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Abstract

Sequence-to-sequence (seq2seq) models have shown impressive performance in semantic
parsing tasks. However, they exhibit certain limitations. They require substantial data to
generalize well and often underperform when presented with Out-Of-Distribution data,
for example, longer input sequences. Furthermore, the outcomes generated by these
models can be challenging to interpret due to their end-to-end training scheme.

To address the problems mentioned above, we follow the Principle of Compositional-
ity and aim to employ an algebra-based compositional approach, namely, AM (Apply
Modify)-Algebra, to parse Discourse Representation Structure (DRS) compositionally.
AM-Algebra is a linguistically motivated method that takes meaning representation
graphs as tree representations of the compositional subgraphs. It assigns each meaning-
ful token a lexical subgraph and then combines them back by building a dependency tree.
It works well in simpler meaning representations like Abstract Meaning Representations,
but it struggles to parse more expressive meaning representations like DRSs. Specifically,
it lacks specific rules to process the reentrancies introduced by non-compositional infor-
mation such as scope and coreference, which makes DRGs non-parsable by AM-Algebra.
Against this backdrop, the core objective of this thesis is to navigate the intricacies of
DRS parsing using AM-Algebra. We ask two questions: Firstly, how can we modify the
graph formats to render DRS decomposable? Secondly, how do we effectively reintegrate
the non-compositional information that is lost in the process?

To apply AM-Algebra to DRGs, we simplify DRGs into two forms: simplified DRG and
scopeless DRG, achieved by assuming implicit box membership inheritance between
the children nodes and the parent nodes. The simplification allows over 90% of data to
be decomposable. To tackle the non-compositional aspects of DRGs, namely, anaphora
and scope, we treat anaphora resolution as a lexical category tagging task and scope
assignment as a dependency parsing task. In the anaphora task, we train AM-Parser to
predict if a node is an antecedent/anaphor and we connect the two nodes with an ANA

edge in the postprocessing steps. In the scope task, we leverage the accurate dependency
parses from a simple biaffine dependency parser and node-token alignment generated
by AM-Parser and reintroduce scope edges to scopeless DRG parses.

We evaluate our system on Parallel Meaning Bank Releases 4.0.0 and 5.0.0. The system
has demonstrated impressive performance, often on par with or surpassing seq2seq
models trained exclusively with gold data and even sometimes those trained on larger
datasets. It also yields competitive results in anaphora resolution, scope assignment,
and reentrancy structure parsing tasks compared with strong baselines. Notably, our
method excels in processing longer sentences, surpassing even the fine-tuend Pretrained
Language Model based on mBART with gold, silver, and bronze data. Our evaluations
also underscore the strength of compositional models in processing complex structures
and longer sentences.
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Chapter 1

Introduction

1.1 Semantic Parsing and Discourse Representation The-

ory (DRT)

As one of the central tasks of Natural Language Understanding (NLU), semantic parsing
aims to develop models that translate natural utterances to specific formal meaning
representations (Kamath and Das, 2018). It can be applied to many downstream NLP
tasks such as text generation (Liu et al., 2021; Ghazarian et al., 2022; Wang et al., 2023),
machine translation (Song et al., 2019), and event extraction (Schuster et al., 2017), among
others. Although Large Language Models (LLMs), without meaning representation as
the intermediate step, can still achieve impressive performance in a variety of benchmark
tasks (e.g., Karpinska and Iyyer, 2023; Agrawal et al., 2022), even the most advanced
LLMs like ChatGPT and GPT-4, still suffer from Out-Of-Distribution (OOD) problems
in reasoning (Wang et al., 2023; Zhang et al., 2023), which encourages the combination
of explicit symbolic representation and latent one for more robust performance in NLU.
To achieve this goal, various semantic formalisms were proposed, including but not
limited to Abstract Meaning Representation (AMR; Banarescu et al., 2013), Universal
Conceptual Cognitive Annotation (UCCA; Abend and Rappoport, 2013), and Discourse
Representation Theory (DRT; Kamp and Reyle, 2013).

In this work, we choose DRT as our research focus. DRT is a well-developed framework
that cannot only model single sentences but also paragraphs and documents. It has
established itself as a well-documented formal theory of meaning, covering a number of
semantic phenomena (Liu et al., 2021, 2018) , ranging from pronouns, abstract anaphora

1
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(Asher, 1993; Van der Sandt, 1992), presupposition, tense and aspect (Kamp et al., 1993),
to rhetorical structures (Asher and Lascarides, 2003). Therefore, it can be naturally
applied to longer text-meaning representations and more complex downstream tasks.
Additionally, as DRS can be translated to first-order logic (Bos, 2008), it opens the
possibility for automatic forms of inference by third parties (van Noord et al., 2020;
Blackburn and Bos, 2005).

In DRT, sentences are represented by Discourse Representation Structures (DRSs) in
the format of boxes for readability. DRS parsing has received more scholarly attention
since the success of the first shared task (Abzianidze et al., 2019). The prevalence of
sequence-to-sequence (seq2seq) models motivated researchers to convert DRSs into
various sequential representations, such as character-level sequence (Liu et al., 2019), or
the clausal format (Van Noord et al., 2018). Recently, Bos (2023, 2021) proposed a new
DRS variant that can convert the traditional box format of DRS to simpler variable-free
sequences, known as Simplified Box Notation (SBN). The sequence can be converted to
graphs which are called Discourse Representation Graphs (DRGs)1.

In terms of structure format, DRG bears resemblance to other semantic graphs, notably
AMR. What sets DRG apart, however, is its inclusion of scope to represent quantification,
negation, and various logical operations. The reentrancies and new nodes introduced by
scope render DRGs more challenging to learn compared to AMR. Given this context, this
thesis will delve deeper into the complexities of DRG parsing.

1.2 Research Questions

Seq2seq models are good at handling natural language variations. However, they en-
counter difficulties when addressing unseen structures (Yao and Koller, 2022). By con-
trast, the compositional parsers achieve more robust performance in compositional
generalization (Yao and Koller, 2022; Weißenhorn et al., 2022; Shaw et al., 2021). Ad-
ditionally, decomposing the complex graphs into simpler ones can help researchers
interpret the decisions made by the model, thus contributing to the explainability and
interpretability of the model. This is an important property that is missing in current
main-stream LLMs (Tedeschi et al., 2023).

Compositional models, following the Principle of Compositionality, are good at gen-
eralization and out-of-distribution (OOD) texts, but it is obvious that the meaning of
natural language is not ideally arithmetically compositional just like 1 + 1 = 2. Aside
from the most outstanding challenge in Multiword Expression (MWE), other linguistic
phenomena such as anaphora and ellipsis also pose a challenge to compositional seman-
tic parsing. Additionally, strict grammar-based compositional approaches might fail in

1Unless stated otherwise, the terms SBN, DRG and DRS are used interchangeably in this work, given that
SBN and DRG are just variations of DRS.
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broad-coverage parsing (Donatelli and Koller, 2023).

Hence, in our research, we seek methodologies that serve two key goals: predicting
DRGs for input strings compositionally and effectively processing non-compositional
information. As DRG shares characteristics with graph meaning representations (Bos,
2021), it opens the possibility to try graph-based semantic parsers for DRS parsing.
We build our system based on AM(Apply-Modify)-algebra by Groschwitz et al. (2018,
2017) because of the flexibility of algebra-based approaches in meaning presentation
combination (Donatelli and Koller, 2023). AM Algebra was originally designed to parse
AMR. It considers the AMR graph as a dependency tree with leaves being a set of atomic
graphs. As a result, the parsing task is divided into two subtasks: supertagging which
assigns appropriate atomic graphs to individual tokens, and dependency parsing which
looks for the dependency relations between those atomic graphs. Apart from AMR, AM-
parser has been applied to various graph banks, for example, Elementary Dependency
Structures (EDS; Oepen and Lønning, 2006), UCCA (Abend and Rappoport, 2013), and
DELPH-IN MRS Bi-Lexical Dependencies (Ivanova et al., 2012), among others (Donatelli
et al., 2020; Lindemann et al., 2019).

However, to parse DRGs compositionally utilizing AM-Algebra, two main obstacles
emerge. First, the inherent complexity of the complete DRGs poses significant challenges
to its effective decomposition via AM-Algebra. The introduction of reentrancies and
nodes due to scope and discourse information renders the DRG difficult to decompose, if
not entirely non-decomposable, with AM-Algebra. The second challenge stems from the
fact that AM-Algebra focuses on the compositional aspects of meaning representation2,
encouraging a static representation for each token. Contrastingly, certain facets of
meaning within DRT, such as coreference (Janssen and Partee, 1997) and scope, exhibit
dynamic characteristics. These features are very important to DRT itself. Therefore, to
further refine our research focus, we rephrase our key subquestions as follows:

• Q1: Regarding compositionality, how can DRGs be simplified to achieve compositionality
by AM-Algebra while retaining linguistic knowledge and preserving essential structural
information?

• Q2: Regarding non-compositionality, how to recover the non-decomposable information,
more specifically, anaphora and scope assignment?

A compositional model is typically trained to acquire the alignment between input tokens
and their corresponding meaning representations as well as the structural relationship
between subgraphs, thus learning the underlying structures more efficiently. We therefore
expect our model to exhibit superior performance, particularly under conditions of data
scarcity. This advantage assumes greater significance when we are confronted with
limited training data. Hence, in terms of evaluation, we want to examine:

2AM-Parser, the model developed based on AM-Algebra, can conduct the sense disambiguation task, which
is non-compositional according to Bender et al. (2015).
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• Q3: How effectively does a compositional approach perform in comparison to its non-
compositional neural or symbolic counterparts?

The data we use in this thesis is the Parallel Meaning Bank (PMB; Abzianidze et al., 2017).
It comprises gold, silver, and bronze data, with the gold subset being the smallest and
the bronze subset being the largest in terms of size. In our research, we intend to explore
the generalization capabilities of our compositional model when exclusively exposed to
the limited gold data.

