Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interactive Machine Comprehension with Information Seeking Agents (iMRC)


Code for paper "Interactive Machine Comprehension with Information Seeking Agents".

To Install Dependencies

sudo apt update
conda create -p ~/venvs/imrc python=3.6 numpy scipy ipython matplotlib cython nltk pillow
source activate ~/venvs/imrc
pip install --upgrade pip
pip install numpy==1.16.4
pip install tqdm h5py pyyaml gym visdom
conda install pytorch torchvision cudatoolkit=9.2 -c pytorch

Pretrained Word Embeddings

Before first time running it, download fasttext crawl-300d-2M.vec.zip from HERE, unzip, and run embedding2h5.py for fast embedding loading in the future.

Datasets

  • We provide a split of the SQuAD dataset, because the official squad test data is hidden, so we split the training data to get an extra validation set, we use the official dev set as test set;
  • Download NewsQA dataset and run their script to split and tokenize it.

To Play

We provide a simple interactive demo, one can feel what interactive MRC looks like.

python play.py

To Train

python main.py

Citation

Please use the following bibtex entry:

@article{yuan2019imrc,
  title={Interactive Machine Comprehension with Information Seeking Agents},
  author={Yuan, Xingdi and Fu, Jie and C\^ot\'{e}, Marc-Alexandre and Tay, Yi and Pal, Christopher and Trischler, Adam},
  journal={CoRR},
  volume={abs/1908.10449},
  year= {2019},
  archivePrefix={arXiv},
  eprint={1908.10449}
}

License

MIT

About

Code for paper "Interactive Machine Comprehension with Information Seeking Agents" -- public version

Resources

License

Releases

No releases published

Packages

No packages published

Languages