is useful to think of con-
straints that a labeling y must obey. To do this, we will redefine y slightly, so
that it includes a set of indicator features,

Yi,t =

{
1, argument i takes tag t
0, otherwise

(14.3)

Now, we can define Y(w, τ) to include only those labelings that obey a set of
contraints. For example:

• All arguments get at most one label, ∀i∑t yi,t = 1. Note we use equality,
because you can always have the ∅ label.

• No duplicate argument classes, ∀t 6= ∅,
∑

i yi,t ≤ 1

• Overlapping arguments get at most one non-null label:

∀〈i, j〉 : i ;τ j, yi,∅ + yj,∅ ≥ 1 (14.4)

• Some arguments are forbidden, e.g.
∑

i yi,A2 = 0. Many predicates cannot
take all types of arguments: for example, the verb dream can only takeA0 and
A1, so we would add this contraint to make it impossible to label anything
as A2 or A3.

All of the constraints are linear, meaning we can write them as a matrix-vector
product, Ay ≤ b. Moreover, we can redefine the feature function as f(yi,w, τ, i) =∑

t yi,t × f(w, τ, i, t), so that the scoring function is,

θ>f(y,w, τ) =
∑
i

θ>f(yi,w, τ, i) (14.5)

=
∑
i

∑
t

(θ>f(w, τ, i, t))× yi,t. (14.6)

We can therefore reframe the overall optimization problem as,

ŷ =arg max
y∈T #|τ |

∑
i

∑
t

(θ>f(w, τ, i, t))× yi,t (14.7)

s.t.Ay ≤ b (14.8)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The objective function is linear in y, the constraints are linear inequalities, and
each Yi,t ∈ {0, 1}. This optimization problem is therefore a case of integer linear
programming (ILP). Unfortunately, ILP is known to be NL-hard, including in the
binary special case. However, because ILP has many commercial applications, it
is a well-studied problem, with heuristic approximations that work well in the
overwhelming majority of practical cases. One such algorithm is implemented
in the free software GNU Linear Programming Kit (GLPK); Gurobi and CPLEX
provide commercial implementations. Integer linear programming is an example
of a combinatorial optimization problem, with alternative solutions such as dual
decomposition. Das et al. (2012) develop an “augmented” dual decomposition
algorithm which obtains identical accuracy to CPLEX, while running roughly ten
times faster.

A final note about constrained optimization approaches to SRL is that you
might be uncomfortable about committing to a single syntactic parse, given that
even the best parsers have a 10% error rate. Punyakanok et al. (2008) show that
you can do better by considering the constituents of five different parsers at the
same time! The trick is simple: add constraints preventing the optimizer from
selecting constituents that overlap across parses.

Applications of SRL Why might we want to do this? One application is to auto-
matic question answering systems like IBM Watson. Consider the example ques-
tion, Who discovered prions?. Somewhere in our database, we have the statement
1997: Stanley B. Prusiner, United States, discovery of prions.... How can we link them
up? Shen and Lapata (2007) use semantic roles to align questions against the con-
tent of factual sentences, as shown in Figure 14.3.

[todo: more applications]

14.3 FrameNet

PropBank does not attempt to group related predicates, such as BUY/SELL, GIVE/RECEIVE,
and RISE/FALL. FrameNet provides a richer model of shallow semantics by group-
ing predicates and arguments into a predefined frame ontology. To see how this
works, consider the following examples from Jurafsky and Martin (2009):

(14.9) [A1 The price of bananas] increased [A2 5%].

(14.10) [A1 The price of bananas] rose [A2 5%].

(14.11) There has been a [A2 5%] increase [A1 in the price of bananas].

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 14.3: Using semantic role labeling to align questions and answers

Figure 14.4: A comparison of framenet and propbank, from Toutanova and Yih
[todo: I think]

The first two sentences involve different verbs; the second sentence conveys same
semantics with a noun. Nonetheless, the meaning is the same.

A frame defines a set of lexical units and a set of frame elements, as shown in Fig-
ure 14.5. The relationship between Framenet and PropBank annotation is shown

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 14.5: FrameNet annotation, figure from Fleischman et al, 2003

in Figure 14.4. The FrameNet corpus is publicly available online,6, and of this
writing, annotation is still ongoing.

Unlike PropBank, Framenet is not based on TreeBank parses, and example sen-
tences are chosen by hand. Shi and Mihalcea (2004) present a deterministic algo-
rithm for FrameNet parsing, and Das et al. (2010, 2014) provide a structured pre-
diction approach. But compared to PropBank, there is much less work on parsing
to the Framenet representation.

14.4 Abstract Meaning Representation
Recent work has focused on a new form of shallow semantics, the abstract mean-
ing representation (AMR), which is more structured than PropBank-style seman-
tics, but less ambitious than first-order logic. A major gap in semantic role labeling
is the inability to link arguments that refer to a single entity: for example:

(14.12) Abby told Max she would visit him in San Quentin.

In this example, there are three entities, Abigail, Max, and San Quentin, and two
predicates, told and visit. The associated AMR structure is shown in Figure 14.6.
This graph includes a number of pieces of information about the semantics. The
coreference relations between Abby and she, and Max and he are indicated by hav-
ing multiple incoming arrows to the nodes representing these entities. In addition,
the types of the entities are represented with special nodes: Abby and Max are of

6https://framenet.icsi.berkeley.edu/fndrupal/about

(c) Jacob Eisenstein 2014-2016. Work in progress.

https://framenet.icsi.berkeley.edu/fndrupal/about
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told-01

Per visit-01 Per

Name Loc Name

Max Name Abby

San Quentin

A0 A2
a1

A1 A1

AM-LOC

Op1 Op2

Figure 14.6: An example parse in the Abstract Meaning Representation (AMR)

type PER, person; San Quentin is of type LOC. The graph also indicates the sense
of each predicate, the relationship between the predicates, and the role of each
argument.

[todo: Talk a little about AMR parsing] [todo: talk about applications of AMR]

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 15

Distributional and distributed
semantics

A recurring theme in this course is that the mapping from words to meaning is
complex.

Word sense disambiguation A single form, like bank, may have multiple mean-
ings.

Synonymy Conversely, a single meaning may be created by multiple surface
forms, as represented by the synsets described in section 3.2

Paradigmatic relations Other lexical semantic relationships include antonymy (op-
posite meaning), hyponymy (instance-of), and meronymy (part-whole)

Moreover, both compositional and frame semantics assume hand-crafted lexi-
cons that map from words to predicates. But how can we do semantic analysis of
words that we’ve never seen before?

15.1 The distributional hypothesis

Here’s a word you may not know: tezgüino. If we encounter this word, what can
we do? It seems like a big problem for any NLP system, from POS tagging to
semantic analysis.

Suppose we see that tezgüino is used in the following contexts:1

1Example from Lin (1998).
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(15.1) A bottle of is on the table.

(15.2) Everybody likes .

(15.3) Don’t have before you drive.

(15.4) We make out of corn.

What other words fit into these contexts? How about: loud, motor oil, tortillas,
choices, wine? We can create a vector for each word, based on whether it can be
used in each context.

C1 C2 C3 C4 ...
tezgüino 1 1 1 1
loud 0 0 0 0
motor oil 1 0 0 1
tortillas 0 1 0 1
choices 0 1 0 0
wine 1 1 1 1

Based on these vectors, it seems that:

• wine is very similar to tezgüino;

• motor oil and tortillas are fairly similar to tezgüino;

• loud is quite different.

The vectors describe the distributional properties of each word. Does vector
similarity imply semantic similarity? This is the distributional hypothesis, stated
by Firth (1957) as: “You shall know a word by the company it keeps.” It is also
known as a vector-space model, since each word’s meaning is captured by a vec-
tor. Vector-space models and distributional semantics are relevant to a wide range
of NLP applications.

Query expansion search for bike, match bicycle;

Semi-supervised learning use large unlabeled datasets to acquire features that
are useful in supervised learning;

Lexicon and thesaurus induction automatically expand hand-crafted lexical re-
sources, or induce them from raw text.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Vector-space models typically fill out the vector representation using contex-
tual information about each word, known as distributional statistics. In the ex-
ample above, the vectors are composed of binary values, indicating whether it is
conceptually possible for a word to appear in each context. But in real systems,
we will compute distributional statistics from corpora, using various definitions
of context. This definition can have a major impact on the lexical semantics that
results; for example, Marco Baroni (lecture slides) computes the thirty nearest
neighbors of the word dog, based on the counts of all words that appear within
a fixed window of the target word. Varying the size of the window yields quite
different results:

2-word window cat, horse, fox, pet, rabbit, pig, animal, mongrel, sheep, pigeon

30-word window kennel, puppy, pet, bitch, terrier, rottweiler, canine, cat, (to) bark,
Alsatian

Each word in the two-word window is an animal, reflecting the fact that locally,
the word dog tends to appear in the same contexts as other animal types (e.g., pet
the dog, feed the dog, etc). In the 30-word window, nearly everything is dog-related,
including specific breeds such as rottweiler and Alsatian, but the list also includes
words that are not animals (kennel), and in one case (bark), is not a noun at all. The
reason is that the 2-word window is more sensitive to syntax, while the 30-word
window is more sensitive to topic.

15.2 Distributional semantics

Local distributional statistics: Brown clusters

One way to use context is to perform word clustering. This can improve the per-
formance of downstream (supervised learning) tasks, because even if a word is
not observed in any labeled instances, other members of its clusters might be. The
Brown et al. (1992) clustering algorithm provides one way to do this. The algo-
rithm is over 20 years old and is still widely used in NLP; for example, Owoputi
et al. (2012) use it to obtain large improvements in Twitter part-of-speech tagging.2

In Brown clustering, the context is just the immediately adjacent words. The
similarity metric is built on a generative probability model:

2You can download Brown clusters at http://metaoptimize.com/projects/
wordreprs/.

(c) Jacob Eisenstein 2014-2016. Work in progress.

http://metaoptimize.com/projects/wordreprs/
http://metaoptimize.com/projects/wordreprs/
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Algorithm 9 The bottom-up Brown et al. (1992) clustering algorithm
∀w,C(w) = w (start with every word in its own cluster)
while all clusters not merged do

merge the ci and cj to maximize clustering quality.
Each word is described by a bitstring representation of its merge path

• Assume each word w has a class C(w)

• Assume a generative model log p(w) =
∑

i log p(wi | ci) + log p(ci | ci−1)
(What does this remind you of?)

The word clusters C(w) are not observed; our goal is to infer them from data.
Now, in this model, we assume that,

p(wi | ci) =

{
count(wi)
count(ci)

, ci = C(wi)

0, otherwise.
(15.1)

This means that each word type has a single cluster — unlike in hidden Markov
models, where a given word might be generated from multiple tags. Due to
this constraint, we will not apply the expectation maximization algorithm which
was used in unsupervised hidden markov model learning (section 9.5). Instead,
Brown et al. (1992) use a hierarchical clustering algorithm, shown in Algorithm 9.
This is a bottom-up clustering algorithm, in that every word begins in its own
cluster, and then clusters are merged until everything is clustered together. The
series of merges taken by the algorithm is called a dendrogram, and it looks like
a tree. For example, if the words bike and bicycle are first merged with each other,
and then the cluster was merged with another cluster containing just the word
tricycle, we would have the small tree shown in Figure 15.1.

For any desired number of clusters K, we can get a clustering by “cutting”
the tree at some height. But in Brown clustering, we are usually interested not
only in the resulting clusters from some cut of the merge tree, but also in the
bitstrings that represent the series of mergers that led to the final clustering. A
classical approach to semi-supervised learning is to use Brown bitstring prefixes
in place of (or in addition to) lexical features, thus generalizing to words that are
unseen in labeled data. The bitstrings for Figure 15.1 would be 0 for tricycle, 10
for bicycle, and 11 for bike. Subtrees from Brown clustering on a larger dataset are
shown in Figure 15.2. The examples are drawn from a paper by Miller et al. (2004),
who use Brown cluster bitstring prefixes as features for named entity recognition;

(c) Jacob Eisenstein 2014-2016. Work in progress.
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tricycle

bicycle bike

Figure 15.1: A small subtree produced by bottom-up Brown clustering

Figure 15.2: Brown subtrees from Miller et al. (2004)

this approach has also been used in dependency parsing (Koo et al., 2008) and in
Twitter part-of-speech tagging (Owoputi et al., 2012).