Given that DRT excels in modeling dynamic semantics, particularly in scope and
anaphora resolution, our evaluation extends beyond overall performance. Specifically,
we seek to assess how our system, in comparison to non-compositional models, performs
in coreference resolution, scope assignment, and reentrancies.

1.3 Contributions

In this work, we introduce two novel formats, Simplified-DRG and Scopeless-DRG,
which retain core information while enabling straightforward scope information recovery
using simple heuristics. These formats not only simplify the parsing task, enhancing
efficiency and reducing complexity, but also offer practical utility for future research.

Additionally, we leverage the advances of dependency parsing to propose two effective
approaches to resolve coreference and scope assignment. These methods facilitate the
mapping of non-decomposable parts back to scopeless DRGs. Our methods demonstrate
competitive performance compared to strong baseline models trained exclusively on
gold data.

Furthermore, our empirical findings advocate for compositional parsing over seq2seq
models under limited training data conditions. Specifically, we highlight that composi-
tional models exhibit more robust performance in generating legal and correct graphs,
especially when the graphs exhibit increased complexity in both size and structure.

In summary, our contributions are expected to advance the field of compositional seman-
tic parsing by introducing new graph formats, tackling non-composability challenges in
which other neural models fail, and providing new empirical evidence for the advantages
of compositional semantic parsing.

1.4 Structure of the Thesis

This thesis comprises seven chapters, beginning with Chapters 1 and 2, which introduce
the research questions and background information. Chapter 3 critically reviews prior
research in DRS parsing, highlighting the advantages and challenges of the existing
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approaches. Chapter 4 outlines the datasets and evaluation metrics used. Chapter 5
details our approach to handling compositional and non-compositional elements in
DRGs. Chapter 6 reports experimental results and conducts an error analysis. Finally,
Chapter 7 offers conclusions, answers research questions, and suggests future research
directions. The code of the thesis is available at https://github.com/xiulinyang/
compositional_drs_parsing.

https://github.com/xiulinyang/compositional_drs_parsing
https://github.com/xiulinyang/compositional_drs_parsing
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Chapter 2

Background

In this chapter, we first introduce the principle of Compositionality, Discourse Represen-
tation Theory, and its three meaning representation variations: Discourse Representation
Structure (DRS), Simplified Box Notation (SBN), and Discourse Representation Graph
(DRG). These three formats can be converted to each other freely without losing any
information. After that, we explain how AM-Algebra can be applied to DRG parsing
and the challenges it faces.

2.1 Compositional Semantics

The principle of Compositionality holds that the meaning of a complex expression is
determined by the meaning of the unit and the way that they are combined (Heim and
Kratzer, 1998). It has been receiving increasing scholarly attention in NLP as more studies
indicate that neural networks fail in compositional generalization tasks (e.g., Hupkes
et al., 2020; Yao and Koller, 2022; Dankers et al., 2022). However, the vague expression
of the principle gives a lot of space for interpretation, and the principle itself remains
controversial3.

Proving whether natural language is compositional is beyond the scope of our work.
In this thesis, we adopt Bender et al. (2015)’s definition of compositionality. They as-
sume that the compositionality of a meaning representation system should possess the
following properties:

• It contains a finite number of arbitrary atomic symbol-meaning pairings;

3Please refer to (Pagin and Westerståhl, 2010, 2019) for a detailed comparison of different arguments.
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• It can generate an infinite number of symbol-meaning pairings through a finite set
of rules;

• The meaning of any non-atomic must be obtained by a function that includes it
and the way it is combined;

• This function can tackle special cases but only relies on the immediate constituents
and combined rules;

• and further processing does not disrupt the originally resulting symbol-meaning
pairings.

According to this definition, we might conclude that the compositional part of meaning
should be grammar-derived. The principle of Compositionality thus prefers a static
notion of meanings even though dynamic aspects can be handled with abstract methods
(Janssen and Partee, 1997). In this case, word-sense tagging, scope assignment, and
anaphora resolution should be considered as non-compositional, because they all vary
from context to context. Such variability fails to meet the first condition.

2.2 Discourse Representation Theory

Discourse Representation Theory (DRT; Kamp, 2013; Kamp et al., 2010; Geurts et al.,
2020) is a formal semantic framework that aims to interpret meanings from the context.
It can model anaphora (Kamp, 1981; Haug, 2014), tense (Kamp, 1981), and rhetorical
structures (Lascarides and Asher, 2007), among others. DRT has received multiple
extensions. In this paper, we refer to DRT as the theory presented in Parallel Meaning
Bank (PMB; Abzianidze et al., 2017) and follow the notational convention from the
same source. More specifically, apart from the standard format shown in Kamp and
Reyle (2013), DRS in PMB also incorporates the neo-Davidsonian annotation with role
inventories from VerbNet (Kipper et al., 2008). Word senses are expressed as WordNet
synset identifiers in Princeton’s American English WordNet 3.0 (Fellbaum, 1998).

Within DRT, the meaning is represented by Discourse Representation Structure (DRS),
which is designed to model the evolving context of discourse and capture the implicit
connections between different expressions in the text. They consist of two main com-
ponents: a set of discourse referents representing the objects or events introduced in
the discourse, and a set of conditions specifying the relationships and properties of
these discourse referents. The referent can be either an entity or an event. Conditions
can be a Concept (i.e., a one-place predicate), Relation/Role (i.e., a two-place predicate),
or another DRS. The main ways in which DRT distinguishes itself from many other
mainstream meaning representation frameworks are that (1) DRSs are not represented
in graphs (Abzianidze et al., 2020); (2) DRSs are distant from the syntactic structures of
their corresponding sequence strings (Žabokrtský et al., 2020; Abzianidze et al., 2020).



9

An example is given below. This DRS represents the meaning of the sentence If Jones
owns a donkey, he likes it.

x
Jones(x)

e1 y t1

donkey(y)
own(e1)

Agent(e1, x)
Theme(e1, y)
Time(e1, t1)
t1 = now

⇒

z t2 e2 w

z = x
w = y

like(e2)
Experiencer(e2, z)

Stimulus(e2, w)
t2=now

Figure 2.1: The DRS with neo-Davidsonian style for the sentence If Jones owns a donkey, he
likes it.

2.3 Simplified Box Notation

Given that many popular meaning representation frameworks, ranging from AMR to
UCCA, are designed in the format of graphs, it encourages DRSs to be converted to
graphs, or as referred to by Abzianidze et al. (2020) as Discourse Representation Graphs
(DRGs), for cross-framework meaning representation parsing. Abzianidze et al. (2020)
reviewed the existing DRG-encoding approaches (Power, 1999; Basile and Bos, 2013; Liu
et al., 2018) and compared potential DRG formats resulting from the combination of four
possible options for DRS-to-DRG conversion. The graph format they finally suggest
in the shared task is still very complex. Fancellu et al. (2019) transformed DRSs into
acyclic, single-rooted and fully-instantiated graphs. Bos (2023) later proposed a simpler
linearized notion, Simplified Box Notation (SBN), which can be represented as Directed
Acyclic Graphs (DAG).

An SBN is composed of a set of Concepts, Boxes, and Constants which are connected by
Roles, Operators, and Separators as the edge name4. The connection between two nodes
is encoded by the indices. An SBN has the following ingredients.

• Concepts refers to the node names in the graph. They are composed of three parts:
lemma, word category and sense number in Wordnet (e.g., cat.n.01, see.v.03).

• Constants are usually numbers, names, dates, etc. (e.g., "Mary", speaker, 20).
They are always the terminal leaves in DRGs.

• Roles are semantic roles that connect two concepts (e.g, Agent, Theme, Patient).

4Only the components of SBNs in the PMB release 4.0.0 are introduced for now



10

• Operators usually connect one concept and one constant, but sometimes it connects
two concepts to model co-index. They indicate a non-role relation between two
nodes (e.g., EQU, APX, TIN).

• Indices always follow roles or separators in SBN to connect nodes/boxes to indicate
the location of the target node or box (e.g., -2, -1,+1, +2, <2, >1).

• Boxes are always introduced by separators. They are used to model context.

• Separators are discourse connectives which assign scope (context/box) to the nodes
(E.g., NEGATION, EXPLANATION, NARRATION, . . . ).

SBN supports the assumption that meaning should be interpreted in a specific context.
To model context, it inherits the box notation from DRT. A separator introduces a new
context and its indices encode which context the new context should be connected with.

To free DRS from variables, Bos (2023) uses bidirectional deBruijn-indices to index the
arguments of the conditions. To model the scope but maintain the flat and simple
structure of SBN, Bos (2023) introduces a set of seperators and indices to divide the
conditions into different discourse units. Note that SBN employs logical equivalence to
avoid using logical constructs such as the universal/existential quantifier and implication
statement. The converted SBN from figure 2.1 is shown below where SBN is put on
the left and its DRG is on the right. Here, (p → q ↔ ¬(p ∧ ¬q)) is used to generate the
resulting format. The indices -1 in own Agent -1 Theme +2 Time +1 means that
the agent role of the verb own refers to the node two steps backward (separators do not
count), namely, male. Similarly, the experiencer of the verb like refers to the same
node.

male Name "Jones"
NEGATION -1

own Agent -1 Theme +2 Time +1
time TPR now
donkey

NEGATION -1
like Experiencer -4 Stimulus -1 Time +1
time TPR now
entity = -2

Figure 2.2: The SBN and its DRG for the sentence If Jones owns a donkey, he likes it without
sense disambiguation
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2.4 Discourse Representation Graph

As we mentioned previously, the sequential SBN format can be seamlessly converted to
a DAG, coined as DRG. Consequently, just as with AMR, the DRG can be represented
using the Penman notation (Matthiessen and Bateman, 1991; Kasper, 1989). The Penman
notation serves as a serialization format designed for encoding DAGs. In this notation,
each node in the graph is assigned a unique variable (for example, s1) which represents
the node label, such as donkey. Nodes are interconnected by relations, which are
denoted by edge labels, like Stimulus. In Penman notation, the / symbol specifically
indicates an instance relation. The reentrancies can be freely expressed by relations
between two node variables. The converted Penman for Figure 2.2 is shown below. All
the dashed scope lines in the graph are instantiated with the member relation.

