Skip to content
Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search
Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
best_model init code Nov 28, 2019
darts init code Nov 28, 2019
fairdarts init code Nov 28, 2019
img init code Nov 28, 2019
README.md Update README.md Nov 30, 2019
requirements.txt init code Nov 28, 2019

README.md

Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search

Differentiable Architecture Search (DARTS) is now a widely disseminated weight-sharing neural architecture search method. However, there are two fundamental weaknesses remain untackled. First, we observe that the well-known aggregation of skip connections during optimization is caused by an unfair advantage in an exclusive competition. Second, there is a non-negligible incongruence when discretizing continuous architectural weights to a one-hot representation. Because of these two reasons, DARTS delivers a biased solution that might not even be suboptimal. In this paper, we present a novel approach to curing both frailties. Specifically, as unfair advantages in a pure exclusive competition easily induce a monopoly, we relax the choice of operations to be collaborative, where we let each operation have an equal opportunity to develop its strength. We thus call our method Fair DARTS. Moreover, we propose a zero-one loss to directly reduce the discretization gap. Experiments are performed on two mainstream search spaces, in which we achieve new state-of-the-art networks on ImageNet.

We Are Still Hiring (both interns and full-time)!

Hi folks! We are AutoML Team from Xiaomi AI Lab, based in Beijing, China. There are few open positions (internships included), welcome global applications from students, new graduates and professionals skilled in NAS and Deep Learning (Vision, Speech, NLP etc.)!

  • Please send your resume to zhangbo11@xiaomi.com
  • 人工智能算法/软件工程师(含实习生)职位,简历请发送至 zhangbo11@xiaomi.com
  • QQ群交流:小米 AutoML 交流反馈, 群号:702473319 (加群请填写“神经网络架构搜索”的英文简称)

User Guide

Prerequisites

Python 3

pip install -r requirements.txt

The fairdarts folder includes our search, train and evaluation code. The darts folder consists of random and noise experiments on the original DARTS.

Run Search

python train_search.py --aux_loss_weight 10 --learning_rate 0.005 --batch_size 128 --parse_method threshold_sparse --save 'EXP-lr_0005_alw_10'

Default batch-size is 128

Single Model Training

python train.py --auxiliary --cutout --arch FairDARTS_a --parse_method threshold --batch_size 128 --epoch 600

Single Model Evaluation

python evaluate_model.py  --arch FairDARTS_b --model_path ../best_model/FairDARTS-b.tar --parse_method threshold

Searched Architectures by FairDARTS

Note that we select architecture by barring with threshold σ, and |edge| <= 2 per node.

FairDARTS_a:

DCO_SPARSE_normal DCO_SPARSE_reduce

FairDARTS_b

DCO_SPARSE_3_normal DCO_SPARSE_3_reduce

FairDARTS_c

DCO_SPARSE_1_normal DCO_SPARSE_1_reduce

FairDARTS_d

DCO_SPARSE_2_normal DCO_SPARSE_2_reduce

FairDARTS_e

DCO_SPARSE_4_normal DCO_SPARSE_4_reduce

FairDARTS_f

DCO_SPARSE_5_normal DCO_SPARSE_5_reduce

FairDARTS_g

DCO_SPARSE_6_normal DCO_SPARSE_6_reduce

The isolated nodes (in gray) are ignored after parsing the genotypes.

Evaluation Results on CIFAR-10

Performance Stability

We run FairDARTS 7 times, all searched architectures have close performance.

Model Flops Params Performance
FairDARTS_a 373M 2.83M 97.46
FairDARTS_b 536M 3.88M 97.49
FairDARTS_c 400M 2.59M 97.50
FairDARTS_d 532M 3.84M 97.51
FairDARTS_e 414M 3.12M 97.47
FairDARTS_f 497M 3.62M 97.35
FairDARTS_g 453M 3.38M 97.46
mean,var ~457.85M ~3.32M 97.46±0.049

Note: We remove batch normalization for FLOPs' calculation in thop package. This is to follow status quo treamtment.

Comparison with Other State-of-the-art Results (CIFAR-10)

Model FLOPs Params Batch size lr DP Optimizer Performance
FairDARTS-a 373M 2.83 96 0.025 0.2 SGD+CosineAnnealingLR 97.46
FairDARTS-b 536M 3.88 96 0.025 0.2 SGD+CosineAnnealingLR 97.49
DARTS_V2 522M 3.36 96 0.025 0.2 SGD+CosineAnnealingLR 96.94*
PC-DARTS 558M 3.63 96 0.025 0.2 SGD+CosineAnnealingLR 97.31*
PDARTS 532M 3.43 96 0.025 0.2 SGD+CosineAnnealingLR 97.53*

*: Results obtained by training their published code.

Citation

@article{chu2019fairdarts,
    title={{Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search}},
    author={Chu, Xiangxiang and Zhou, Tianbao and Zhang, Bo and Li, Jixiang},
    journal={arXiv preprint arXiv:1911.12126},
    url={https://arxiv.org/abs/1911.12126.pdf},
    year={2019}
}

Acknowledgement

This code is based on the implementation of DARTS.

You can’t perform that action at this time.