The complexity of Algorithm 9 isO(V 3), where V is the size of the vocabulary.
We are merging V clusters, since we start off with each word in its own cluster;
each merger involves searching over O(V 2) pairs of clusters, to find the pair that
maximizes the improvement in clustering quality. Cubic complexity is too slow
for practical purposes, so we will explore a faster approximate algorithm later.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Brown clusters and mutual information

We now explore the Brown clustering algorithm more mathematically, and then
derive a more efficient clustering algorithm. First, some notation:

• V is the set of all words.

• N is number of observed word tokens.

• C : V → {1, 2, . . . , k} defines a partition of words into k classes.

• count(w) is the number of times we see word w ∈ V . This function can also
be used to count classes.

• count(w, v) is the number of times w immediately precedes v. This function
can also be used to count class bigrams.

p(w1, w2, . . . , wN ;C) =
∏
m

p(wm | C(wm))p(C(wm) | C(wm−1))

log p(w1, w2, . . . , wN ;C) =
∑
m

log p(wm | C(wm))× p(C(wm) | C(wm−1))

This is kind of like a hidden Markov model, but each word can only be pro-
duced by a single cluster. Now let’s define the “quality” of a clustering as the
average log-likelihood:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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J(C) =
1

N

N∑
m

log (p(wm | C(wm))× p(C(wm) | C(wm−1)))

=
∑
w,w′

n(w,w′)

N
log (p(w′ | C(w′))× p(C(w′) | C(w′))) sum over word types instead

=
∑
w,w′

n(w,w′)

N
log

(
n(w′)

n(C(w′))
× n(C(w), C(w′))

n(C(w))

)
definition of probabilities

=
∑
w,w′

n(w,w′)

N
log

(
n(w′)

1
× n(C(w), C(w′))

n(C(w))× n(C(w′))
× N

N

)
re-arrange, multiply by one

=
∑
w,w′

n(w,w′)

N
log

(
n(w′)

N
× n(C(w), C(w′))×N
n(C(w))× n(C(w′))

)
re-arrange terms

=
∑
w,w′

n(w,w′)

N
log

n(w′)

N
+
n(w,w′)

N
log

(
n(C(w), C(w′))×N
n(C(w))× n(C(w′))

)
distribution through log

=
∑
w′

n(w′)

N
log

n(w′)

N
+
∑
c,c′

n(c, c′)

N
log

(
n(c, c′)×N
n(c)× n(c′)

)
sum across bigrams and classes

=
∑
w′

p(w′) log p(w′) +
∑
c,c′

p(c, c′) log
p(c, c′)

p(c)× p(c′)
multiply by

N−2

N−2
inside log

=−H(W ) + I(C)

The last step uses the following definitions from information theory:

Entropy The entropy of a discrete random variable is the expected negative log-
likelihood,

H(X) = −E[logP (X)] = −
∑
x

P (X = x) logP (X = x). (15.2)

For example, for a fair coin we have H(X) = 1
2

log 1
2

+ 1
2

log 1
2

= − log 2; for
a (virtually) certain outcome, we have H(x) = 1 × log 1 + 0 × log 0 = 0. We
have already seen entropy in a few other contexts.

Mutual information The information shared by two random variables is the mu-
tual information,

I(X;Y ) =
∑
y∈Y

∑
x∈X

pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
. (15.3)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Algorithm 10 Exchange clustering algorithm
For K most frequent words, set Ci = i.
for i = (m+ 1) : V do

Set Ci = K + 1
Let 〈c, c′〉 be the two clusters whose merger minimizes the decrease in I(C)
Merge c and c′

For example, if X and Y are independent, then pX,Y (x, y) = pX(x)pY (y), so
the mutual information is log 1 = 0. In

By I(C), we are using a shorthand for the mutual information of adjacent word
classes, 〈Cm−1, Cm〉,

I(C) =
∑

Cm=c,Cm−1=c′

P (Cm = c, Cm−1 = c′) log

(
P (Cm = c, Cm−1 = c′)

P (Cm = c)P (Cm−1 = c′)

)
(15.4)

The entropy H(W ) does not depend on the clustering, so this term is constant;
choosing a clustering with maximum mutual information I(C) is equivalent to
maximizing the log-likelihood. Now let’s see how to do that efficiently.

V log V approximate algorithm

With this model in hand, we can now define a more efficient algorithm, shown
in Algorithm 10. The algorithm keeps exactly K clusters at every point in time,
so the merger operation requires considering only O(K2) clusters. We have to
pass over the entire vocabulary once for a cost of O(V ), but more importantly, we
must sort the words by frequency, for a cost of O(V log V ), giving a total cost of
O(V log V + V K2).

Syntactic distributional statistics

Local context is contingent on syntactic decisions that may have little to do with
semantics:

(15.5) I gave Tim the ball.
(15.6) I gave the ball to Tim.

(You may recall from section 14.1 that this is the dative alternation.) Using the
syntactic structure of the sentence might give us a more meaningful context, yield-
ing better clusters.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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There are several examples of this idea in practice. Pereira et al. (1993) cluster
nouns based on the verbs for which they are the direct object: the context vector
for each noun is the count of occurences as a direct object of each verb. As with
Brown clustering, they employ a class-based probability model:

p̂(n, v) =
∑
c∈C

p(v | c)× p(c, n) (15.5)

=
∑
c∈C

p(v | c)× p(n | c)× p(c), (15.6)

where n is the noun, v is the verb, and c is the class of the noun. They maximize
the likelihood under this model using an iterative algorithm similar to expectation
maximization (chapter 4).

Lin (1998) extends this idea from nouns to all words, using context statistics
based on the incoming dependency edges. For any pair of words i and j and
relation r, we can compute:

p(i, j | r) =
n(i, j, r)∑
i′,j′ n(i′, j′, r)

(15.7)

p(i | r) =
∑
j

p(i, j | r) (15.8)

Now, let T (i) be the set of pairs 〈j, r〉 such that p(i, j | r) > p(i | r)× p(j | r): then
T (i) contains words j that are especially likely to be joined with word i in relation
r. Similarity between u and v can be defined through T (u) and T (v).

Lin considers several similarity measures for T (u) and T (v). Many of these are
used widely in other contexts (usually for comparing clusterings or other sets),
and are worth knowing about:

Cosine similarity |T (u)∩T (v)|√
|T (u)||T (v)|

Dice similarity 2×|T (u)∩T (v)|
|T (u)|+|T (v)|

Jaccard similarity |T (u)∩T (v)|
|T (u)|+|T (v)|−|T (u)∩T (v)|

However, Lin’s chosen metric is more complex than any of these well-known al-
ternatives: ∑

〈r,w〉∈T (u)∪T (v) I(u, r, w) + I(v, r, w)∑
〈r,w〉∈T (u) I(u, r, w) +

∑
〈r,w〉∈T (v) I(v, r, w)

, (15.9)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Figure 15.3: Similar word pairs from the clustering method of Lin (1998)

where I(u, r, w) is the mutual information between u and w, conditioned on r.
Results of the algorithm are shown in Figure 15.3. An interesting point in

these results is that while many of the pairs are indeed synonyms, some have
the opposite meaning. This is particularly evident for the adjectives, with pairs
like good/bad and high/low at the top. It’s useful to think about why this might be
the case, and how you might fix it.

Lin’s algorithm was also evaluated on its ability to match synonym pairs in
human-generated thesauri. Its measure of text similarity was a better matched to
WordNet than was the (human-written) Roget thesaurus!

15.3 Distributed representations

Distributional semantics are computed from context statistics. Distributed se-
mantics are a related but distinct idea: that meaning is best represented by numer-
ical vectors rather than discrete combinatoric structures. Distributed representa-
tions are often distributional: this section will focus on latent semantic analysis
and word2vec, both of which are distributed representations that are based on
distributional statistics. However, distributed representations need not be distri-
butional: for example, they can be learned in a supervised fashion from labeled
data, as in the sentiment analysis work of Socher et al. (2013b).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Latent semantic analysis

Thus far, we have considered context vectors that are large and sparse. We can
arrange these vectors into a matrix X ∈ RV×N , where rows correspond to words
and columns correspond to contexts. However, for rare words i and j, we might
have x>i xj = 0, indicating zero counts of shared contexts. So we’d like to have a
more robust representation.

We can obtain this by factoring X ≈ UKSKV>K , where

UK ∈RV×K , UKU>K =I (15.10)

SK ∈RK×K , SK is diagonal, non-negative (15.11)

VK ∈RD×K , VKV>K =I (15.12)

Here K is a parameter that determines the fidelity of the factorization; if K =
min(V,N), then X = UKSKV>K . Otherwise, we have

UK ,SK ,VK = arg min
Uk,SK ,VK

||X−UKSKV>K ||F , (15.13)

subject to the constraints above. This means that UK ,SK ,VK give the rank-K
matrix X̃ that minimizes the Frobenius norm,

√∑
i,j(xi,j − x̃i,j)2.

This factorization is called the Truncated Singular Value Decomposition, and
is closely related to eigenvalue decomposition of the matrices XX> and X>X. In
general, the complexity of SVD is min (O(D2V ),O(V 2N)). The standard library
LAPACK (Linear Algebra PACKage) includes an iterative optimization solution
for SVD, and (I think) this what is called by Matlab and Numpy.

However, for large sparse matrices it is often more efficient to take a stochastic
gradient approach. Each word-context observation 〈w, c〉 gives a gradient on uw,
vc, and S, so we can take a gradient step. This is part of the algorithm that was
used to win the Netflix challenge for predicting movie recommendation — in that
case, the matrix includes raters and movies (Koren et al., 2009).

Return to NLP applications, the slides provide a nice example from Deerwester
et al. (1990), using the titles of computer science research papers. In the example,
the context-vector representations of the terms user and human have negative cor-
relations, yet their distributional representations have high correlation, which is
appropriate since these terms have roughly the same meaning in this dataset.

Word vectors and neural word embeddings

Discriminatively-trained word embeddings very hot area in NLP. The idea is to
replace factorization approaches with discriminative training, where the task may

(c) Jacob Eisenstein 2014-2016. Work in progress.
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be to predict the word given the context, or the context given the word.
Suppose we have the word w and the context c, and we define

uθ(w, c) = exp
(
a>wbc

)
(15.14)
(15.15)

with aw ∈ RK and bc ∈ RK . The vector aw is then an embedding of the word
w, representing its properties. We are usually less interested in the context vector
b; the context can include surrounding words, and the vector bc is often formed
as a sum of context embeddings for each word in a window around the current
word. Mikolov et al. (2013a) draw the size of this context as a random number r.

The popular word2vec software3 uses these ideas in two different types of
models:

Skipgram model In the skip-gram model (Mikolov et al., 2013a), we try to maxi-
mize the log-probability of the context,

J =
1

M

∑
m

∑
−c≤j≤c,j 6=0

log p(wm+j | wm) (15.16)

p(wm+j | wm) =
uθ(wm+j, wm)∑
w′ uθ(w

′, wm)
(15.17)

=
uθ(wm+j, wm)

Z(wm)
(15.18)

This model is considered to be slower to train, but better for rare words.

CBOW The continuous bag-of-words (CBOW) (Mikolov et al., 2013b,c) is more
like a language model, since we predict the probability of words given con-
text.

3https://code.google.com/p/word2vec/

(c) Jacob Eisenstein 2014-2016. Work in progress.
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J =
1

M

∑
m

log p(wm | c) (15.19)

=
1

M

∑
m

log uθ(wm, c)− logZ(c) (15.20)

uθ(wm, c) = exp

( ∑
−c≤j≤c,j 6=0

a>wmbwm+j

)
(15.21)

The CBOW model is faster to train (Mikolov et al., 2013a). One efficiency
improvement is build a Huffman tree over the vocabulary, so that we can
compute a hierarchical version of the softmax function with time complexity
O(log V ) rather than O(V ). Mikolov et al. (2013a) report two-fold speedups
with this approach.

The recurrent neural network language model (section 5.4) is still another way
to compute word representations. In this model, the context is summarized by a
recurrently-updated state vector cm = f(Θcm−1 +Uxm), where Θ ∈ RK×K defines
a the recurrent dynamics, U ∈ RK×V defines “input embeddings” for each word,
and f(·) is a non-linear function such as tanh or sigmoid. The word distribution
is then,

P (Wm+1 = i | cm) =
exp

(
c>mvi

)∑
i′ exp (c>mvi′)

, (15.22)

where vi is the “output embedding” of word i.

Estimating word embeddings*

Training word embedding models can be challenging, because they require prob-
abilities that need to be normalized over the entire vocabulary. This implies a
training time complexity of O(V K) for each instance. Since these models are of-
ten trained on hundreds of billions of words, with V ≈ 106 and K ≈ 103, this cost
is too high. Estimation techniques eliminate the factor V by making approxima-
tions.