(b0 / box
:NEGATION (b1 / box

:NEGATION (b2 / box
:member (s0 / like

:Stimulus (s1 / donkey
:Experiender (s2 / male
:Time (s3 / time

:EQU now2))
:member (s4 / own

:Agent s2
:Theme s1
:Time (s4 / time

:EQU now))
:memeber s1
:memeber s3
:memeber s4)

:memeber s2)

Figure 2.3: Penman notation for the sentence If Jones owns a donkey, he likes it.

The converted DRGs combine the advantages of AMR and DRS. For one thing, the DRG,
going beyond the meaning of predicate-argument structure, is expressive in modeling
diverse semantic phenomena; for another, its graph format makes it easier to annotate
and parse (Bos, 2023).

2.5 SBN parsing with the AM-Algebra

AM-Algebra (Groschwitz et al., 2017, 2018) is an algebra-based method for compositional
semantic parsing. It learns the meaning representations of each token and combines each
of them to form a complete meaning representation graph.
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As-graph, root, and source AM-Algebra aims to build graphs from a set of elementary
lexical graphs. It assumes that each meaningful token should have a separate meaning
representation in the format of graphs, namely, annotated s-graph or as-graph. They
are directed graphs that contain type information for graph construction. The type
information is encoded by their sources (Courcelle and Engelfriet, 2012) as the blue texts
shown in Fig 2.4. The reference p00/d3046 in the caption denotes the file ID as found
in PMB Explorer5. Interested readers are encouraged to read details of the semantic
annotation via this platform. How to interpret the source names will be explained later.
Each as-graph also has a designated root node indicated in bold.

Figure 2.4: As-graphs for the sentence START I was expelled from school. p00/d3046

Apply and Modify AM-algebra, following the syntax rule of constituent combination,
has two main operations: Apply and Modify. The former refers to the process where the
as-graph of the syntactic complement is applied to the root node of the head as-graph,
while the latter means that the as-graph as the adjunct modifies the root node of the
head as-graph. The application rule is similar to a complement combining with its head -
this combination is required by the head; the modification rule is similar to an adjunct
combining with its head - this combination is not required by the head and, therefore,
the type of the head is not influenced. They are explained below separately.

The Modify operation (MOD) works similarly to how adjunct is combined with its head,
like X/X category in CCG; in other words, MOD does not change the type of original
as-graph of the head nor require specific source types, but instead, the root node of the
head as-graph GHead is plugged into the M source of the adjunct as-graph GMod. As a
result, the source in GMod is removed and the root node of the new GHead remains the
root. For example, we can combine Gschool and Gexpel with MODM1(Gexpel, Gschool) in
figure 2.4. The root node of Gexpel inserts in the M node, and it generates the graph in
figure 2.5 (left). The root of the resulting graph remains expel.v.01 and thus the graph
name is still Gexpel.

The Apply operation (APP) resembles how the dependent is combined with its head, like

5https://pmb.let.rug.nl/explorer/explore.php

https://pmb.let.rug.nl/explorer/explore.php
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forward/backward application in CCG. APPX represents the Apply operation for a source
X. APPX between two as-graphs GraphPredicate and GraphArgument, i.e., APPX (GraphP ,
GraphA), requires the root node of GraphA to be inserted to the annotated source of
GraphP . As shown in 2.5, the newly generated Gexpel after MODM1(Gexpel, Gschool)

is applied with GI . The root node of GI plugs in the S source and the resulting new
subgraph Gexpel is shown in the middle.

After we get the new subgraph Gexpel, we can then utilise MODM2(Gexpel, Gwas) and
APPV (GSTART , Gexpel) to generate the final graph shown in Fig 2.5 on the right.

Figure 2.5: The result of MODM1(Gexpel, Gschool) (left), APPS(Gexpel, GI) (middle) and
the complete SBN graph (right)

Types Whether two as-graphs can be combined via APP is determined by their types
which are optionally represented in a bracket in the source name.

Figure 2.6: As-graphs for the sentence START Mr. Smith asked Jane to marry him. p24/d2048

For example, in the object control example in Fig 2.6, the O2 source in the as-graph for
asked Gasked has the type [S→O], meaning that the as-graph that undergoes the APPO2

should have the S source. Among all the as-graphs below, only Gmarry suffices the
condition. As a result, the root node of Gmarry plugs in that source name. After APPO2,
the S source in Gmarry should be renamed as O so that this O source can be unified or
merged with the O source of Gasked. Therefore, the recipient of ask.v.02 shares the
same node as the Agent of marry.v.01. This type clearly explains how object control
works. That is, the subject of the subordinate predicate should be the object of the main
predicate.
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APPV

GSTART

START
1

APPS

GI

I
2

MODM2

Gwas

was
3

MODM1

Gexpel

expelled
4

⊥

from
5

Gschool

school
6

⊥

.
7

MODM1MODM2

APPS

APPV

Figure 2.7: AM-term and its corresponding AM dependency tree for the sentence I was
expelled from school. p00/d3046

Such annotations set restrictions to the combination possibilities between different as-
graphs. For example, in the case of Gasked, only Gmarry can be plugged into the O source
of Gasked, because only Gmarry has an O source. Other types can be found in Groschwitz
et al. (2017); Groschwitz (2019).

AM-algebra provides very explicit operations to properly parse linguistic structures
that introduce reentrancies, such as coordination, raising, control, relative clause, wh-
movement, secondary predication, and parasitic gaps.

Indexed AM terms and AM dependency tree To connect the as-graphs and tokens of
the input sequences, Groschwitz et al. (2018, 2017) proposed indexed AM terms which
assume each as-graph represents the meaning of single individual tokens. The terms can
be naturally converted to a dependency tree as shown in Fig 2.7. Some words such as
preposition from do not contribute to the meaning of the meaning representation. They
are assigned a ⊥ sign and they do not receive any AM operation. The graph above
the input tokens represents AM-terms. It illustrates the operations required to build
a complete DRG from bottom up. The color of the operation represents the root node
of the resulting subgraph. For example, after MODM1(Gexpel, Gschool), the root node
remains expel. The operation rules between subgraphs can be equivalently converted
to dependency relations between tokens that align with the corresponding subgraphs.
All these dependency edges build an AM-dependency tree. It can then be evaluated as a
complete meaning representation graph.
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AM-Parser AM-Parser (Groschwitz et al., 2018) is a model built based on AM-Algebra.
It reflects how AM-Algebra works. It contains a supertagger, a dependency parser, and a
tree decoder. The supertagger is built to assign each token in the input sequence strings an
elementary graph that represents the meaning of that individual token. The dependency
parser is to build the optimal AM dependency tree that reveals the combination of these
elementary as-graphs graphs. The symbolic decoder decodes the AM-dependency tree
to a complete meaning representation graph.

2.6 The Challenges Brought by DRGs

AM-Algebra works very well with AMR which encodes less rich semantic information.
However, it is very challenging (if not impossible) to parse a complete DRG because the
non-compositional scope and coreference introduce a considerable number of reentran-
cies which AM-Algebra fails to handle.

Scope In DRG, each node is exclusively connected with one discourse box to model
context information. However, the abundant reentrancies introduced by the scope
information make SBN graphs non-decomposable.

Take a simple sentence I was expelled from school as an example. The as-graphs are shown
in Fig 2.6. There are two paths to building the complete graph: (a) we connect the root box
with other elementary graphs first and then build the rest; (b) we build the graph without
the root box first and then we connect the root box with the rest. However, we will find
out that neither way works. If we adopt (a), as shown in Fig 2.9, the person.n.01 node
cannot be combined with the expel.v.01 node because it has been a part of a larger
subgraph. Similarly, the time.n.08 node and the school.n.01 node cannot modify
the verb expel.v.01 because expel.v.01 is not the root of this subgraph anymore
and a modifier as-graph can only modify the root node which, in this case, is the root box.
If we adopt the opposite composition approach, it is still impossible to apply GSTART to
the non-root node including school.n.01, person.n.01 and time.n.08 through
the APP operation.

Coreference Coreference in DRGs introduces a new reentrancy edge to the antecedent
node. As illustrated in Figure 4.1, the node female.n.01 demonstrates this with two
incoming edges. Similar to the failure caused by scope, the MOD and APP rules are
insufficient to address reentrancies stemming from coreference, rendering AM-Algebra
incapable of parsing coreference information within DRGs. This limitation underscores
the need for improved methodologies in handling coreference resolution within the
context of AM-Algebra and DRGs.
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Figure 2.8: As-graphs (with scope) for the sentence START I was expelled from school.
p00/d3046

Figure 2.9: As-graphs (with scope) for the sentence START I was expelled from school.
p00/d3046

Figure 2.10: DRG for the sentence Yuriko Himekusa killed herself. p79/d2094

2.7 Summary

This chapter first explains the Principle of Compositionality. It then introduces two
meaning representation variations for DRS, namely, the graph representation DRG and
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x1,t1,s1

male.n.02(x1)
Name(x1, tom)

time.n.08(t1)
t1 = now

groggy.a.01(s1)
Time(s1, t1)

AttributeOf(s1, x1)

(a) DRS

male.n.02 Name "Tom"
time.n.08 EQU now
groggy.a.01 AttributeOf -2 Time -1

(b) SBN (c) DRG

Figure 2.11: Different variants of DRS Tom’s groggy. p18/d2557

the sequential notation SBN. As shown in Figure 2.11, all three representations below
express the same meaning. They can be converted to each other with ease.

