Hi! This is the companion repository for: Xiaomeng Ma and Lingyu Gao. How do we get there? Evaluating transformer neural networks as cognitive models for English past tense inflection. at AACL-IJNLP 2022.
If you have any questions, please feel free to reach out to the Xiaomeng Ma at xm2158@tc.columbia.edu.
(run the following commands in the Models folder, or modify the path of each .py file.)
python label_train-test.py -seed XX -data_path_train Data/Training/Train_type_reg.csv -label_spec XX -EPOCHS XX
Parameter | |
---|---|
-data_path_train | Data/Training/Train_type_reg.csv .../Train_type_irr.csv .../Train_token_both.csv .../Train_token_reg.csv |
-label_spec | no (no label) reg (regularity label) vc (verb class label) both (both reg and vc label) |
Used in paper:
Seeds: 42, 88, 266, 144, 24
Epochs: 30
Batch_size: default 32, (128 for Train_token_both and 64 for Train_token_irr due to RAM limit)
python copy_train-test.py -seed XX -data_path_train Data/Training/Train_type_reg.csv -label_spec XX -EPOCHS XX
python resample_label_train-test.py -seed XX -data_path_train Data/Training/Train_type_reg.csv -label_spec XX -EPOCHS XX
Used in paper:
Epochs: 100
Batch_size: 8
(modify the model path to import the trained models)
python inf_label_train-test.py -seed XX -data_path_train Data/Training/Train_type_reg.csv -label_spec XX -EPOCHS XX -model_path (TRAINED_VANINLLA_MODEL_PATH)
python inf_copy_train-test.py -seed XX -data_path_train Data/Training/Train_type_reg.csv -label_spec XX -EPOCHS XX -model_path (TRAINED_COPY_MODEL_PATH)