One such approximation is negative sampling, which is a heuristic variant of
noise-contrastive estimation (Gutmann and Hyvärinen, 2012).

We introduce an auxiliary variable D, where

D =

{
1, w is drawn from the empirical distribution p̂(w | c)
0, w is drawn from the noise distribution q(w)

(15.23)

(c) Jacob Eisenstein 2014-2016. Work in progress.



274 CHAPTER 15. DISTRIBUTIONAL AND DISTRIBUTED SEMANTICS

Now we will optimize the objective

∑
(w,c)∈D

logP (D = 1 | c, w) +
k∑

i=1,w′∼q

logP (D = 0, | c, w′), (15.24)

setting

P (D = 1 | c, w) =
uθ(w, c)

uθ(w, c) + k × q(w)
(15.25)

P (D = 0 | c, w) =1− P (D = 1 | c, w) (15.26)

=
k × q(w)

uθ(w, c) + k × q(w)
, (15.27)

where k is the number of noise samples. Note that we have dropped the normal-
ization term

∑
w′ uθ(w

′, c). Gutmann and Hyvärinen (2012) show that it is possi-
ble to treat the normalization term as an additional parameter zc, which can be
directly estimated (see also Vaswani et al., 2013). Andreas and Klein (2015) go one
step further, setting zc = 1, in what has been called a “self-normalizing” proba-
bility distribution. This might be trouble if we were trying to directly maximize
log p(w | c), but this is where the auxiliary variable formulation helps us out: if
we set θ such that

∑
w′ uθ(w

′ | c) � 1, we will get a very low probability for
P (D = 0).[todo: needs a little more explanation]

We can further simplify by setting k = 1 and q(w) to a uniform distribution,
arriving at

P (D = 1 | c, w) =
uθ(w, c)

uθ(w, c) + 1
(15.28)

P (D = 0 | c, w) =
1

uθ(w, c) + 1
(15.29)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The derivative with respect to a is obtained from the objective

L =
∑
m

log p(D = 1 | cm, wm) + log p(D = 0 | c, w′) (15.30)

=
∑
m

log uθ(wm, cm)− log(1 + uθ(wm, cm))− log(1 + uθ(w
′, cm)) (15.31)

∂L

∂ai
=
∑

m:wm=i

bcm −
1

1 + uθ(wm, cm)

∂uθ(i, cm)

∂ai
+
∑
m

q(i)

1 + uθ(i, cm)

∂uθ(i, cm)

∂ai

(15.32)

=
∑

m:wm=i

bcm − P (D = 1 | wm = i, cm)bcm −
∑
m

q(i)P (D = 0 | i, cm)bcm

(15.33)

=
∑
m

(δ(wm = i)− q(i))P (D = 0 | wm = i, cm)bcm . (15.34)

The gradient with respect to b is similar. In practice, we simply sample w′ at
each instance and compute the update with respect to awm and aw′ . In practice,
AdaGrad performs well for this optimization.

Connection to matrix factorization*

Recent work has drawn connections between this procedure for training the skip-
gram model and weighted matrix factorization approaches (Pennington et al.,
2014; Levy and Goldberg, 2014). For example, Levy and Goldberg (2014) show
that skip-gram with negative sampling is equivalent to factoring a matrixX , where

Xi,j =PMI(W = i, C = j)− log k, (15.35)

where k is a constant offset equal to the number of negative samples drawn in
Equation 15.24, and PMI is the pointwise mutual information of the events of
the word W = i and the context C = j,

PMI(W = i, C = j) = log
P (W = i, C = j)

P (W = i)P (C = j)
(15.36)

= log
n(W = i, C = j)

M

M

n(W = i)

M

n(C = j)
(15.37)

= log
n(W = i, C = j)

n(W = i)

M

n(C = j)
. (15.38)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Word embeddings can be obtained by solving the truncated singular value de-
composition UΣV> = X, setting the embedding of word i to ui

√
(Σi,i).

This connection suggests that the differences between recent work on neural
word embeddings and much older work on Latent Semantic Analysis may be
smaller than they initially seemed! Online learning approaches such as negative
sampling stream over data, and require hyperparameter tuning to set the appro-
priate learning rate. On the other hand, PMI is undefined for word-context pairs
that are unobserved (due to the logarithm of zero), requiring a heuristic solution
such as positive PMI, PPMI(i, j) = max(0, PMI(i, j)), or shifted positive PPMI
SPPMIk(i, j) = max(0, PMI(i, j) − log k). Levy and Goldberg (2014) find that
singular value decomposition on shifted positive PMI does better than skipgram
negative sampling on some lexical semantic tasks, but worse on others.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 16

Discourse

16.1 Discourse relations in the Penn Discourse
Treebank

• introduce discourse relations

• PDTB annotation framework in D-LTAG

• PDTB parsing

16.2 Rhetorical Structure Theory

• Higher-level discourse structure

• Shift-reduce parsing

• Applications to summarization

16.3 Centering

• Pronouns, forms of reference

• Smooth/rough transitions

• Entity grid implementation

277



278 CHAPTER 16. DISCOURSE

16.4 Lexical cohesion and text segmentation

16.5 Dialogue
Minimal discussion of speech acts etc.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 17

Anaphora and Coreference
Resolution

Pronouns are one of the most noticeable forms of linguistic ambiguity. A Google
search for “ambiguous pronoun” reveals dozens of pages warning you to avoid
ambiguity. But as we have seen, people resolve all but the most egregious linguis-
tic ambiguities intuitively, below the level of conscious thought.

Moreover, reference ambiguities need not apply only to pronouns. Consider
the following text:

(17.1) Apple Inc Chief Executive Tim Cook has jetted into China for talks with govern-
ment officials as he1 seeks to clear up a pile of problems in [[the firm’s]2 biggest
growth market]3.

Some questions:

• Who is referred to by he1?

• What entity is referred to by the firm2?

• What is Apple’s biggest growth market?

You probably answered these questions by making some commonsense as-
sumptions. Tim Cook is the only individual mentioned, so the personal pronoun
he probably refers to him; Apple is the only firm mentioned, so the firm probably
refers to it; a CEO wouldn’t fly to China in order to resolve problems in some other
growth market, so the firm’s biggest growth market probably refers to China.1[todo:

1These judgments are formalized in Grice’s Maxim of Quantity: make your contribution as
informative as required, but not more so.
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this is not a great example; try to find one with ambiguity that requires more than
Grice to resolve.]

We can use this example to introduce some terminology:

Referring expressions include he, Tim Cook, the firm, the firm’s biggest growth mar-
ket. These are surface strings in the text.

Referents include TIM-COOK, APPLE, CHINA; in formal semantics, these may be
viewed as objects in a model, such as a database of entities. But referents
need not always be entities, as we will see.

Coreference is a property of pairs of referring expressions, which holds when
they refer to the same underlying entity.

Anaphora are referring expressions whose meaning depends on another expres-
sion in context, which occurs earlier in the document or talk. Cataphora
refer to expressions that occur later in the document, like After she won the
lottery, Susan quit her job. Exophora refer to entities not defined in the lin-
guistic context.

17.1 Forms of referring expressions
There are many possibilities for describing a referent.

Indefinite NPs a visit, two stores

Definite NPs the capital, his first trip

Pronouns he, it

Demonstratives this chainsaw, that abandoned mall

Names Tim Cook, China

Language users make decisions about which type of referring expression to
use, and this is an important challenge for automatic text generation. You can’t
say,

(17.2) Rob Ford apologized for “a lot of stupid things” but Rob Ford only acknowledged
a video showing Rob Ford smoking what appears to be crack cocaine to demand
police release it.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The specific referring expression within a type is determined by syntax and
semantic constraints, but the type of referring expression (pronoun, name, etc) is
largely determined by comprehensibility for the listener. Grice’s Maxim of Quan-
tity requires that speakers be as informative as necessary, but not more so. It is
debatable whether this maxim is precise enough to be formalized computation-
ally, but it loosely suggests that speakers should not use a full name (e.g., Rob
Ford) when a pronoun will do.

One theory about the relationship between discourse structure and forms of
referring expressions is the Givenness Hierarchy (Gundel et al., 1993). This theory
is based on the status of the referent with respect to both the discourse and the
hearer.

Type identifiable (you know what dogs are): indefinite

(17.3) I couldn’t sleep, a dog kept me awake.

Referential (some particular dog): indefinite this

(17.4) I couldn’t sleep, this dog kept me awake.

Uniquely identifiable definite

(17.5) I couldn’t sleep, the neighbor’s dog kept me awake.

Familiar distal demonstrative

(17.6) That dog next door kept me awake all night.

Activated demonstrative

(17.7) My neighbor bought a new dog, and that dog kept me awake last night.

In focus pronoun

(17.8) Her dog barks constantly. It kept me awake all night.

The location of an entity in the givenness hierarchy depends (in part) on the
discourse. Compare the following examples:

(17.9) You look tired, did a dog keep you awake?
(17.10) We bought a dog. It keeps me up all night.

(c) Jacob Eisenstein 2014-2016. Work in progress.



282 CHAPTER 17. ANAPHORA AND COREFERENCE RESOLUTION

Referents which were recently accessed acquire salience, and are more likely to
be near the top of the givenness hierarchy (more on salience later). However, back-
ground knowledge also plays an important role: for example, if a pair of speakers
lives with a (single) dog, it is always at least uniquely identifiable. Entities may
also be inferrable from the discourse:

(17.11) She just bought a new bike.
The wheels are made of bamboo fiber.

Centering theory*

Centering theory (Grosz et al., 1995) formalizes the notion of salience, by incorpo-
rating the syntactic role of each referring expression.

At each utterance Un, we have:

• A backward-looking center Cb(Un):
the entity currently in focus after Un.

• A forward-looking center Cf (Un):
an ordered list of candidates for Cb(Un+1).

• The top choice in Cf (Un) is Cp(Un+1)

How do we order the candidates from Cb(Un+1) to the forward-looking center?
By syntax:

1. Subject
Abigail saw an elephant.

2. Existential predicate nominal
There is an elephant in the room.

3. Direct object
Abigail gave a snack to the elephant.

4. Indirect object or oblique
Abigail gave a snack to the elephant.

5. demarcated adverbial prepositional phrase
Inside the zoo, the elephant is king.

Rule: If any element of Cf (Un) is realized by a pronoun in Un+1, then Cb(Un+1)
must also be realized as a pronoun.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Generate possible Cb and Cf for each set of reference assignments

• Filter by constraints: syntax, semantics, and centering rules

• Rank by transition orderings: continue, retain, smooth-shift, rough-shift

Cb(Un+1) = Cb(Un)
or Cb(Un) = ∅ Cb(Un+1) 6= Cb(Un)

Cb(Un+1) = Cp(Un+1) Continue Smooth-shift
Cb(Un+1) 6= Cp(Un+1) Retain Rough-shift

In a coherent discourse, we select transitions according to the following pref-
erences: continue, retain, smooth-shift, rough-shift

Here’s an example of how to use centering to resolve pronouns.
Un Cf (Un) Cp(Un) Cb(Un) transition
John saw a beautiful
Masi at the bike shop

John, Masi, bike shop John ∅

He showed it to Bob John, Masi, Bob John John Continue
He showed it to Bob John, bike shop, Bob John John Continue
He bought it John, Masi or bike shop John John Continue
He bought it Bob, Masi or bike shop Bob Bob Smooth-shift

• Centering theory tells us that we prefer John over Bob as the referent for he in
U3, because this would be a continue transition rather than a smooth-shift.

• Centering doesn’t really give us a rule for choosing Masi over bike shop in U2,
because neither is Cb(U2). We might apply the grammatical role hierarchy
since there is no other basis for this decision.

17.2 Pronouns and reference
Are all referents entities? No.

(17.12) They told me that I was too ugly, but I didn’t believe it.
(17.13) Alice saw Bob get angry, and I saw it too.
(17.14) They told me that I was too ugly, but that was a lie.
(17.15) Jess said she worked in security.

I suppose that’s one way to put it.

Are all pronouns referential? Also no. Cataphora are references to entities
which are evoked after the reference.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(17.16) When she learned what had happened, Alice took the first bus out of town.

Some pronouns have generic referents.

(17.17) A good father takes care of his kids.
(17.18) I want to buy a Porsche, they are so fast.
(17.19) On the moon, you have to carry your own oxygen.
(17.20) No wise man who owns a donkey beats it. Grosz et al. (2014)

Some pronouns don’t refer to anything at all.

(17.21) It’s raining.
(17.22) It’s crazy out there.
(17.23) It’s money that she’s really after.
(17.24) It sucks that we have to work so hard.