We then explain how AM-Algebra combines the lexical graphs together to form a com-
plete DRG with two simple rules, Apply and Modify. However, AM-Algebra lacks
explicit rules to parse the scope and coreference information. This is also a major chal-
lenge of the thesis.
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Chapter 3

Related Work

This chapter critically reviews previous research in DRS parsing. It is organized into
three primary categories of focus: compositional parsing, symbolic parsing, and deep
learning-based parsing. We summarize the advantages and challenges of each approach.

3.1 Compositional Approaches

Research in semantic parsing has long embraced the Principle of Compositionality.
Compositional models are generally developed based on explicit grammar information
(e.g., Combinatory Categorial Grammar (CCG) or Synchronous Grammars) or algebra
terms (Donatelli and Koller, 2023).

Earlier traditional approaches rely on the assumption that syntactic trees provide prior
knowledge for semantic composition. Consequently, they usually learn the underly-
ing syntactic structure of the input and then construct meaning representation in a
compositional manner (Van Noord and Bos, 2017).

The first data-driven compositional approach is proposed by Le and Zuidema (2012) in
which they adopt a similar method to AM-Parser by converting DRS to semantic graphs
and using a dependency structure to encode the relations between the elementary graphs.
Different from AM-Algebra, they only leverage the direction of the dependency edges to
encode the binding operation between the variable in the argument subgraph and the
head subgraph. The graph they propose is also more complex than DRGs. Their parser
is a probabilistic one.

In a similar vein, Boxer (Bos, 2008, 2015) is developed in a compositional way based
on Combinatory Categorial Grammar (CCG; Steedman, 2001) and λ-calculus. The
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parser takes the CCG derivation of natural language expressions as input and generates
DRSs. Additionally, it is a complex system, composed of a language-specific tokenizer,
supertagger, semantic tagger, parser, and symbolizer. The complicated design of the
system and its reliance on CCG makes it very hard to adapt to graph-related tasks.

These approaches usually combine certain linguistically principled heuristics or con-
straints with a statistical model. While the outputs generated by such systems are often
more interpretable, they typically do not achieve performance metrics comparable to
those of neural network-based approaches.

3.2 Rule-based Approaches

Some early work in DRS parsing also relies on rule-based systems (e.g., Johnson and
Klein, 1986; Wada and Asher, 1986; Bos et al., 2001). The rule-based methodologies often
encounter difficulties in handling diverse input variations, thereby posing challenges in
achieving broad parsing coverage.

Recently, Poelman et al. (2022) proposed a new system named UD-Boxer. It consists of
a set of rules to transform Universal Dependency trees into DRGs in four languages:
English, Italian, German, and Dutch. The performance of the system relies on the
dependency parser and the set of heuristics. Once the dependency parses are obtained,
the DRG output is deterministic, which makes the result fully explainable.

Compared with the BERT-based Neural-Boxer (van Noord et al., 2020), the graph trans-
formation system performs particularly better than the neural model in languages other
than English and generates fewer ill-formed graphs6

The symbolic approach shows promising results in terms of compositionality in the
syntax-semantics interface because the syntactic dependency tree input has to match
the semantic meaning representation graph output. However, a syntactic tree is not
informative in how the scope should be assigned to the meaning representation graphs.
As a result, it does not give an explicit solution to scope and anaphora resolution.
Furthermore, since the rules are specifically tailored for DRGs in PMB4, they cannot be
directly applied to DRGs in PMB5 due to structural changes.

3.3 Deep Learning Approaches

The development of deep learning approaches, particularly seq2seq models, contributes
to most of the recent improvements in parsing systems. Seq2seq models are one (domi-

6However, based on our experimental results, when we switch the evaluation format from lenient to strict
(see Chapter 4.4), the performance of UD-Boxer declines more than that of Neural-Boxer. This confirms Wang
et al. (2023)’s argument that the lenient format can inflate the result.
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nant) type of neural model, usually containing an encoder and a decoder. The encoder
encodes the representation of sequential input, while the decoder produces its corre-
sponding meaning representation. They show impressive performance overall, but they
also struggle with specific structures (Van Noord et al., 2018).

To date, the leading DRS parsers primarily utilize seq2seq models. Since it is very
challenging for the neural model to generate boxes directly, researchers have explored
various possible linearized representations of DRSs on top of the neural approaches.
Some are graphs or trees, while some are sequences. We explain two types of models,
i.e., structure-aware model and structure-unaware model, based on the target format. If
a model takes the sequential input simply as a set of strings, we assume the models are
structure-unaware.

Structure-unaware Models One of the earliest attempts to utilize seq2seq models for
DRS parsing is by Van Noord et al. (2018) who convert the DRSs to a clausal format (for
a detailed overview, see Figure 2 in (Van Noord et al., 2018)). Their optimized model
employs a two-layer Bidirectional LSTM encoder-decoder setup, enhanced with global
attention (Luong et al., 2015), and leverages character embedding as input.

Building on this foundation, van Noord et al. (2019) incorporated linguistic features into
a multi-encoder model, significantly enhancing parsing performance. Their research
underlined the pivotal role of character-level encoding and linguistic features, especially
in scenarios with limited data.

Later, with the prevalence of large language models, van Noord et al. (2020) also experi-
mented with different embeddings (e.g., ELMO (Peters et al., 2018), BERT-base/large
(Devlin et al., 2019), and ROBERTA-base/large (Liu et al., 2019)) in combination with
character embedding. They also experiment with various linguistic features, including
lemma, POS tag, semantic tag (Abzianidze and Bos, 2017), dependency parses, and CCG
supertags. The best model is a standard seq2seq model with attention, but they also
add an extra linear layer before the initial decoder state and after each decoder state
and initialize the decoder hidden state with the mean of all encoder states. In their
experiments, they find that BERT-base embedding with character embedding yields the
best performance. Additionally, adding linguistic features is not always beneficial.

The contemporary state-of-the-art model, the Multilingual Language Meaning frame-
work for DRS (MLM-DRS) by Wang et al. (2023), stands out due to its multilingual
capabilities. This model, rooted in mBART, was pre-trained using datasets from multiple
languages with specific denoising strategies in order to force the model to learn the
meaning representation structures. Then the pretrained model is fine-tuned for the
parsing task, showing remarkable performance. Yet, as our results in Chapter 6 suggest,
it struggles with lengthy sequence sentences.
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Structure-aware Models A subset of studies have reimagined DRSs in forms of graphs
or trees, mirroring the objectives of our research. One notable example is Liu et al. (2018),
who viewed DRS as a tree structure. They develop a structure-aware model which takes
DRS as a tree structure with conditions and referents being the leaf node. The encoder
is a bi-LSTM network that takes the words as input. The decoder is a forward LSTM
layer with attention mechanism. It decodes the DRS in three stages. It first predicts
the DRS structure (i.e., scope information and discourse connectives) and then fills
the structure with conditions and finally, it predicts the variable names based on the
predicted conditions. Due to the novel format of DRS, the model is evaluated with a
new metric named D-match7 and thus it is not comparable with previous work. Their
results show that a structure-aware decoder can generate accurate scope assignments
(0.91 D-match F).

Fancellu et al. (2019) transformed the DRSs into DAGs which then can be linearized
with PENMAN notation. The converted DAGs are largely similar to DRGs, except that
the DAGs do not use logical equivalence to express logical operators (e.g., implication
=⇒ ) by negations. In their seq2seq model, the encoder is a bi-LSTM encoding the input
sequences and other linguistic features, and the decoder is composed of three models to
model different actions. Their model shows competitive performance as Van Noord et al.
(2018) with a lower error rate.

Seq2seq models have beaten the benchmarks, but their impressive performance largely
benefits from large training datasets. It is very challenging for these neural models to
generalize from limited data. They have to either rely on additional silver data or include
structural features to perform well. This might explain why the structure-aware model
by Fancellu et al. (2019) outperforms Van Noord et al. (2018) when only gold data is
used for training and why the inclusion of silver data offers a performance boost to
structure-unaware models.

That said, even with abundant training data at their disposal, structure-unaware models
consistently exhibit a higher error rate compared to their counterparts. Poelman et al.
(2022) reported that neural models, compared with grammar-based ones, are more likely
to make mistakes. This is because DRS is essentially a graph with strict structure and
binding constraints. For structure-unaware models that take the input and output simply
as a sequence of strings, it is challenging for them to learn such implicit information.
This is particularly true when these seq2seq models parse longer sentences.

Beyond these challenges, it is also important to note that even though the parsers can
generate accurate results overall, they still face challenges when parsing specific linguistic
phenomena such as scope ambiguity, coreference resolution, and discourse relations.
Hence, a commendable SMATCH F score does not necessarily vouch for the model’s

7This is a metric developed based on Smatch(Cai and Knight, 2013). Unfortunately, the reference link they
provide is not valid anymore.
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all-rounded robustness in parsing DRS construction. Furthermore, it is worth noting that
current seq2seq models primarily concentrate on generating DRSs overall, with limited
attention paid to specific linguistic nuances, such as anaphora. Given the importance of
scope and anaphora in DRT theory, a targeted emphasis on these phenomena is highly
recommended.

3.4 Summary

In summary, researchers have employed various strategies for the DRS parsing task.
The existing compositional parsers and symbolic methods have struggled to match
the competitive performance of seq2seq models. Consequently, a significant focus in
the research community has shifted toward the development of more effective seq2seq
parsers. New data formats are explored: DRSs have been transformed into sequential
clauses, trees, and DAGs. Regarding embeddings, researchers have experimented with
BERT embedding, character-level embedding, and other linguistic features. Different
encoder and decoder architectures are proposed. However, seq2seq models do come
with their limitations. Firstly, they are data hungry; secondly, for the structure-unaware
models, they tend to generate more ill-formed graphs; thirdly, they still struggle with
processing information that encodes implicit structures. Therefore, it is important to
build a parser that can achieve high accuracy, while maintaining a low error rate.
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Chapter 4

Data and Evaluation

In this Chapter, we present the statistics of the data we use, i.e., Parallel Meaning Bank
Release 4.0.0 and 5.0.0. We then introduce the baselines we employ in our experiments,
followed by the metrics, namely, the SMATCH and SMATCH++, in our work.

4.1 Data

We use the English data from Parallel Meaning Bank (PMB) release 4.0.0 and 5.0.08

(Abzianidze et al., 2017) for our experiments. PMB is a multilayer corpus containing
rich annotation information including tokenization, semantic tagging, symbolization,
lemmatization, and CCG tagging. It also includes the SBN annotation which will be used
in our experiments.

4.1.1 Parallel Meaning Bank 4.0.0

The dataset is divided into three splits - Gold, Silver, and Bronze - based on the quality of
annotation, with Gold being automatically annotated and manually corrected by experts
and Bronze only being automatically annotated. The statistics of different splits are
shown in Table 4.1.

The gold dataset contains four splits for English: train, development, evaluation, and
test set.

8https://pmb.let.rug.nl/data.php
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# Docs # Multi-sent # Tokens Tokens/ doc

Gold 10,715 79 59,444 5.5
Silver 127,303 5,581 1,256,045 9.9

Bronze 156,286 5,391 1,463,721 9.4

Table 4.1: The data distribution of English dataset in the Parallel Meaning Bank Release
4.0.0

4.1.2 Parallel Meaning Bank 5.0.0

Compared with PMB4, PMB5 removed the evaluation set. It reshuffled all the sentences,
removed repetitive ones, and assigned longer and more distinct examples to the dev and
test set. Additionally, 132 longer sentences are added to a separate test set. The statistics
of the data are summarized in Table 4.2. As can be seen, the number of files in PMB5
increases in all splits. Also, sentences from PMB5 gold and silver splits are longer.

# Docs # Multi-sent # Tokens Tokens/ doc

Gold 11,379 89 63384 5.6
Silver 144,751 8,843 1,627,397 11.2

Bronze 145,035 3,918 1,099,710 7.6

Table 4.2: The data distribution of English dataset in the Parallel Meaning Bank Release
5.0.0

Apart from more data points, PMB5 also introduces new operators, roles, and structural
changes:

• New operators: TCT and ANA;

• New roles: Affectee, FeatureOf, Feature;

• New Structures: The graph structure of predicate-coordination and proposition are
changed. In coordination construction, rather than two verb nodes being connected
by a CONTINUATION connective, the two predicate nodes are both connected with
the root box. In proposition structure, the statement verb node introduces a new
scope box.

• SOURCE and ATTRIBUTION are removed from PMB5;

One more important change made in PMB5 is that the discourse connectives can connect
to further discourse chunks. In PMB4, all discourse connectives only connect the chunks
preceding or following it, while in PMB5 a discourse connective can reach further than
that. In SBNs with proposition, the CONTINUATION can also connect with no chunk
but just serves as a discourse unit separator. These structural changes make DRGs in
PMB5 more difficult to learn.
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Table 4.3 provides a comparison between English PMB4 and PMB5 datasets. The number
within the paratheses refers to the average count of tokens per file. We can see that the
token length is basically the same in the train, dev, and test splits in both datasets, but
sentences from PMB5 test_long split is considerably longer. We take it as an OOD dataset
for evaluation.

PMB Train Dev Test (Standard) Eval Test (Long)

PMB4 7,668 (5.6) 1,169 (5.2) 1,048 (5.5) 830 (5.8) -
PMB5 9,056 (5.6) 1,137 (5.4) 1,137 (5.2) - 132 (59.6)

Table 4.3: The data distribution of English gold dataset in PMB4 and PMB5

4.2 Data Characteristics

Anaphora PMB5 introduces a new operator labeled as ANA to facilitate coreference
resolution. In total, there are 850 ANA edges distributed across all 11,360 files in the
dataset. While coreference represented by ANA is not prevalent across the entire PMB
dataset, it holds significant importance in DRT. Consequently, we have chosen to address
this aspect, recognizing the potential for our research to inspire further exploration and
advancement in DRS parsing studies.

Imperfections Both PMB4 and PMB5 have certain imperfections, including cyclic
graphs, empty documents, isolated node, and index error. The first two are self-
explainable. Index error refers to the situation where the indices go beyond those
of the nodes. Regarding isolated node, it refers to some graphs in which the time node
connects with the box rather than the event node. This does not make sense in meaning
representation because the time information is associated with the event. We take them
as ill-formed graphs and remove them from the evaluation data sets. PMB5 also provides

# Cyclic Graphs # Empty Documents # Isolated Node # Index Error Sum

PMB4 35 4 6 0 45
PMB5 16 1 0 2 19

Table 4.4: The ill-formed graphs in PMB4 and PMB5 gold datasets

an extra test dataset that contains 132 longer sentences. Among them, 17 graphs are
cyclic and we remove them for further evaluation usage.
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4.3 Baselines

While numerous studies have delved into DRS parsing, older ones primarily emphasized
the generation of the sequential clausal format proposed by Van Noord et al. (2018).
These earlier investigations commonly employed the COUNTER (van Noord et al., 2018)
metric for evaluation and converted a DRS to a clause format, which is incompatible
with the SMATCH metric we use in our work. For metric consistency, we have chosen to
benchmark our work against the latest models in the field, including UD-Boxer (Poelman
et al., 2022), Neural-Boxer (van Noord et al., 2020; Poelman et al., 2022), and DRS-
MLM (Wang et al., 2023). The input is sentences and the output is their corresponding
sequential SBN representation. The output can be converted to Penman notation and thus
be evaluated with SMATCH scores. Additionally, we have fine-tuned a T5-base model
(Raffel et al., 2020), named T5-Boxer, due to the prominence of T5 models in current
semantic parsing endeavors. It is worth noting that UD-Boxer is a symbolic system
explicitly designed for PMB4 and, therefore, cannot be considered a suitable baseline for
the PMB5 dataset. All the pretrained language models used in our experiments are from
Huggingface (Wolf et al., 2020).

UD-Boxer As explained in Chapter 3.2, UD-Boxer is designed to convert a dependency
tree into a DRG by employing a specified set of rules. The system utilizes dependency
parses derived from either Stanza (Qi et al., 2020) or Trankit (Nguyen et al., 2021). Given
that Stanza has been observed to yield superior outcomes, our experiments adopt the
output generated by Stanza to facilitate our analysis.

Neural-Boxer, T5-Boxer, and DRS-MLM Neural-Boxer is developed based on one of
the SOTA systems in DRS parsing by van Noord et al. (2020). It employs Bert embedding
and character embedding. We experiment with Neural-Boxer in two settings: (a) fine-
tune Neural-Boxer with only gold data provided; (b) pretrain Neural-Boxer with the
gold and silver data first and then fine-tune it solely on the gold data.

Regarding T5-Boxer and DRS-MLM, we just fine-tune them with the gold data split9.

4.4 Evaluation

Metrics DRS parsing can be evaluated on metrics such as DSCORER (Liu et al., 2020)
and COUNTER (van Noord et al., 2018). In this work, we utilize the SMATCH metric (Cai
and Knight, 2013) and SMATCH++ (Opitz, 2023) as our evaluation criteria due to their
compatibility with the graph-based format of the meaning representation. SMATCH
and SMATCH++ are both designed to evaluate graph meaning representations. They

9The code can be found via https://github.com/LastDance500/PMB5.0.0/tree/main.

https://github.com/LastDance500/PMB5.0.0/tree/main
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calculate the precision, recall, and f-score by finding the maximum overlap between the
predicted and gold-meaning representation triples. The equations are listed below. The
precision is defined as the number of matching triples between the predicted and the
gold meaning representations divided by the total number of triples of the predicted
meaning representations. The recall score is defined as the overlap triples divided by the
total number of gold triples.

P = Nmatch/Npred (4.1)

R = Nmatch/Ngold (4.2)

F1 = 2 ∗ P ∗R/P +R (4.3)

To obtain a fair evaluation, it is important to have optimal node alignment between the
gold and the predicted graph pairs. However, node alignment between graph pairs is
an NP-complete problem (Cai and Knight, 2013). How to tackle this problem is what
distinguishes these two metrics. SMATCH employs a hill-climbing solver, but this
solver cannot guarantee optimality and misses the upper-bound because, in complex
graphs, there might be multiple local optima. The hill-climbing solver might result in
unstable results when the graphs are essentially the same but have different internal
structures10. To solve this problem, SMATCH++ uses Integer Linear Programming (ILP),
thus generating a more reliable result.

From a practical perspective, the script for SMATCH++ removes duplicate nodes and
also normalizes quotation markers during evaluation, thereby enhancing the overall
efficiency of the process.

We report both metrics in order to have a fairer and more objective comparison between
different models.

Evaluation Format The gold format can be either lenient (Poelman et al., 2022) or strict
Wang et al. (2023). In the lenient format, the concept nodes are set apart by their lemma,
lexical category, and sense number; the constant node variable is kept. By contrast, in
the strict format, the concept nodes are compact and the constant node variables are
removed. The two formats are shown below. We choose the strict format because the
lenient one might inflate the metrics (Wang et al., 2023).