In the first two examples above, it is pleonastic; the third and fourth examples
are cleft and extraposition. How can we automatically distinguish these usages
of it from referential pronouns? Bergsma et al. (2008) propose a substitutability
text. Consider the the difference between the following two examples:

(17.25) You can make it in advance.
(17.26) You can make it in showbiz.

In the second example, the pronoun it is non-referential. One way to see this is by
substituting another pronoun, like them, into these examples:

(17.27) You can make them in advance.
(17.28) ?You can make them in showbiz.

The questionable grammaticality of the second example suggests that it cannot be
referential. Bergsma et al. (2008) operationalize this idea by examining all 5-gram
context patterns around instances of the word it. Given the example,

(17.29) ... said here Thursday that it is unnecessary to continue

they construct the following 5-grams:

said here Thursday that *
here Thursday that * is

Thursday that * is unnecessary
that * is unnecessary to

* is unnecessary to continue

(c) Jacob Eisenstein 2014-2016. Work in progress.
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For each of the five patterns around a word, they compute the corpus counts
of five pattern fillers: it/its; they/them/their; other pronouns she/her/...; rare words
(almost always nouns); all other tokens (usually nouns). These 25 counts are con-
verted into a feature vector. They can then train a classifier on these features,
using labels of whether specific instances of it are referential, achieving a cross-
validation accuracy of 86%.

17.3 Resolving ambiguous references
Anaphora resolution is the task of resolving anaphoric references, mainly pro-
nouns like it, this, and her. Coreference resolution is a broader task, adding two
additional phenomena:

• Names: Barack Obama, Obama, President Obama, Barry O, Nobama

• Nominals: the 44th president, the former senator from Illinois, our first African-
American president

With these tasks in mind, let’s go back to our example:

(17.30) Apple Inc Chief Executive Tim Cook has jetted into China for talks with
government officials as he seeks to clear up a pile of problems in the
firm’s biggest growth market, from its contested iPad trademark to treat-
ment of local labor. Cook is on his first trip to the country...

We have the following anaphoric resolution challenges:

• he ?
= Apple Inc, Tim Cook, China, talks, government officials, government, ...

• its ?
= the firm’s biggest growth market, the firm, problems, a pile of problems, ...

• his ?
= Cook, local labor, its contested iPad trademark, iPad, ...

How can we resolve these references? Anaphora resolution is typically handled
by a combination of hard constraints and soft preferences, reflecting different
classes of linguistic phenomena.

Constraints

Semantic constraints include morphologically marked information such as num-
ber, person, gender, and animacy.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(17.31) Tim Cook has jetted in for talks with officials as he seeks to clear up a pile
of problems...

We can identify the following features of the pronoun and possible referents:

• Number(he) = singular

• Number(officials) = plural

• Number(Tim Cook) = singular

Since there are no other possible referents, he almost certainly refers back to Tim
Cook. This is occasionally tricky in the case of mass nouns, such as

(17.32) New York has won the superbowl.
They are the world champions.

Other features include person, gender, and animacy, as in the following exam-
ples:

(17.33) *We1 told them1 not to go.
(17.34) Sally met my brother. He charmed her.
(17.35) Sally met my brother. She charmed him.
(17.36) Putin brought a bottle of vodka. It was from Russia.

Aside from semantics, there are general constraints on reference within sen-
tences, which seem to generalize well across languages. To understand these con-
straints, we need to introduce some linguistic terminology:

• x c-commands y iff the first branching node above x also dominates y.

• x binds y iff x and y are co-indexed and x c-commands y

• if y is not bound, it is free

For example, consider the tree in Figure 17.1. In this example, Mary c-commands
her/herself, because the first branching node above Mary also dominates her/herself.
However, her/herself does not c-command Mary. Thus, the pronoun her cannot re-
fer to Mary, because pronouns cannot refer to antecedents that c-command them.
On the other hand, herself must refer to Mary.

Now consider the example, shown in Figure 17.2. Here, Mary does not c-
commands her, but Mary’s mom c-commands her. Thus, her can refer to Mary —
and we cannot use reflexive herself in this context, unless we are talking about
Mary’s mom. But note that her does not have to refer to Mary (unlike the reflexive
the pronoun).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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S

VP

PP

her/herselffor

cooks

NP

Mary

Figure 17.1: Mary c-commands her/herself

S

VP

PP

herfor

cooks

NP

momMary’s

Figure 17.2: Mary does not c-command her, but Mary’s mom does.

S

VP

S

VP

herlikes

NP

she

V

says

NP

Abigail

Figure 17.3: A more complex example

A more complex example is shown in Figure 17.3. This indicates how the con-
straints defined here have a limited domain. The pronoun she can refer to Abigail,
because Abigail is outside the domain of she. Similarly, her can also refer to Abigail.
But she and her cannot be coreferent.

Preferences

Putting it together

Three types of evidence:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Semantic constraints

• Syntactic constraints

• Discourse/salience preferences

How do we combine them?

• Hobbs: Tree search + constraints

Walk back through the tree in a deterministic order, select the first referent
that satisfies the constraints.

• Centering: ordered preferences + constraints

Apply centering theory to recover the references that give the most preferred
transition sequence, subject to semantic constraints.

• Lappin and Lease: numerical preferences + constraints

Basically a hand-tuned linear classifier.

– -100 for each intervening sentence
– +80 for subject position
– +70 for existential emphasis, e.g. there was a woman who...
– +50 for accusative emphasis
– ...

• Ge, Hale, and Charniak (1999): statistical combination of four probabilities

– probability of the “Hobbs distance” between pronoun and antecedent
– probability of the pronoun given the antecedent

(this considers gender and animacy)
– how well the proposed antecedent fills the pronoun’s slot in the sen-

tence
– frequency of the proposed referent

• Raghunathan et al. (2010) describe a “multipass sieve” for coreference reso-
lution, which applies a series of progressively relaxed matching rules.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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17.4 Coreference resolution
This is a generalization of the anaphora resolution task to cover proper nouns and
nominals.

• See the slides for an example.

• The coreference task comes from the information extraction community.

• Candidate spans of text for coreference are called markables

• In the harder versions of the coreference task, you have to identify the mark-
ables as well as their reference chains.

Coreference combines many phenomena: all the ones in anaphora resolution,
plus string similarity and knowledge to get nominals.

• unencrypted Wi-Fi networks and networks have the same head word

• Dr. King and Martin Luther King can all co-refer

• Martin Luther King and Coretta Scott King cannot

• World knowledge: e.g., Google is a company,
companies possess cars but Tuesday doesn’t.

The mention-pair model

One of the earliest end-to-end machine learning systems for coreference is from
Soon et al. (2001).

• Identify markables and their features with an NLP pipeline.

• Train a classifier to predict which pairs of markables corefer. This is the
mention-pair model.

– For each markable, go backwards until the classifier selects an antecedent
or you reach the beginning of the document.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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– No structured prediction here; each classification decision is made in-
dependently.

Learning is performed on mention pairs.

• Given the labeled chain A1-A2-A3-A4, the adjacent pairs A1-A2, A2-A3,
A3-A4 are treated as positive examples.

• Negative examples are generated from NPs that occur between the adjacent
pairs.

– Suppose markables A,B,B1 appear between A1 and A2.
– Then the negative examples are: A-A2, B-A2, B1-A2.

There are fundamental problems with mention-pair approaches.

• They fail to aggregate information across the chain.

• Must reason about transitivity to avoid incoherent chains.

• Michelle Obama← Obama←Mr. Obama

Entity-based coreference

Alternatively, we can try to learn at the entity level, using features of the entities
themselves

• Number of entities detected so far

• Mention to entity ratio

• Entity to word ratio

• Number of intervening mentions between mention and linked entity

• ...

Can incorporate these by scoring entire clusterings, θ>f(x,y).
But how to train such a model?

One approach is an incremental perceptron. This is like a structured percep-
tron, but you incrementally build the structure, and you update as soon as you
make a mistake.

Bell Tree, Beam Search, and Max-link Coreference The Bell Tree can represent
the coreference structure. See slides.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Markov Random Field with Transitive Closure see slides

Summing over antecedent structures Durrett and Klein (2013) propose sum-
ming over reference assignments within a clustering. Let the gold standard clus-
tering be written C∗, with C∗k representing the cluster for document k, and A(C∗k)
representing the set of possible antecedents structures. Then we treat the specific
antecedent structure as a latent variable, and sum over it, obtaining the regular-
ized objective,

`(θ) =
N∑
k

log

 ∑
a∈A(C∗k)

p(a | xk)

+ λ||θ|| (17.1)

p(a | xk) ∝ exp

(∑
i

θ>f(i, ai,x)

)
. (17.2)

Durrett and Klein (2013) augment this basic model by defining a real-valued
loss function, and incorporate it into the objective. [todo: say a little more] They
then show that this basic framework supports a number of expressive features,
which give good performance compared to prior work.

Durrett and Klein (2013) also note that the most challenging cases by far are
nominals that are anaphoric, but in which the head word has not appeared before.
For example,

(17.37) Tim Cook visited China yesterday.
The Apple CEO said that international cooperation was a high priority for his
company.

Here CEO is the head of the nominal NP, the apple CEO, which refers to Tim Cook.
Clearly, this case is hard to resolve without external world knowledge. Durrett
and Klein (2013) call this an “uphill battle”, in contrast to the “easy victories”
attainable in the case of pronoun resolution. Haghighi and Klein (2009) mine
Wikipedia data to try to learn enough world knowledge to handle these cases.

17.5 Coreference evaluation

17.6 Multidocument coreference resolution

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Chapter 18

Information extraction

A fundamental challenge for artificial intelligence (AI) is knowledge acquisition:
how to give computers enough knowledge so as to make their inferential capa-
bilities useful (?). From an AI perspective, one of the major motivations for nat-
ural language processing is to provide a solution to this problem — acquiring
knowledge in the way that people often do, by reading. This problem is some-
times called information extraction; in contrast to information retrieval, where
the goal is to retrieve informative documents for a human reader, the goal of in-
formation extraction is to synthesize these documents into structured knowledge
representations, such as database entries.

This chapter distinguishes information extraction from question answering,
where the goal is to provide natural language answers to natural language ques-
tions. The tasks are closely related: a question answering system might proceed by
first parsing the question (determining what information is required), then identi-
fying relevant records in the knowledge base, and then crafting a natural language
response. In many scenarios — such as the IBM question answering system “Wat-
son” — the required knowledge base is too large to create by hand, so it must be
created by information extraction techniques, similar to those discussed here.

A large part of information extraction can be unified in terms of entities, re-
lations, and events. Entities are uniquely specified objects in the world, such
as people, places, organizations, and times. Relations link pairs of entities, as
in sibling(LUKE, LEIA). We can think of each relation type as defining a table,
in which each row contains two entities. Events link arbitrary numbers of argu-
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ments, as in the following example:

battle : 〈location : ATLANTA,

date : 1864,
victor : UNITED STATES ARMY,

defeated : CONFEDERATE ARMY〉.

We can think of each event type as defining a table, in which the rows define
various “slots” pertaining to the event. The task of knowledge base population
is closely related to information extraction, and the goal is to fill in relevant slots
in just such a table.

The attentive reader will notice a close kinship between information extrac-
tion, as defined here, and the task of shallow semantic parsing defined in chap-
ter 14. For example, in semantic role labeling, the goal was to identify predicates
and their arguments; we may think of predicates as corresponding to events, and
the arguments as defining slots in the event representation. The key difference
is that semantic role labeling and related tasks require correctly analyzing each
sentence — a goal sometimes described as micro-reading. In information extrac-
tion, we need only correctly identify the relations and events that are referred to
in a corpus. Many relations and events may be mentioned multiple times, but
in information extraction and knowledge base population, we need only identify
them once — thus the goal here is sometimes described as macro-reading. While
macro-reading is a more forgiving task than micro-reading, it requires reasoning
over an entire corpus, posing additional problems of computational tractability.
It may also be necessary to provide information provenance [todo: good term?],
linking the extracted knowledge back to the original source or sources.

18.1 Entities
The starting point for information extraction is to identify mentions of entities in
text. For example, consider the following text.

(18.1) The United States Army captured a hill overlooking Atlanta on May 14, 1864.

Given this text, we have two goals:

1. Identify the spans United States Army, Atlanta, and May 14, 1864 as entity
mentions. We may also want to recognize the named entity types: organi-
zation, location, and date. This task is known as named entity recognition.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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The U.S. Army captured Atlanta on May 14 , 1864 .
B-ORG I-ORG I-ORG O B-LOC O B-DATE I-DATE I-DATE I-DATE O

Table 18.1: BIO notation for named entity recognition

2. Link these spans to known entities in a knowledge base, U.S. ARMY, AT-
LANTA, and MAY 14, 1864. This task is known as entity linking.