10Please refer to the issue mentioned in the SMATCH repository https://github.com/snowblink14/
smatch/issues/43

https://github.com/snowblink14/smatch/issues/43
https://github.com/snowblink14/smatch/issues/43
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Figure 4.1: The lenient format and strict format for the sentence Who did William Wallace
defeat? p10/d1983

4.5 Summary

In this chapter, we present the PMB4 and PMB5 datasets employed in our experiments.
We adopt the three most recent DRS parsers and also fine-tune the popular T5 model to
serve as baselines. For evaluation purposes, we utilize the SMATCH and SMATCH++
metric to provide an objective assessment of the models’ performance. To ensure objec-
tivity in evaluating models, our gold data adheres to the strict format.



Chapter 5

Method

This chapter opens with a brief discussion of the challenges in parsing both compositional
and non-compositional elements of DRGs (§5.1). We then provide an overview of our
approaches to address these issues (§5.2). Following this, we delve deeper into the
specifics of our solutions (§5.3-5.5).

5.1 Problem Statement

Our task aims to map a natural language sequential input into a DRG represented in
Penman format compositionally using AM-Algebra.

As mentioned in Chapter 2.6, the reentrancies introduced by the scope information
of DRGs make the graph non-decomposable simply through the Apply and Modify
operations. However, if we remove the scope information, the subgraphs might be
disconnected because certain scope edges connect the isolated subgraphs. Hence, the
first challenge of our task is to simplify the DRGs so that the key graph information is
retained, while the graph remains decomposable by AM-Algebra.

Furthermore, AM-Algebra lacks specific rules to learn the non-compositional information
of meaning representation graphs effectively. Since both scope and anaphora are impor-
tant properties of DRT, it is necessary for our system to parse the scope and anaphora
information accurately. Consequently, additional processing steps are necessitated atop
AM-Parser to address these challenges.
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5.2 Method Overview

To tackle the challenge of simplifying DRGs to achieve decompositionality, we explored
various preprocessing strategies such as removing part of scope edges, reversing specific
triples, and adding special token START for better node-token alignment.

As for the non-compositionality of anaphora, we take anaphora resolution as a lexical
category classification task and train AM-Parser to learn if antecedent or anaphora nodes
exist in the parses. We assign the antecedent and anaphora nodes a special category p,
indicating they are related to pronouns.

By contrast, we take scope resolution as a dependency parsing task. Specifically, we
assume that the scope edges in DRGs serve as dependency edges, linking the subgraphs
that align with tokens. In this scenario, meaningful tokens are interconnected through
dependency edges, forming a dependency graph. Hence, a dependency parser is trained
to learn the scope edges between tokens.

Necessary postprocessing steps are required to map the anaphora and scope information
back to the scopeless DRG parses generated by AM-Parser. Details can be found in the
following sections.

5.3 Learning compositional DRGs

This section explains what preprocessing steps are needed to make DRGs decomposable.
They include (1) DRG simplification through partial removal of scope edges; (2) elimina-
tion of coreference edges; and (3) inversion of triples that introduce reentrancies; (4) the
introduction of a new special token aligned with the root box.

We provide a detailed explanation on the first preprocessing step in Chapter 5.3.1, while
the subsequent steps are elaborated upon in Chapter 5.3.2.

5.3.1 Simplified DRGs and Scopeless DRGs

In this thesis, we propose two variants of DRGs, namely simplified DRG and scopeless
DRG so that they can be decomposed by AM-Algebra. Below, we define them and also
make a distinction between the simplified, scopeless, and complete DRGs.

Complete DRG The complete DRG refers to a complete graph with all information
encoded from the SBN annotation. This is the gold graph for our evaluation.

Simplified DRG The simplified DRG assumes the implicit membership between boxes;
that is, if one box is connected with one node, we assume that all of its children nodes are
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in the scope of that box. Therefore, we can safely remove the scope dashed lines between
the box and the descendant nodes. This method keeps all necessary scope information to
make sure the full picture can be easily recovered according to those necessary dashed
lines.

Scopeless DRG The scopeless DRG disregards whether the scope information can
be recovered or not - scope assignment will be done through another postprocessing
task. In simplified DRGs, we guarantee that a scope box is connected with at least
one node within the scope; in other words, a node can have reentrancies caused by
the scope assignment. By contrast, in scopeless DRGs, we will not assign the scope as
long as the node connects with its parent node. Therefore, scopeless DRGs have fewer
reentrancies than simplified DRGs, which makes them easier to be decomposed into
as-graphs. Examples of these two variants and their complete counterpart are shown
in Figures 5.1 and 5.2 next page. As can be seen in Figure 5.1, the scopeless DRG graph
only contains necessary dashed lines to keep its subparts connected, while simplified
DRG also encodes other two dashed lines to indicate richer scope information. When
DRGs only have one box, the two variants are essentially the same as shown in Figure 5.2,
because only the root box contains scope information.

5.3.2 Other Preprocessing Steps

To develop a compositional parser, it is very important to align the token with its
corresponding meaning representation graph. Given that in every DRG, there is always
a “root” context box that does not have any token to be aligned with, we manually added
a special token START as a signal to introduce the root box.

Additionally, we also remove reentrancies caused by coreference (see Fig 5.3 (left)) and
multiple nodes connected with one box (see Fig 5.4 (left)). The preprocessed graphs are
shown on the right of each figure.

For PMB4, which does not have explicit reference annotation, we detect triples in which
the parent node and the child node share the same node name and have EQU as the edge
name. Additionally, the child node has other incoming edges. For PMB5, we just remove
triples that have ANA as the edge label.

Besides, we invert the triple if the parent node does not have any parent and does
not serve as the root node of the as-graph. For example, we can invert the triple x

AttributeOf y into y Attribute x. The invertible edge names include Instance,
Attribute, Colour, Content, Part, Sub.

After preprocessing, only less than 10% of graphs in each graph format and dataset are
non-decompsoable. Simplified DRGs are more difficult to decompose because they keep
more reentrancy edges. The statistics are listed in Table 5.1 below.
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Figure 5.1: Examples of complete DRG (left), scopeless DRG(right), and simplified DRG
(bottom) for the sentence You and he both are very kind. p04/d1630

We believe the two variants after all the preprocessing steps, particularly simplified
DRG, keep the majority of the structural information. If we apply the three simple
heuristic rules and the postprocessing steps for anaphora resolution over simplified DRG,
which will be explained in Chapter 5.5 and 5.4 respectively, we can see the SMATCH
and SMATCH++ F scores are very high (see Table 5.2). This suggests that most of the
removed scope and coreference edges can be recovered.
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Figure 5.2: Examples of complete DRG (left), scopeless/simplified DRG (right) for the
sentence Thomas Edison invented the electric lightbulb. p19/d1655

Figure 5.3: The scopeless DRG graph before (left) and after the coreference information
has been removed (right) for the sentence START Tom looked like he was healthy . p20/d1811

5.3.3 Training AM-Parser

As-graphs are necessary in training AM-Parser but PMB does not provide as-graphs
explicitly annotated with sources. To reduce the labor-intensive need, we adopt the
decomposition approach proposed by Groschwitz et al. (2021) (henceforth AM-Decomp)
that learns the globally consistent annotated as-graphs by jointly training AM-parser.
With this joint learning strategy, only token-node alignment annotation is needed. AM-
Decomp is essentially the AM dependency parsing the other way around. That is, it first
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Figure 5.4: The scopeless DRG graph before (left) and after the triple is inverted (right)
for the sentence Thomas Edison invented the electric lightbulb. p19/d1655

Secopeless4 Simplified4 Scopeless5 Simplfied5

Success 7,007 6,663 8,646 8,346
Failure 630 974 409 710

Table 5.1: The number of successful or failed decomposition cases in PMB4 and PMB5

determines a unique AM-dependency tree T for the graph G and then assigns annotated
sources to the sub-graphs of the tree through tree automata.

PMB provides loose node token alignment stated in the SBN files as shown in Figure 5.5
(left), but it is notable that not every node has a token to be aligned with and sometimes,
multiple tokens might align with only one node. The node entity.n.01 does not align
with any token in the annotation while the node kind.a.01 aligns with both the token
kind and the period.

To address these two issues, in the process of alignment, we preserve the tree structure of
subgraphs during the process. If there are nodes that do not have any token to be aligned
with, we will recursively merge that node with its parent node until one parent node has
an aligned token. Therefore, for the SBN annotation in Figure 5.5, the entity.n.01 is
grouped with its parent kind.a.01 to be aligned with the token kind. Same applies to
the NEGATION boxes - the two boxes inside the blue circle are aligned with the token both.
If a node aligns with multiple tokens, we choose the token that has the most orthographic
overlap with the node. Sometimes, there is no overlap between nodes and aligned tokens
(e.g., terra_incognita.n.01 vs. of the). In this case, we pick the longer token for the
alignment.

In terms of training, we largely adhere to the setup from Groschwitz et al. (2021), with a
few modifications during fine-tuning. All hyperparameters used in the experiments are
reported in Appendix B.1.
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DRG Type Data SMATCH F SMATCH++ F

Simplified DRG PMB4 96.4 96.4
PMB5 97.3 97.3

Scopeless DRG PMB4 93.5 93.5
PMB5 94.7 94.7

Table 5.2: SMATCH and SMATCH++ F score for two types of DRGs after applying the
heuristics to map scope and coreference back

person.n.01 EQU hearer % You
entity.n.01 Sub -1 Sub +1 Quantity 2 % and
male.n.02 % he

NEGATION <1 % both
entity.n.01 SubOf -2 %

NEGATION <1 %
time.n.08 EQU now % are
very.r.01 % very
kind.a.01 AttributeOf -3 Time -2 Degree -1 % kind.

Figure 5.5: The SBN and its corresponding DRG for the sentence You and he both are very
kind p04/d1630

5.4 Learning Anaphora Nodes and Rebuilding the Anaphora

Edge

Learning coreference information is straightforward. In PMB5, coreference is explicitly
indicated by an ANA edge. We take coreference resolution as a lexical category classifica-
tion task. In other words, we incorporate the detection of anaphora/antecedent nodes
into the training process of AM-Parser.
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Figure 5.6: DRG for Mary unscrewed
her lipstick. p26/d1754

To do so, in the preprocessing steps, we introduce
a new lexical category p and replace the lexical
category of the anaphor and antecedent nodes
with this new category. Accordingly, the two co-
indexed nodes female.n.02 in Figure 5.6 are
changed to female.p.02

After we get the parses from AM-Parser, we ex-
tract nodes that are assigned a p lexical category.
We find the parser only detects either one or two
nodes as coreference nodes. We discard the single
node. To make sure the two p-marked nodes core-
fer each other, we check if the node labels of these
two nodes are the same. If yes, we add a new edge
named ANA between two nodes marked with p;
otherwise, we ignore them. The edge direction is from the node with a smaller node
variable to the node with a greater one (e.g., s1→ s3). After the edge is built, we change
the p category back to n.

5.5 Learning Scope Information and Mapping it Back

In this section, we explain two approaches we propose to map scope information back.
The purely symbolic approach is composed of three rules. The neuro-symbolic approach
leverages the dependency parses from Dozat and Manning (2018).

5.5.1 Heurestics to Recover Scope Information

After we get the initial parses from am-parser, we add scope manually by following the
three simple principles. We observe that in general, the kid nodes inherit the same scope
assignment as their ancestor (parent/grandparent/grand grandparent) nodes.

After careful examination, we find that the higher the hierarchy of the box in the graph,
the higher the priority it has regarding the scope assignment. In other words, if the
parent box assigns scope to a node, then all the kids nodes of that node should be within
the scope of the parent box and the children boxes cannot assign the scope to these nodes.
In Fig 5.7, we can find that the root box assigns scope to the bottom entity.n.01

and all of the kids of the entity.n.01 node belong to the same box. However, the
NEGATION box does not assign the scope edge to male.n.02 node. Hence, which box
a node belongs to should be determined by the highest box that its parent node belongs
to.

Based on the observation, we propose three rules to map the scope back to the given
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Figure 5.7: DRG for You and he are both very kind. p04/d1630

scopeless parses.

• Assign the scope beginning from boxes at the higher levels of the hierarchy and moving
towards the lower ones.

• If one node is connected with the connective box, all of its descendants are in the same scope.

• One node can only be exclusively assigned to scope of one box.

For example, given Figure 5.8a, we can build the final graph as shown in 5.7 by adding
scope in a top-down order. We first deal with the top root box as shown in 5.8b.
person.n.01 and male.n.02 are the children nodes of entity.n.01 and there-
fore they share the same scope. The scope edge is marked in blue. When it comes to the
second NEGATION box, its child node entity.n.01 does not have any child node that
has not been assigned a scope. Hence, no new scope edge is added. Lastly and similarly,
we add scope edge between time.n.01/very.r.01 and the bottom box because their
parent node is connected with that box. The resulting DRG 5.8c is the same as the one
shown in Figure 5.7.

5.5.2 Dependency Parsing for Scope Information Recovery

Heuristic rules work well in simplified DRGs because the remaining scope edges provide
sufficient information. However, in scopeless DRGs, particularly complex ones, certain
scope information is missing due to the removal of edges, which makes it challenging to
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(a) (b) (c)

Figure 5.8: An example of mapping scope back to incomplete DRG

decide the scope assignment. In Figure 5.8a, if we remove the two leftmost dashed scope
edges, we get the scopeless DRG for the same sentence. In this case, we would not be
able to recover the scope - the scope connection between the box and the parent node is
missing. Thus, the three heuristic rules would only assign all nodes within the scope of
the bottom NEGATION box, because only the bottom box has a scope connection with
the node kind.n.01 in the DRG.

Hence, to parse more complex DRGs, we propose to take the scope assignment as a
dependency parsing task. The parser is trained to learn if there exists a scope edge
between any of two tokens in a given input string. As scope information is less diverse
than typical dependency relations, we assume the task should be easier.

Task Description We take a DRG as a dependency graph in which all subgraphs are
connected with the scope edges. By subgraphs, we refer to the as-graphs aligned with
the input tokens. The DRG in Figure 5.9 can be decomposed into 6 subgraphs as shown
in Figure 5.10. Each subgraph is aligned with one token. The scope edges can therefore
be considered as relations between tokens, which is demonstrated at the bottom of the
same figure.

According to the dependency tree at the bottom, if a node belongs to a box in terms of
scope, a scope edge will be introduced to connect the two tokens that represent the
box and the node respectively. The box token is the head, while the node token is the
dependent. If a token does not contribute any meaning to the meaning representation,
in the case of Figure 5.9, as illustrated in Figure 5.10, the period ., it will be assigned a
non_scope edge connected with START aligned with the root box. Note that our task is
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Figure 5.9: Complete DRG for I didn’t murder anyone. p00/d3418

different from a typical dependency parsing task in that the parses are not necessarily
trees. For example, in figure 5.10, the NEGATION box, along with the murder and
person node is disconnected.

Figure 5.10: An example of scope assignment I didn’t murder anyone. p00/d3418

Annotation To train a dependency parser, we need to define the gold edge labels.
When each token exclusively aligns with one node/box, the scope mapping is easy.
One just needs to assign a scope edge to connect the box-node pair. However, it is
important to recognize that in numerous scenarios, a subgraph aligning with a single
token may encompass multiple nodes or boxes, each potentially falling within the scope
of different boxes. As a result, identifying which node belongs to which box specifically
could be challenging. For instance, in Figure 5.11, the subgraph that represents born and
all contains two nodes and two boxes respectively, but person.n.01 is under the scope
of the bottom NEGATION box, while the other bear.v.02 node belongs to the top box.
In this case, a binary edge, namely, scope and no_scope, is not informative anymore.
Thus, adding more information to edges could be helpful.
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In essence, apart from the straightforward one-to-one correspondence, where a subgraph
aligning with a token, contains only one node within the scope of a single box represented
by another token, we encounter three possible situations. For brevity, by subgraph, we
mean the subgraph that aligns with one single token.

• Many-to-one: The node subgraph contains multiple nodes but they are all within
the scope of the same box subgraph that contains only one box.

• One-to-many: The node subgraph contains only one node, and the box subgraph
that assigns scope contains multiple boxes.

• Many-to-many: Both the node and the box subgraph contain multiple nodes/boxes.
In this case,

– multiple nodes can be assigned to the same box;

– multiple nodes can be assigned to different boxes

Figure 5.11: An example of complex scope assignment All of their children were born in
Malaysia. p29/d2459

The first issue is easier to address because the node(s) can only be connected with the
single existing box. By contrast, in the last two cases, which box the node should be
connected with is undetermined. For example, in DRG for All of their children were born
in Malaysia in fig 5.11, the graph that represents the token born contains two nodes,
bear.v.02 and person.n.01. Each node, however, is connected with different boxes.
The edges are marked in green. A less tricky situation is one-to-many as shown by
the relation between the subgraph person.n.01 and two NEGATION boxes where the
person node only connects with the bottom box. Such type of edges is marked in yellow.

Hence, we need to make the edge annotation more informative. In the case of Figure 5.11,
the scope edge between all and children can be scope_s2b1_s3b2 where the sx refers
to the node variable and the bx refers to the box variable. The annotation indicates
that the node s2 should be connected with b1. However, during training, we find that
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adding node variables to scope edges makes the task more challenging as it makes the
edge name more complex. Additionally, we notice that the node variables generated by
AM-Parser largely follow the hierarchy of the graph in an ascending order, which means
the preceding nodes should be on top of the following nodes. Therefore, we only make
the box IDs explicit in the annotation because of the limited number of boxes in DRGs.
We only rely on the node label (i.e., concept) to track the nodes.

The annotated example can be found in Table 5.3. As we can see, the token were is
annotated with scope_b2, which indicates the box graph that it is connected with is a
multibox one and the node should be within the scope of the b2 box. Similarly, born is
annotated with scope_b2_b1, which means the node graph contains two nodes and
the top node is connected with b2 and the bottom one is connected with b1.

# text lemma upos xpos feats head deprel

0 START START START START _ 0 root
1 All all PRON DT _ 0 no_scope
2 of of ADP IN _ 0 no_scope
3 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes 1 scope_b1
4 children child NOUN NNS Number=Plur 1 scope_b1_b1
5 were be AUX VBD Mood=Ind|Tense=Past 1 scope_b2
6 born bear VERB VBN Aspect=Perf|Tense=Past 1 scope_b2_b1
7 in in ADP IN _ 0 no_scope
8 Malaysia Malaysia PROPN NNP Number=Sing 1 scope_b2
9 . . PUNCT . PunctType=Peri 0 no_scope

Table 5.3: Edge annotation for the sentence All of their children were born in Malaysia.

Training a dependency parser We adopt Dozat and Manning (2018)’s Biaffine depen-
dency parser for our task due to its simplicity and high accuracy.

The parser is adapted from Dozat and Manning (2017), an LSTM-based syntactic parser, to
generate graph-structured representations for semantic dependency parsing. It takes POS
tags, lemma- and character-level word embeddings as input and through a multilayer
BiLSTM as well as a single layer Forward Network (FNN) to learn to predict if there is
an edge between two tokens as well as the corresponding edge label. Then a biaffian
classifier is used to predict the existence of an edge and the edge label.

In our experiment, we fine-tune roberta-large (Liu et al., 2019) and take POS tags
and characters as feature embeddings11. The result can be found in Table 5.412. We use
Labeled Attachment Score (LAS) and Unlabeled Attachment Score (UAS) as the metrics.
They both are very common metrics for dependency parsing evaluation. The former
measures the percentage of correctly predicted head-dependency relationship between
words without considering the edge label, while the latter is more stringent in that it also

11The detailed hyperparameters can be found in Appendix B.2.
12Note that the dev/test sets in PMB4 and PMB5 are not comparable. We put it together to save space.