Named entity recognition (NER)

A standard approach is to tagging named entity spans is to use discriminative
sequence labeling methods such as conditional random fields and structured per-
ceptrons. As described in chapter 9, these methods use the Viterbi algorithm to
search over all possible label sequences, while scoring each sequence using a fea-
ture function that decomposes across adjacent tags. Named entity recognition is
formulated as a tagging problem by assinging each word token to a tag from a
tagset. However, there is a major difference from part-of-speech tagging: in NER
we need to recover spans of tokens, such as The United States Army. To do this,
the tagset must distinguish tokens that are at the beginning of a span from tokens
that are inside a span.

BIO notation This is accomplished by the “BIO notation”, shown in Table 18.1.
Each token at the beginning of a name span is labeled with a B- prefix; each token
within a name span is labeled with an I- prefix. Tokens that are not parts of name
spans are labeled as O. From this representation, it is unambiguous to recover the
entity name spans within a labeled text. Another advantage is from the perspec-
tive of learning: tokens at the beginning of name spans may have different prop-
erties than tokens within the name, and the learner can exploit this. This insight
can be taken even further, with special labels for the last tokens of a name span,
and for unique tokens in name spans, such as Atlanta in the example in Table 18.1.
This is called BILOU notation, and has been shown to yield improvements in su-
pervised named entity recognition Ratinov and Roth (2009).[todo: check this cite]

Entity types The number of possible entity types depends on the labeled data.
An early dataset was released as part of a shared task in the Conference on Nat-
ural Language Learning (CoNLL), containing entity types LOC (location), ORG
(organization), and PER (person). Later work has distinguished additional entity
types, such as dates, [todo: etc]. [todo: find cites] Special purpose corpora have

(c) Jacob Eisenstein 2014-2016. Work in progress.
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been built for domains such as biomedical text, where entities include protein
types [todo: etc].

Features The use of Viterbi decoding restricts the feature function f(w,y) to∑
m f(w, ym, ym−1,m), so that each feature can consider only local adjacent tags.

Typical features include tag transitions, word features for wm and its neighbors,
character-level features for prefixes and suffixes, and “word shape” features to
capture capitalization. As an example, base features for the word Army in the
example in Table 18.1 include:

〈CURR-WORD:Army,
PREV-WORD:U.S.,
NEXT-WORD:captured,

PREFIX-1:A-,
PREFIX-2:Ar-,
SUFFIX-1:-y,
SUFFIX-2:-my,

SHAPE:Xxxx〉

Another source of features is to use gazzeteers: lists of known entity names. For
example, it is possible to obtain from the U.S. Social Security Administration a
list of [todo: hundreds of thousands] of frequently used American names — more
than could be observed in any reasonable annotated corpus. Tokens or spans
that match an entry in a gazetteer can receive special features; this provides a
way to incorporate hand-crafted resources such as name lists in a learning-driven
framework.

Features in recent state-of-the-art systems are summarized in papers by ? and Rati-
nov and Roth (2009).

Alternative modeling frameworks*

Apart from sequence labeling, there are other formulations for named entity recog-
nition, which are arguably better customized for the task.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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18.2 Relations

Knowledge-base population

Distant supervision

18.3 Events and processes

18.4 Facts, beliefs, and hypotheticals

(c) Jacob Eisenstein 2014-2016. Work in progress.





Chapter 19

Machine translation

Machine translation (MT) is one of the “holy grail” problems in natural language
processing. Solving it would be a major advance in facilitating communication
between people all over the world, and so it has received a lot of attention and
funding since the early 1950s. However, it has proved incredibly challenging, and
while there has been substantial progress towards usable MT systems — espe-
cially for so-called “high resource” languages like English and French — we are
still far from automatically producing translations that capture the nuance and
depth of human language.

19.1 The noisy channel model
Throughout the course, we’ve been working with the general formulation,

ŷ = arg max
y∈Y

θ>f(x,y) (19.1)

Now suppose we make X equal to the set of all possible sentences in a foreign
language, and Y equal to the set of all possible English sentences. We can thus
view translation in the same linear formalism that we’ve considered all along.
Will this work?

There are two major criteria for a translation:

• Adequacy: The translation ŷ should adequately reflect the linguistic content
ofx. For example, ifx = Vinay le gusta Python, the gloss1 y = Vinay it like Python
is considered adequate becomes it contains all the relevant content. The out-
put y = Vinay debugs memory leaks will score poorly.

1A “gloss” is a word-for-word translation.
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• Fluency: The translation ŷ should read like fluent text in the target language.
By this criterion, the gloss y = Vinay it like Python will score poorly, and
y = Vinay likes Python will be preferred.

Adequate? Fluent?

Vinay it like Python yes no
Vinay debugs memory leaks no yes
Vinay likes Python yes yes

Table 19.1: Adequacy and fluency for translations of the Spanish Vinay le gusta
Python

An early insight in machine translation was that the scoring function for a
translation can decompose across these criteria:

θ>f(x,y) = θ>t ft(x,y) + θ>` f`(y) (19.2)

The features ft represent the translation model, which corresponds to the ade-
quacy criterion; the features f` represent the language model, which corresponds
to the fluency criterion.

The advantage of this decomposition is that we can estimate θ>` from unla-
beled data in the target language. Because unlabeled text data is widely available,
in principle we can easily improve the fluency of our translations by estimating
very high-order language models from ample unlabeled text. In this case, we can
express these features as

f`(y) =
⋃
i

1(yi:i+k) (19.3)

θ`({w0, w1, w2, . . . wk}) = log p(wk | wk−1, wk−2, . . . , w0) (19.4)

When estimating these probabilities, we will naturally want to apply all the smooth-
ing tricks that we learned in Chapter 5. Note that we will also have to add padding
of K “buffer” words at the beginning and end of the input.

This approach is indeed a component of the current state-of-the-art MT sys-
tems, but there is a catch: as the size of the N-gram features increases, the problem
of decoding — selecting the best scoring translation ŷ — becomes exponentially
more difficult. We will consider this issue later. For now, just note that this formu-
lation ensures that,

θ>` f`(y) = log p(y). (19.5)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Now let’s consider the translation component. If we can set

θ>t ft(y,x) = log p(x | y), (19.6)

then the sum of these two scores yields,

θ>t ft(y,x) + θ>` f`(y) = log p(x | y) + log p(y) (19.7)
= log p(x,y). (19.8)

In other words, we can obtain the translation ŷ which has the maximum joint
log-likelihood log p(y,x). We want the translation with the highest conditional
probability,

arg max
y

p(y | x) = arg max
y

p(y,x)

p(x)
, (19.9)

but since x is given, we can ignore the denominator p(x) and just select the y that
maximizes the joint probability.

This approach is called the noisy channel model, and was pioneered by re-
searchers who were experts in cryptography. They proposed to view translation
as decoding the output of a stochastic cipher.

• Imagine that the original text y was written in English, and is modeled as
drawn from a source language model y ∼ P`

• The source was then stochastically encoded, according to the translation
model, x | y ∼ Pt.

• If we can estimate the stochastic processes P` and Pt, we can reverse the
cipher and obtain the original text.

19.2 Translation modeling
Language modeling is covered in Chapter 5, so this chapter will mainly focus on
the translation model, pt(x | y). To estimate this model, we will need a parallel
corpus, which contains sentences in both languages.

• Parallel corpora are often available from national and international govern-
ments. The Hansards corpus contains aligned English and French sentences
from the Canadian parliament. The EuroParl corpus contains sentences for
21 languages, aligned with their English translations.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• More recent work has explored the use of web documents (Kilgarriff and
Grefenstette, 2003; Resnik and Smith, 2003) and crowdsourcing for MT (Zaidan
and Callison-Burch, 2011).

Once a parallel corpus is obtained, we can consider how to characterize the
translation model, ft. The sets X and Y are far too huge for us to directly estimate
the adequacy of every possible translation pair. So we need to decompose this
problem into smaller units.

The Vauquois Pyramid is a theory of how translation should be modeled. At
the lowest level, we translate individual words, but the distance here is far, be-
cause languages express ideas differently. If we can move up the triangle to syn-
tactic structure, the distance for translation is reduced; we then need only produce
target-language text from the syntactic representation, which can be as simple as
reading off a tree. Further up the triangle lies semantics; translating between se-
mantic representations should be easier still, but mapping between semantics and
surface text is a difficult, unsolved problem. At the top of the triangle is interlin-
gua, a semantic representation that is so generic, it is identical across all human
languages. Philosophers may debate whether such a thing as interlingua is really
possible (Derrida, 1985), but the idea of linking translation and semantic under-
standing is viewed by many as a grand challenge for natural language technology.

Figure 19.1: The Vauquois Pyramid (”Direct translation and transfer translation
pyramind”. Licensed under Creative Commons Attribution-Share Alike 3.0 via
Wikimedia Commons.)

Returning to earth, the simplest decomposition of the translation model is a
word-based translation: each word in the source string should be aligned to a

(c) Jacob Eisenstein 2014-2016. Work in progress.
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word in the translation. In this approach, we need an alignment A(x,y), which
contains a list of pairs of source and target tokens. Making some independence
assumptions, we can then define the translation probability as,

pt(x,A | y) =
∏
i

p(xi, ai | yai) (19.10)

=
∏
i

pa(ai | i, Nx, Ny)× px|y(xi | yai) (19.11)

Key assumptions:

• The alignment probability decomposes as p(A | x,y) =
∏

i pa(ai | i, Nx, Ny).
This means that each alignment decision is independent of the others, and
depends only on the index i, and the sentence lengths Nx and Ny.

• The translation probability decomposes as p(x | y,A) =
∏

i px|y(xi | yai). We
are doing word-based translation only, ignoring context. The hope is that the
language model will correct any disfluencies that arise from word-to-word
translation.

A series of translation models with increasingly weak independence assump-
tions was produced by researchers at IBM in the 1980s and 1990s, known as IBM
Models 1-6(Och and Ney, 2003). IBM model 1 makes the strongest independence
assumption:

pa(ai | i, Nx, Ny) =
1

Ny

(19.12)

In this model every alignment is equally likely! This is almost surely wrong, but
it makes learning easy.

Let’s consider how to translate with IBM model 1. The key idea is to treat
the alignment as a hidden variable. If we knew the alignment, we could easily
estimate a translation model, and we could find the optimal translation as

ŷ =arg max
y

p(x,y) (19.13)

=arg max
y

∑
A

p(x,y,A) (19.14)

=arg max
y

p`(y)
∑
A

pt(x,A | y) (19.15)

≈arg max
y

p`(y) max
A

pt(x,A | y) (19.16)

(c) Jacob Eisenstein 2014-2016. Work in progress.



306 CHAPTER 19. MACHINE TRANSLATION

Conversely, if we had an accurate translation model, we could estimate beliefs
about each alignment decision,

q(ai | x,y) ∝ pa(ai | i, Nx, Ny)× px|y(xi | yai). (19.17)

We therefore have a classic chicken-and-egg problem, which we can solve us-
ing the iterative expectation-maximization (EM) algorihtm.

E-step Update beliefs about word alignment,

qi(ai) ∝ pa(ai | i, Nx, Ny)px|y(xi | yai) (19.18)

M-step Update the translation model,

θu→v = log

∑
i

∑
j qi(ai = j)δ(yj = u ∧ xi = v)∑
i

∑
j qi(ai = j)δ(yj = u)

(19.19)

Example for IBM Model 1

Suppose our bitext has two sentence pairs:

(19.1) The coffee
Le cafe

(19.2) My coffee
Mon cafe

We start with the following translation probabilities:

le mon cafe
the 1

3
1
3

1
3

my 1
3

1
3

1
3

coffee 1
3

1
3

1
3

In the E-step, we compute alignment probabilities for each sentence.

q0(0) ∝pa(0)× p(le | the) =
1

2
× 1

3
(19.20)

q0(1) ∝pa(1)× p(le | coffee) =
1

2
× 1

3
(19.21)

q0(·) =

[
1

2
,
1

2

]
(19.22)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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le mon cafe
the 1

2
0 1

2

my 0 1
2

1
2

coffee 1
4

1
4

1
2

The same logic applies to all the alignment decisions: we begin with qi(j) = 1
N

in
every case. Now we move to the M-step, where we will plug in these (apparently
uninformative) alignment probabilities:

px|y(le | the) =

∑
i,j qi(j)δ(yi = le ∧ xj = the)∑

i,j qi(j)δ(xj = the)
=

1
2

1
2

+ 1
2

=
1

2
(19.23)

px|y(cafe | the) =

∑
i,j qi(j)δ(yi = le ∧ xj = the)∑

i,j qi(j)δ(xj = the)
=

1
2

1
2

+ 1
2

=
1

2
(19.24)

px|y(mon | the) =

∑
i,j qi(j)δ(yi = le ∧ xj = the)∑

i,j qi(j)δ(xj = the)
=

0
1
2

+ 1
2

= 0 (19.25)

The math works out similarly for p(· | my). But the English word coffee appears in
both sentence pairs, so:

px|y(le | cafe) =
1
2

4× 1
2

=
1

4
(19.26)

px|y(coffee | cafe) =
2× 1

2

4× 1
2

=
1

2
(19.27)

px|y(mon | cafe) =
1
2

4× 1
2

=
1

4
(19.28)

(19.29)

To summarize the new translation probabilities:

(c) Jacob Eisenstein 2014-2016. Work in progress.
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le mon cafe
the 2

3
0 1

3

my 0 2
3

1
3

coffee 1
6

1
6

2
3

We now go back to the E-step and compute the alignments again.

q0(0) ∝pa(0)× p(le | the) =
1

2
× 1

2
(19.30)

q0(1) ∝pa(1)× p(le | coffee) =
1

2
× 1

4
(19.31)

q0(·) =

[
2

3
,
1

3

]
q1(0) ∝ pa(0)× p(le | coffee) =

1

2
× 1

4
(19.32)

q1(1) ∝pa(1)× p(cafe | coffee) =
1

2
× 1

2
(19.33)

q1(·) =

[
1

3
,
2

3

]
(19.34)

Having learned something about the translation model, the alignments are no
longer uniform. The situation for the second sentence is identical, so is not shown
here.

If we return to the M-step, we end up with sharper translation probabilities:

px|y(le | the) =

∑
i,j qi(j)δ(yi = le ∧ xj = the)∑

i,j qi(j)δ(xj = the)
=

2
3

2
3

+ 1
3

=
2

3
(19.35)

px|y(cafe | the) =

∑
i,j qi(j)δ(yi = le ∧ xj = the)∑

i,j qi(j)δ(xj = the)
=

1
3

1
3

+ 2
3

=
1

3
(19.36)

px|y(mon | the) =0 (19.37)

px|y(le | cafe) =
1
3

1
3

+ 2
3

+ 1
3

+ 2
3

=
1

6
(19.38)

px|y(coffee | cafe) =
2× 2

3

2
=

2

3
(19.39)

px|y(mon | cafe) =
1
3

2
=

1

6
(19.40)

The process will eventually converge to assign all of the probability mass for
each English word to its correct French translation. Note that we have made no

(c) Jacob Eisenstein 2014-2016. Work in progress.
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assumptions about the word alignments at all! The only information that we have
exploited is the co-occurrence of words across sentence pairs. But we can do even
better in models that make reasonable assumptions about alignment — for exam-
ple, that alignments tend to be monotonic (i > j → ai > aj), etc.

Better alignment models IBM Model 2 tries to learn the prior distribution from
data,

pa(ai; i, Nx, Ny) =φai,i,Nx,Ny (19.41)

s.t.∀i, Nx, Ny,
∑
a

φa,i,Nx,Ny = 1. (19.42)

The solution is the expected relative frequency estimate,

φa,i,Nx,Ny =

∑
y,x:#|y|=Ny ,#|x|=Nx qi(a)∑
y,x:#|y|=Ny ,#|x|=Nx

, (19.43)

where we are summing only over sentence pairs with lengths Nx, Ny.
Adding a parameter for the alignment model makes the overall objective func-

tion non-convex (see chapter 4 for a review of convexity). The practical conse-
quence of this is that initialization matters; it’s no longer sufficient to just initialize
the translation model to uniform probabilities and hope that everything works
out. A good solution is to first run IBM Model 1, and then use the resulting trans-
lation model as the initialization for IBM Model 2.

IBM model 3 adds a term for the “fertility” of each word — that is, the number
of words that typically align to it. For example, some English verbs are translated
as multiword phrases:

(19.3) Mary did not slap the green witch.
Maria no daba una bofetada a la bruja verde.

By learning these fertility probabilities from data, the alignment model has a better
chance of learning the correct translation rules for such multiword phrases. But
note that even in the best case, we would have to model the translation of slap into
daba una bofetada as,

px|y,A(daba una bofetada | slap) (19.44)

=px|y(daba | slap)× px|y(una | slap)× px|y(bofetada | slap). (19.45)

This seems wrong, since the word una is just an indefinite article — the Spanish
feminine for the English word a. We therefore turn to models that go beyond
word-based translation.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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19.3 Phrase-based translation

The problem identified with the example daba una bofetada is an instance of a more
general issue: translation is often not a matter of word to word substitutions. Mul-
tiword expressions are often not translated literally:

(19.4) clean up
faire (make) le (the) menage (home)

Handling this in a word-to-word translation model seems unnecessarily difficult.
Furthermore, phrases tend to move together:

(19.5) i like the food a lot
la (the) comida (food) me (I) gusta (like) mucho (a lot)

We would therefore have to learn that the alignment decisions for la and comida
should be made jointly.

Phrase-based translation generalizes on word-based models by building trans-
lation tables and alignments between multiword spans of text. The generalization
from word-based translation is surprisingly straightforward: the translation ta-
bles can now condition on multi-word units, and can assign probabilities to multi-
word units; alignments are mappings from spans to spans, 〈(i, j), (k, `)〉, so that

p(x | y,A) =
∏

〈(i,j),(k,`)〉∈A

px|y({xi, xi+1, . . . , xj} | {yk, yk+1, . . . , y`}), (19.46)

where we require that the alignment setA cover both sentences with non-overlapping
spans, as shown in ??. [todo: add figure]

19.4 Syntactic MT

Consider the English sentence, The green witch eats the hot soup.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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S

VP

NP

NPB

NN

soup

JJ

hot

DT

the

V

eats

NP

NPB

NN

witch

JJ

green

DT

the

Where NPB is a “bare NP,” without the determiner. We might get this non-
terminal from binarizing a CFG.

We can view the CFG as a process for generating English sentences.

Synchronous CFGs are a generalization of CFGs. They generate text in two
different languages simultaneously. Each RHS has two components, one for each
language. Subscripts show the mapping between non-terminals in the RHS. For
example:

S → NP1 V P2, NP1 V P2

V P → V1 NP2, V1 NP2

NP → DT1 NPB2, DT1 NPB2

NPB → JJ1 NPB2, NPB2 JJ1

The key production is the fourth one, which handles the re-ordering of adjec-
tives and nouns. Let’s use this SCFG to generate the English and Spanish versions
of this sentence.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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S

VP2

. . .eats

NP1

NPB2

NN2

witch

JJ1

green

DT1

the

S

VP2

. . .come

NP1

NPB2

JJ1

verde

NN2

bruja

DT1

la

• On the slides there is another example, in Japanese. Since Japanese is a SOV
language (subject-object-verb), we need a production: V P → V1 NP2, NP2 V1.

• As with CFGs, we can attach a probability to each production, and compute
the joint probability of the derivation and the text as the product of these
productions.

Binarization

Let’s define a rank-n CFG as a grammar with at most n elements on a right-hand
side.

• CFGs can always be binarized.

– e.g. NP → DT [JJ NN ] becomes

NP → DT NPB

NPB → JJ NN

– Therefore, the set of languages that can be defined by a 2-CFG is iden-
tical to the set that can be defined by 3-CFG, 4-CFG, etc...

• What about SCFGs?

– Rank 3:

A→ B [C D], [C D] B

A→ B V, V B

V → C D, C D

Yes, we can. 2-SCFG = 3-SCFG.

(c) Jacob Eisenstein 2014-2016. Work in progress.



19.4. SYNTACTIC MT 313

– Rank 4:

A→ B C D E, C E B D

A→ [B C] D E, [C E B] D

A→ B [C D] E, [C E B D]

A→ B C [D E], C [E B D]

In each chunk that we might want to replace in the first language, we
have one or more intervening symbols in the second language. There-
fore, 3-SCFG $ 4-SCFG.

– The subset of 2-SCFG = 3-SCFG is equivalently called inversion trans-
duction grammar. The notation is slightly different, we write A →
[B C] when the order is preserved and A→ 〈B C〉when it is inverted.

No raising or lowering

SCFGs can only reorder sibling nodes. Is that enough? Not always.
S

VP

NP

Kate

V

misses

NP

Petyr

S

VP

PP

Petyrà

V

manque

NP

Kate

SCFGs cannot swap the subject and object, because they aren’t siblings in the
original grammar.

We could solve this by changing the grammar,
S

NP2

Kate

missesNP1

Petyr

S

NP1

Petyr

àmanqueNP2

Kate

By including the verb misses/manque à directly into the rule, we ensure that it
doesn’t apply to other verbs.

With other syntactic translation models (synchronous tree substitution gram-
mar or tree adjoining grammars), this case can be handled without flattening.

(c) Jacob Eisenstein 2014-2016. Work in progress.



314 CHAPTER 19. MACHINE TRANSLATION

19.5 Algorithms for SCFGs

Translation

In principle, translation in SCFGs is nearly identical to parsing. Suppose we have
the Spanish phrase la razón principal, and the synchronous grammar

NP → D NPB, D NPB 1.0

NPB → N1 J2, J2 N1 0.8

NPB → N1 N2, N1 N2 0.2

D → la, the 0.5

N → razon, reason 0.5

N → principal, principal 0.5

J → principal, main 1.0

Now we can apply CKY, building the translation on the English side. We
should get two possible translations, the reason principal (p(e, f, τ) = 0.05) and the
main reason (p(e, f, τ) = 0.4).

What is the complexity of translation with binarizable SCFGs? It’s just like
CFG parsing: O(n3).

Bitext parsing

To learn a translation model, we might need to synchronously parse the bitext:
both the source and target side language.

We can do this with a dynamic program.
Assuming we are dealing with 2-SCFG or 3-SCFG, here’s what we need to keep

track of:

• The non-terminals that we have derived

• Their spans in the source language (start and end)

• Their spans in the target language (start and end)

Suppose we are given spans 〈i, j〉 in the source and 〈i′, j′〉 in the target. Then we
are looking for split points k and k′ and a production that can derive the subspans
〈i, k〉, 〈k, j〉 and 〈i′, k′〉, 〈k′, j′〉.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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What is the space complexity of bitext parsing? O(|S|n4), where |S| is the num-
ber of non-terminals.

What is the time complexity of bitext parsing? O(|R|n6), where |R| is the num-
ber of production rules.

Specificially, we have the recurrence

ψ(X, i, j, i′, j′) = max
k,k′,A,B

P (S → A B,A B)⊗ ψ(A, i, k, i′, k′)⊗ ψ(B, k, j, k′, j′)

⊕ P (S → A B,B A)⊗ ψ(A, i, k, k′, j′)⊗ ψ(B, k, j, i′, k′)

Note: in general, bitext parsing is exponential in the rank of the SCFG (unless
P = NP ).

Intersection with language model

For fluent translations, we typically want to multiply in the language model prob-
ability on the target side.

• This (usually) corresponds intersection of an SCFG with a finite state ma-
chine.

• Sidenote: what about context-free language models?

– A = {ambmcn}
– B = {ambncn}
– A ∩B = {anbncn}, not a CFL!
– CFLs are not closed under intersection.
– Determining if s ∈ A ∩B is in PSPACE

• There are exact dynamic programming algorithms for intersecting an SCFG
and an FSA, but they are very slow. One solution is cube pruning.

• We can equivalently view this as an ILP

min.
∑
v

θvyv +
∑
e

θeye +
∑
〈v,w〉∈B

θ(v, w)y(v, w)

s.t. C0 : yv, ye form a derivation

C1 : yv =
∑

w:〈w,v〉∈B

y(w, v)

C2 : yv =
∑

w:〈v,w〉∈B

y(v, w)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Here ye and yv are indicator variables that define what words and hyper-
edges appear in the derivation.

• We can solve this optimization with Lagrangian relaxation.

– Replace the outgoing constraints C2 with multipliers u(v)

– At first, u(v) = 0,∀v
– Without the outgoing constraints, we can optimize efficiently
– If the outgoing constraints happen to be met, we are done
– Otherwise, update u(v) and try again.

• Lagrangian relaxation finds the exact solution 97% of the time, is many times
faster than ILP.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Part V

Learning

317





Chapter 20

Semi-supervised learning

So far we have focused on learning a classifier — typically represented by a set
of weights θ — from a set of labeled examples {(xi,yi)}Ni=1. As we have seen, it
is possible to formulate structured prediction tasks such as parsing in this same
framework. But what if you don’t have those labeled examples for the domain or
task that you want to solve?

This scenario happens all the time — class projects, interdisciplinary collabora-
tions, and commercial applications. As text is increasingly available online (social
media, patient medical records, e-government), there are more and more datasets
that could be fodder for NLP. Lack of labeled data in the target domains and tasks
is the main limitation to language technology being applicable more broadly.

There are two “simple” solutions that one might undertake:

1. Use some other labeled data and hope it works.

Unfortunately, it probably won’t. For example, in applying parsers trained
on the Penn Treebank to social media texts, researchers have observed mas-
sive decreases in accuracy (Foster et al., 2011; Gimpel et al., 2011).

2. Label data yourself.

This is a lot of work. For example:

• The Switchboard corpus contains phoneme annotations of telephone
conversations, e.g.

film→ F IH N UH GL N M

be all→ BCL B IY IY TR AO TR AO L DL

This took 400 hours of annotation time per hour of speech.
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• The Penn Chinese Treebank is a set of CFG annotations for Chinese. It
took 2 years to get 4000 sentences annotated.

Crowd-sourcing has recently become popular as a means to annotate large
amounts of data quickly. This can work well, but effort and expertise and
needed to get good annotations for linguistically complex tasks (Snow et al.,
2008; Zaidan and Callison-Burch, 2011).

In this chapter, we will explore an alternative to either of these approaches:
harnessing data that is unlabeled, or is labeled in a different domain or task. We
will think of our annotated data as a sample from some underlying distribution.

{(xi,yi)}Ni=1 ∼ D (20.1)

This allows us to formulate various learning scenarios:

Semisupervised learning Imagine that N is small, so that it is hard to learn a
model that generalizes well. We would like to leverage unlabeled data,

{xi}Nui=1 ∼ D, (20.2)

which is drawn from the same underlying distribution D, but for which la-
bels are unavailable. Since this data is not labeled, it is usually available in
very large quantities, so Nu � N .

We have already seen two examples of semi-supervised learning. The first
was the use of expectation-maximization in document classification in chap-
ter 4; in the E-step, we impute beliefs about the labels of unlabeled docu-
ments, and then use these beliefs to update our model in the M-step (Nigam
and Ghani, 2000). Another example of semi-supervised learning was given
in chapter 15. There we saw how to use unlabeled data to build Brown clus-
ters. These clusters then act as features, generalizing over individual words
by capturing lexical similarity (Miller et al., 2004; Koo et al., 2008).

While these techniques are effective, they are limited. Expectation-maximization
requires a generative model, which may be a less effective classifier than a
discriminative alternative such as logistic regression or support vector ma-
chines. Brown clusters are useful features, but they are learned separately
from the main label prediction task. In ??, we will explore additional tech-
niques for semisupervised learning, such as bootstrapping and multiview
learning.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Active learning This setting is similar to semi-supervised learning, but with a
twist: we can iteratively query a user for labels for a small number of unla-
beled instances. This is relevant in commercial settings, where a company
can pay a small staff of annotators to label examples until performance is
good enough. The key question is deciding which examples to label next.
Settles (2010) surveys a number of alternatives; we will not explore the issue
here.

Supervised domain adaptation Now imagine that we have a large amount of la-
beled data in some source domain, but a much smaller amount of informa-
tion in the target domain. For example, the source domain could be 20th
century newspaper articles (as in the Penn Treebank), and the target domain
could be something like social media posts or patient medical records. We
don’t have enough target domain data to learn a good model. But if we sim-
ply combine all the data from the two domains, the source domain instances
will dominate, and we will suffer from the resulting domain shift. We will
consider various techniques for learning effectively from both domains.

Multitask (transfer) learning Similar to supervised domain adaptation, but rather
than assuming that the underlying distribution P (X, Y ) shifts across do-
mains, we assume that only the label distribution P (Y | X) shifts. For exam-
ple, we are working in the newstext domain, and we have a large amount of
labeled data for part-of-speech tagging, and a small amount of labeled data
for named-entity recognition. The goal is then to learn a better model using
both labeled datasets.

Unsupervised domain adaptation This setting combines features of semisuper-
vised learning and supervised domain adaptation: we have labeled data in
the source domain, but no labeled data in the target domain. The proto-
typical example of this situation is in sentiment polarity analysis of product
reviews: you are given annotated reviews of, say, coffee machines, but you
want to predict the sentiment for reviews of bicycles (Blitzer et al., 2007). An-
other relevant setting is the application of syntactic analyzers such as part-
of-speech taggers to historical texts (Yang and Eisenstein, 2015).

20.1 Semisupervised learning
Let’s first consider the question of why would unlabeled data might help in a su-
pervised classification task. Suppose you want to do sentiment analysis in French.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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I give you two labeled examples:

(20.1) , émouvant avec grâce et style

(20.2) / fastidieusement inauthentique et banale

You have a bunch of unlabeled examples too:

(20.3) pleine de style et d’intrigue

(20.4) la banalité n’est dépassée que par sa prétention

(20.5) prétentieux, de la première minute au rideau final

(20.6) imprégné d’un air d’intrigue

If we just learn from the labeled data, we might conclude that style is positive
and that banale is negative. This isn’t much. However, we can propagate this
information to the unlabeled data, and potentially learn more.

• If we are confident about style being positive, then we can guess that (20.3)
is also positive.

• That suggests that intrigue is also positive.

• We can then propagate this information to (20.6), and learn more.

• Similarly, we can propagate from the labeled data to (20.4), which we guess
to be negative. This suggests that pretention is also negative, which we prop-
agate to (20.5).

What happened here? Instances (20.3) and (20.4) were “similar” to our labeled
examples for positivity and negativity, respectively. We used them to expand
those concepts, which allowed us to correctly label instances (20.5) and (20.6),
which didn’t share any important features with our original labeled data. In doing
this, we made a key assumption: that similar instances will have similar labels. (Is
this assumption reasonable? Keep this question in mind.) In this case, we defined
similarity in terms of sharing some key words (non-stopwords).

To see how this can help conceptually, think about similarity just in terms of 1D
space. If you have only the two labeled instances, your decision boundary should
be right in between. (Do you remember what criterion justifies this choice?) But
if you have a bunch of unlabeled instances, you might want to draw this bound-
ary in a different place. Let’s now see how we can operationalize this idea in an
algorithm.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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(a) Now it works . . . (b) now it doesn’t.

Figure 20.1: Expectation-maximization for semi-supervised learning on Gaussian
data [todo: find credits for these images; Jerry Zhu?]

Semi-supervised learning with EM

We’ve already seen one way to do this: use expectation-maximization (EM) to
marginalize over the labels of the unseen data. So we are maximizing

p(X`, Y `, XU) = p(X`, Y `)
∑
Y U

p(XU , Y U). (20.3)

Expectation-maximization maximizes a bound on the joint probability defined
above, by iterating between two steps:

E-step Fit a distribution Q(yi) for all unlabeled i;

M-step Maximize the expected likelihood under this distribution.

You can see why this can work in the example shown in Figure 20.1a: by in-
corporating unlabeled data, we get a much more reasonable decision boundary.

However, things can also go wrong, as shown in Figure 20.1b. In this exam-
ple, the correct model (left) has a lower log-likelihood than the incorrect model
(right). The basic problem here is that the model is wrong. The label is related to
the observations, but not in the simplistic, Gaussian way that we had assumed. In
chapter 4, we discussed a heuristic to try to deal with this problem: downweight-
ing the contribution of the unseen data to the likelihood function. But this requires
setting the weight parameter, which depends on a host of problem-specific charac-
teristics, such as the underyling variance of the data. We will now consider some
alternatives that often work better.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Bootstrapping and co-training

EM is sort of like self-training or bootstrapping: we use our current model to
estimate Q(yi), and then update the model as if Q(yi) is correct.

• The probabilistic nature of this is nice, but it limits us to relatively weak
classifiers.

• If we are willing to give up on probability, we can bootstrap any classifier.

Rather than imputing beliefs about all unlabeled instances Q(yi), we can add
just a few, highly confident instances at each step. This is similar to how we pro-
ceeded in the French sentiment labeling example above. The simplest version of
this algorithm is 1-nearest-neighbor: for each unlabeled data point, if its nearest
neighbor has a label, then propagate that label. This approach does not make the
parametric assumptions that doomed us in Figure 20.1b; instead, it relies on the
similarity graph over instances. For some types of data, this is more reasonable,
but it can also fail, as shown in the slides [todo: add these figures here].

There is some “folk wisdom” about when bootstrapping works:

• It works better for generative models (e.g., Naive Bayes) than for discrimi-
native models (e.g., perceptron)

• It works better when the Naive Bayes assumption is stronger.

– Suppose we want to classify NEs as PERSON or LOCATION

– Features: string and context

∗ located on Peachtree Street
∗ Dr. Walker said ...

P (Wm+1 = street,Wm−1 = on | Ym = LOC)

≈ P (Wm+1 = street | Ym = LOC)P (Wm−1 = on | Ym = LOC)

Cotraining makes the bootstrapping assumptions explicit (Blum and Mitchell,
1998).

• Assume two, conditionally independent, views of a problem.

• Assume each view is sufficient to do good classification.

Sketch of learning algorithm:

(c) Jacob Eisenstein 2014-2016. Work in progress.



20.1. SEMISUPERVISED LEARNING 325

• On labeled data, minimize error.

• On unlabeled data, constrain the models from different views to agree with
each other.

Co-training example See the slides for an animated version of this. Assume we
want to do named entity classification: determine whether an NE is a Location or
Person. We have two views: the name itself, and its context.

x(1) x(2) y

1. Peachtree Street located on LOC
2. Dr. Walker said PER
3. Zanzibar located in ? → LOC
4. Zanzibar flew to ? → LOC
5. Dr. Robert recommended ? → PER
6. Oprah recommended ? → PER

Algorithm

• Use classifier 1 to label example 5.

• Use classifier 2 to label example 3.

• Retrain both classifiers, using newly labeled data.

• Use classifier 1 to label example 4.

• Use classifier 2 to label example 6.

Multiview Learning is another approach in this style. Cotraining treats the out-
put of each view’s classifier as a labeled instance for the other view. In multiview
learning, we add a co-regularizer that penalizes disagreement between the views
on the unlabeled instances. This allows us to define a single objective function. In
the case of two-view linear regression, the function is

min
w,v

L∑
i

(yi −w>x(1)
i )2 + (yi − v>x(2)

i )2 + λ1||w||2 + λ1||v||2

+ λ2

L+U∑
i=L+1

(w>x
(1)
i − v>x(2)

i )2 (20.4)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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1

3

6

5

4

2

Figure 20.2: Semi-supervised sentiment analysis as a graph

The only difference from standard regression is the co-regularizer, which penal-
izes disagreement on the unlabeled data.

An early version of this idea is co-boosting (Collins and Singer, 1999), where
each view is a boosting classifier, and features are added incrementally to each
view.

Graph-based approaches

Let’s go back to sentiment analysis in French. We can view this data as a graph,
with edges between similar instances, as shown in Figure 20.2. Unlabeled in-
stances propagate information through the graph.

Where does the graph come from?

• Sometimes there is a natural similarity metric (time, position in the docu-
ment).

• Otherwise, we can compute similarity from features. If the features are
Gaussian, we could say:

sim(i, j) = exp

(
−||xi − xj||

2

2σ2

)
If the features are discrete, we might use KL-divergence.

• Then we add an edge between i and j when sim(i, j) > τ

Given a graph with edge weights sij , we can formulate semi-supervised learn-
ing as an optimization problem:

min
z

∑
i,j

sij(zi − zj)2

s.t.∀i∈{1...N`}zi = yi

∀izi ∈ {0, 1} (20.5)

(c) Jacob Eisenstein 2014-2016. Work in progress.
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This looks like a combinatorial problem. Specifically, it looks like (binary) inte-
ger linear programming, which is NP-complete. But assuming sij ≥ 0, this specific
problem can be reformulated as maximum-flow, with polynomial time solutions.
Rao and Ravichandran (2009) apply this idea to expanding polarity lexicons. In
their graph:

• Nodes are words

• Edges are wordnet relations

• They label a few nodes for sentiment polarity, and propagate those labels to
other parts of the graph.

• However, they use a slightly modified version of the mincut idea: random-
ized min-cut (Blum et al., 2004).

Randomized min-cut

Suppose we have this initial graph:

What is the solution? Actually, the following solutions are all equivalent:

•
•
•
•

Another problem with mincuts is that it doesn’t distinguish high-confidence
and low-confidence predictions. Both of these problems can be dealt with by ran-
domization:

• Add random noise to adjacency matrix.

• Rerun mincuts multiple times.

• Deduce the final classification by voting.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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Label propagation

A related approach is label propagation (Zhu and Ghahramani, 2002), which Rao
and Ravichandran also consider. The basic idea is that we relax yi from an integer
{0, 1} to a real number R. Then we solve the optimization problem,

min
Y

∑
i,j

sij(yi − yj)2

s.t.YL is clamped to initial values

The advantages are:

• a unique global optimum

• a natural notion of confidence: distance of yi from 0.5

Let’s look at the objective:

J =
1

2

∑
i,j

sij(yi − yj)2

=
1

2

∑
i,j

sij(y
2
i + y2

j − 2yiyj)

=
∑
i

y2
i

∑
j

si,j −
∑
i,j

sijyiyj

=y>Dy − y>Sy

=y>Ly

We have introduced three matrices

• Let S be the n× n similarity matrix.

• Let D be the degree matrix, dii =
∑

j sij . D is diagonal.

• Let L be the unnormalized graph Laplacian L = D− S

• So we want to minimize y>Ly with respect to yu, the labels of the unanno-
tated instances.

In principle, this is easily solveable:

• Partition the Laplacian L =

[
L`` L`u

Lu` Luu

]
(c) Jacob Eisenstein 2014-2016. Work in progress.
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• Then the closed form solution is yu = −L−1
uuLu`y`

• This is great ... if we can invert Luu.

In practice, Lu,u is huge, so we can’t invert it unless it has special structure. Zhu
and Ghahramani (2002) propose an iterative solution called label propagation.

• Let Tij =
sij∑
k skj

, row-normalizing S.

• Let Y be an n× C matrix of labels, where C is the number of classes.

• Until tired,

– Set Y = TY

– Row-normalize Y

– Clamp the seed examples in Y to their original values

• There’s a flavor of EM here, with Y representing our belief qi(yi). But there’s
no M-step in which we update model parameters. That’s because we’re in a
graph-based framework, and we’re assuming the graph is correct.

Both mincut and label propagation are transductive learning algorithms: they
learn jointly over the training and test data. This is fine in some settings, but not if
you want to train a system and then apply it to new test data later — you’d have
to retrain it all over again.

Manifold regularization (Belkin et al., 2006) addresses this issue, by learning
functions that are smooth on the “graph manifold.” In practice, this means that
they give similar labels to nearby datapoints in the unlabeled data. Suppose we
are interested in learning a classification function f . Then we can optimize:

arg min
f

1

`

∑
i

`(f(xi), yi) + λ1||f ||2 + λ2

∑
i,j

sij(f(xi)− f(xj))
2

• The first term corresponds to the loss on the labeled training data; we can
use any convex loss functions, such as logistic or hinge loss.

• The second term corresponds to the smoothness, akin to regularizing the
weights in a linear classifier.

• The third term penalizes making different predictions for similar instances
in the unlabeled data

The representer theorem guarantees that we can solve for f as long as ` is
convex. We can then apply f to any new unlabeled test data.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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20.2 Domain adaptation
In domain adaptation, we have a lot of labeled data, but it’s in the wrong domain.
Some features will be shared across domains. For example, if we are classifying
movies or toasters, good is a good word, and sucks is a bad word. But as we’ve seen,
real review text is usually more subtle. What about a word like unpredictable? This
is a good word for a movie, but not such a good word for a kitchen appliance.

Supervised domain adaptation

In supervised domain adaptation (transfer learning), we have:

• Lots of labeled data in a “source” domain, {(xi,yi)}`Si=1 ∼ DS
(e.g., reviews of restaurants)

• A little labeled data in a “target” domain, {(xi,yi)}`Ti=1 ∼ DT
(e.g., reviews of chess stores)

Here are some (surprisingly-competitive) baselines (see slides)

• Source-only: train on the source data, apply it to the target data.

• Target-only: forget the source data, just train on the limited target data.

• Big blob: merge the source and target data into a single training set. Option-
ally downweight the source data.

• Prediction: train a classifier on the source data, use its prediction as a feature
in the target data.

• Interpolation: train two classifiers, combine their outputs

Here are two less-obvious approaches:

Priors :
Train a (logistic-regression) classifier on the source data. Treat its weights as

the priors on the target data, and regularize towards these weights rather than
towards zero (Chelba and Acero 2004).

Feature augmentation Create copies of each feature, for each domain and for
the cross-domain setting.

• The copies fire in the appropriate domains, and the learning algorithm de-
cides whether a feature is general or domain-specific.

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• For example, suppose we have domains for Appliances and Movies, and
features outstanding and sturdy. We replicate the features, obtaining

〈outstanding,APP.〉, 〈outstanding,MOV.〉, 〈outstanding,ALL〉
〈sturdy,APP.〉, 〈sturdy,MOV.〉, 〈sturdy,ALL〉

• Ideally, we will learn a positive weight for 〈outstanding,ALL〉, because the
feature works in both domains, and a small weight for the domain-specific
copies of the outstanding feature.

• We will also learn a positive weight for 〈sturdy,APP〉, because the feature
works only in the Appliance domain.

See slides for a diagram of how this works.

Unsupervised domain adaptation

Without labeled data in the target domain, can we learn anything? If the source
and target domain are somewhat related, then we can. A very popular approach
is structural correspondence learning (SCL) (Blitzer et al., 2007).

• Suppose there are a few words that are good predictors in both domains;
we’ll call these pivot features

• Pivot features can be selected by finding words that are

– Popular in both domains
– High mutual-information with the label in the source domain

• The label is unknown in the target domain, so we can’t learn to predict it.
Instead we’ll predict the pivots. We train a linear classifier for each pivot,
obtaining weights θn for pivot n.

• For example, we can learn that the domain-specific feature fast-multicore is a
good predictor of the pivot excellent.

• We can horizontally concatenate the pivot predictor weights, forming

Θ = [θ1,θ2, . . . ,θN ] (20.6)

• The matrix Θ is large, and contains redundant information (since many piv-
ots are closely related to each other). We factor Θ ≈ USV T using singular
value decomposition (SVD).

(c) Jacob Eisenstein 2014-2016. Work in progress.
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• We use U to project features from both domains into a shared space, U>x.

• We then learn to predict the label in the source domain, using the augmented
instance 〈x, U>x〉. In U contains meaningful correspondences between the
domains, then the weights learned on these features will work for the target
domain instances too.

• This idea yields substantial improvements in adapting sentiment classifiers
across product domains, e.g., books, movies, and appliances (Blitzer et al.,
2007).

See the slides for a graphical explanation of these ideas, with slightly different
notation.

20.3 Other learning settings
There are many other settings in which we learn from something other than in-
domain labeled data:

• Active learning. The model can query the annotator for labels (see above)

• Feature labeling. Annotators label features rather than instances. For exam-
ple, you provide a list of five prototype words for each POS tag (Haghighi
and Klein, 2006).

• Feature expectations. Learn from constraints on feature-label relationships;
for example, the word “the” is a determiner at least 90% of the time. In
EMNLP 2013, this idea was applied to multilingual learning (which I’ll dis-
cuss in the final lecture). The basic idea of this paper is to align words be-
tween sentences and insist that aligned words have the same tag most of the
time.

• Multi-instance learning. The learner gets a “bag” of instances, and a label.
If the label is positive, then at least one instance in the bag is positive, but
you don’t know which one.

This idea is often related to distant supervision. The learner gets a label
indicating that there is a relationship, such as BORN-IN(OBAMA,HAWAII),
and a set of instances containing sentences that mention the two arguments,
Obama and Hawaii. Many of these sentences do not actually instantiate the
desired relation (e.g., Obama visited Hawaii in 2008...), but we assume that at
least one does, and we must learn from this.

(c) Jacob Eisenstein 2014-2016. Work in progress.



Chapter 21

Beyond linear models

21.1 Representation learning

21.2 Convolutional neural networks

21.3 Recursive neural networks

21.4 Encoder-decoder models

21.5 Structure prediction
Recently, several researchers have applied neural networks and other distributed
representations to dependency parsing. These methods diverge from the approach
of scoring edges by the inner product of a weight vector with a large, sparse fea-
ture vector. Instead, each word is represented by a small, dense embedding vec-
tor, which may be estimated from unlabeled data in a preprocessing step. These
embeddings are typically used in combination with transition-based dependency
parsers, either as features (Bansal et al., 2014), or as part of an integrated neural
network parsing model (Henderson et al., 2008; Chen and Manning, 2014; Dyer
et al., 2015). These models are described in more detail in chapter 21. Embeddings
can also be learned for features (rather than for words) in a graph-based parsing
algorithm (Lei et al., 2014).
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Fundel, K., Küffner, R., and Zimmer, R. (2007). Relexrelation extraction using
dependency parse trees. Bioinformatics, 23(3):365–371.

Gao, J., Andrew, G., Johnson, M., and Toutanova, K. (2007). A comparative study
of parameter estimation methods for statistical natural language processing. In
Proceedings of the Association for Computational Linguistics (ACL), pages 824–831,
Prague.

Ge, D., Jiang, X., and Ye, Y. (2011). A note on the complexity of l p minimization.
Mathematical programming, 129(2):285–299.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Compu-
tational linguistics, 28(3):245–288.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heil-
man, M., Yogatama, D., Flanigan, J., and Smith, N. A. (2011). Part-of-speech
tagging for Twitter: annotation, features, and experiments. In Proceedings of the
Association for Computational Linguistics (ACL), pages 42–47, Portland, OR.

Goldberg, Y. (2015). A primer on neural network models for natural language
processing. arXiv preprint arXiv:1510.00726.

Goldwater, S. and Griffiths, T. (2007). A fully bayesian approach to unsupervised
part-of-speech tagging. In Annual meeting-association for computational linguistics,
volume 45.

Grosz, B. J., Weinstein, S., and Joshi, A. K. (1995). Centering: A framework for
modeling the local coherence of discourse. Computational linguistics, 21(2):203–
225.

Grosz, P. G., Patel-Grosz, P., Fedorenko, E., and Gibson, E. (2014). Constraints on
donkey pronouns. Journal of Semantics, page ffu009.

Gundel, J. K., Hedberg, N., and Zacharski, R. (1993). Cognitive status and the
form of referring expressions in discourse. Language, pages 274–307.

(c) Jacob Eisenstein 2014-2016. Work in progress.



BIBLIOGRAPHY 343

Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of un-
normalized statistical models, with applications to natural image statistics. The
Journal of Machine Learning Research, 13(1):307–361.

Haghighi, A. and Klein, D. (2006). Prototype-driven learning for sequence models.
In Proceedings of the North American Chapter of the Association for Computational
Linguistics (NAACL), pages 320–327, New York, NY.

Haghighi, A. and Klein, D. (2009). Simple coreference resolution with rich syntac-
tic and semantic features. In Proceedings of Empirical Methods for Natural Language
Processing (EMNLP), pages 1152–1161, Singapore.

Hannak, A., Anderson, E., Barrett, L. F., Lehmann, S., Mislove, A., and Riede-
wald, M. (2012). Tweetin’in the rain: Exploring societal-scale effects of weather
on mood. In Proceedings of the International Conference on Web and Social Media
(ICWSM).

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning.
Springer, New York, second edition.

Hatzivassiloglou, V. and McKeown, K. R. (1997). Predicting the semantic orien-
tation of adjectives. In Proceedings of the Association for Computational Linguistics
(ACL), pages 174–181, Madrid, Spain.

Henderson, J., Merlo, P., Musillo, G., and Titov, I. (2008). A latent variable model
of synchronous parsing for syntactic and semantic dependencies. In CONLL,
pages 178–182.

Hindle, D. and Rooth, M. (1990). Structural ambiguity and lexical relations. In
Proceedings of the Workshop on Speech and Natural Language.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural com-
putation, 9(8):1735–1780.

Hsu, D., Kakade, S. M., and Zhang, T. (2012). A spectral algorithm for learning
hidden markov models. Journal of Computer and System Sciences, 78(5):1460–
1480.

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Pro-
ceedings of Knowledge Discovery and Data Mining (KDD), pages 168–177.

(c) Jacob Eisenstein 2014-2016. Work in progress.



344 BIBLIOGRAPHY

Huang, L., Fayong, S., and Guo, Y. (2012). Structured perceptron with inexact
search. In Proceedings of the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages
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