Additionally, the test_long split in PMB5 has not been manually corrected yet, so the gold dependency
annotation is not available.
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takes the correctness of edge label into account.

Models Dev Test Eval

UAS LAS UAS LAS UAS LAS

PMB4 98.8 95.7 98.7 95.4 98.7 94.4

PMB5 98.4 94.5 98.1 93.4 - -

Table 5.4: UAS and LAS for dependency parsing in our data in PMB4 and PMB5.

As can be seen from the table, our task is easier than other semantic dependency parsing
tasks. The high accuracy achieved by the model can enhance the accuracy of our mapping
procedure.

Mapping Precedure After obtaining the parsed scopes and the predicted token-node
alignment, our next step is to extract scope details and determine the assignment of
the predicted scope to the anticipated nodes. Given that neither piece of information
is gold, mismatches are expected. The mismatch is more common when it comes to
processing multibox graphs. For instance, the DRG for the sentence Not everybody wins!
contains 4 boxes and the dependency parse also indicates there are at least 4 boxes, but
the predicted scopeless DRG only contains 3.

To address this, we designed a decision tree to map the scope information back. We
first check how many boxes the predicted scopeless graph has. If it only has one box,
we connect all nodes to that box; otherwise, we process the scope assignment based on
the edge annotation and the number of nodes that a token-aligned subgraph has. If the
subgraph has one or multiple nodes that belong to the scope of the same box, or in other
words, the scope edge looks like either scope or scope_bx*n (n≥1), we connect each
node of that subgraph with the target box. Otherwise, if the dependency parse shows
that multiple nodes in a subgraph are connected with different boxes that are aligned
with the same token such as two NEGATION boxes introduced by universal quantifiers,
we then check if the number of boxes in the scopeless graph parses is consistent or not.
If the number of boxes in the am-parses and the dependency parses are the same, we
connect the nodes with their corresponding box index. However, if the number of boxes
is not the same, we connect all the nodes with the bottom box because in most cases, the
bottom box is the most likely one to assign the scope. If the number of nodes between
AM-parser and the biaffine dependency parser is inconsistent, we skip them. When
all other nodes are assigned scopes, we then check the scope of their parent nodes and
assign the same scope as their parent node.

We elaborate on the decision tree with the sentence All my cakes are delicious! In Table 5.5,
it shows the parsed scope edge labels, the head of each edge, and the aligned subgraphs
predicted by AM-Parser.

Since the graph contains multiple boxes, we first need to find out if there is any subgraph
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Figure 5.12: The decision tree for mapping the scope edges back to the scopeless DRGs

the nodes of which are all connected with one box. The scope edge label for token cake
is scope_b1_b1 meets the condition. Apparently, the dependency parser predicts that
there are two nodes, but AM-Parser only generates one node. No matter how many
nodes that subgraph contains, all of the nodes are connected with the b1, namely, the
second box, in the whole graph. In this case, we disregard the consistency between the
scope edge and the aligned subgraph. We also find the single-node subgraphs aligned
with my and are connected with a single box. This is also in line with the condition that
all nodes connect with the same box. Therefore, we connect the time.n.08 node with
the b2 or the third box in the graph, and person.n.01 node is connected with box
b1. Next, if the nodes in subgraphs connect with different boxes, as shown in the edge
prediction scope_b2_b1, we first check if the number of nodes is consistent with the
prediction of edge label. In this case, the number is inconsistent, because AM-Parser
predicts that delicious contains one node, while the dependency edge predicts that the
subgraph should have two nodes: one connects with box b1 and the other connects with
box b2. This inconsistency leads us to connect the node delicious.a.03 with the
bottom box, which is box b2. The resulting DRG is shown in Figure 5.13.
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ID Token Lemma Scope Edge Scope Head Aligned Subgraphs

0 START START root 0 box

1 All all no_scope 1
box boxNEGATION NEGATION

member

2 my my scope_b1 1
person.n.01 speakerEQUuser

3 cakes cake scope_b1_b1 1 cake.n.03

4 are be scope_b2 1 time.n.08 nowEQUtime

5 delicious delicious scope_b2_b1 1 delicious.a.02
Attribute

6 ! ! no_scope 0 -

Table 5.5: Predicted scope edges, scope head, and aligned nodes for the sentence All my
cakes are delicious!

Figure 5.13: The resulting DRG after scope recovery

5.6 Summary

To summarize, this chapter explains how our system learns the compositional and
non-compositional information of DRGs. In order to decompose DRGs, we propose
two simplified DRG variants, i.e., simplified DRG and scopeless DRG. We also remove
coreference triples and reverse certain invertible edges to allow more DRGs to be decom-
posed. We adopt AM-Parser, developed based on AM-Algebra, to learn the decomposed
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subgraphs and then map them back.

To resolve coreference, we first train AM-Parser to identify if a node is an anaphor/an-
tecedent node or not. We then connect the two nodes in postprocessing steps. As for
scope resolution, we propose two approaches. The symbolic one consists of three simple
heuristic rules, relying on the assumption that the children nodes inherit the scope infor-
mation from their parent nodes, while the neural-symbolic approach utilizes the edge
parses from an accurate dependency parser (Dozat and Manning, 2018). We design a
decision tree to map the scope edge back to the scopeless DRGs predicted by AM-Parser.
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Chapter 6

Results & Discussion

This chapter reports the results of the experiments we have conducted. We compare
the performance of our system with UDBoxer (Poelman et al., 2022) and other seq2seq
neural models including NeuralBoxer (van Noord et al., 2020), T5-Boxer, and DRS-MLM
(Wang et al., 2023). Additionally, we investigate the factors that hinder the performance
of a compositional parser, specifically focusing on reentrancies and graph scopes. Finally,
we perform an error analysis on graph parses with very low SMATCH scores.

6.1 General Results

Overall, we experimented with two simplified variants of DRG to make the graphs
decomposable. To map the non-decomposable parts, i.e., anaphora and scope, back to
the parsed meaning representation graphs, we proposed two solutions: (1) one symbolic
approach that purely relies on the assumption that children nodes inherit the scope
information from their parents; (2) one neuro-symbolic method that leverages the result
of a biaffine dependency parser and token-node alignment predicted by the AM-Parser.

Since the datasets are reconstructed and reshuffled in PMB5, we report the results
evaluated on PMB4 and PMB5 separately. Tables 6.5 and 6.2 present the outcomes of
four experiments conducted on the two releases. Only the predictions of test_long set
have ill-formed graphs, so we only report the error rate for this specific split.

As evident from our evaluation on PMB4 and PMB5 datasets, it is clear that AM-Parser,
trained with scopeless DRGs, demonstrates better performance in both the development
and test splits. Furthermore, the utilization of dependency edge information for scope
retrieval exhibits a slight advantage over the heuristics-based approach. More fine-
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grained results are reported in Appendix A. It is also worth noting that there is no big
difference between the SMATCH and SMATCH++ scores except in the test_long split in
PMB5.

Unsurprisingly, our system’s performance exhibited a substantial decline when evaluated
on the extended test_long split because the longer the sentence, the more possible
combinations of supertags and am-dependency trees, and therefore, more mistakes
might be made. Additionally, the sentences contain substantial proper nouns which
AM-Parer is not good at (see Error Analysis in Section 6.3).

ScopeMapping Experiments(Metrics) Dev Test Eval

P R F1 P R F1 P R F1

Heuristics

Scopeless 86.5 85.0 85.7 85.9 85.7 85.8 84.1 83.7 83.9
Scopeless(++) 86.4 84.9 85.7 85.8 85.5 85.6 84.1 83.7 83.9
Simplified 85.5 83.9 84.7 84.5 83.5 84.0 85.2 83.7 84.4
Simplified(++) 85.4 83.9 84.6 85.6 84.5 85.1 85.1 83.6 84.3

Dependency

Scopeless 86.9 85.4 86.2 86.4 86.2 86.3 84.5 84.1 84.3
Scopeless(++) 86.9 85.4 86.1 86.4 86.1 86.2 84.4 84.0 84.2
Simplified 85.6 84.1 84.8 85.7 84.7 85.2 85.0 83.6 84.3
Simplified(++) 85.5 84.0 84.7 85.6 84.5 85.1 85.1 83.6 84.4

Table 6.1: Performance Results of AM-parser on PMB 4.0.0: SMATCH++ (++) and
SMATCH.

ScopeMapping Experiments(Metrics) Dev Test Test Long

P R F1 P R F1 P R F1 Err

Heuristics

Scopeless 86.7 86.4 86.6 85.6 85.4 85.5 48.2 42.0 44.9 1.7%
Scopeless(++) 86.6 86.3 86.4 85.4 85.2 85.3 50.0 42.5 46.0 1.7%
Simplified 86.9 86.3 86.6 85.7 84.7 85.2 44.7 36.5 40.2 6.0%
Simplified(++) 86.8 86.2 86.5 84.5 85.5 85.0 43.6 36.1 39.2 6.0%

Dependency

Scopeless 87.3 87.0 87.2 85.8 85.7 85.7 48.2 40.2 43.9 3.4%
Scopeless(++) 87.1 86.9 87.0 85.7 85.5 85.6 50.9 42.5 46.3 3.4%
Simplified 86.9 86.3 86.6 85.8 84.7 85.3 45.1 30.9 36.7 14.7%
Simplified(++) 86.7 86.1 86.4 85.6 84.5 85.1 37.9 25.6 30.6 14.7%

Table 6.2: Performance Results of AM-parser on PMB 5.0.0: SMATCH++ (++) and
SMATCH

6.2 Comparison with baselines

Given that the dependency+scopeless configuration yields the most favorable results among
all the experiments, we employ its associated metrics for comparative analysis with other
symbolic or neural parsers.

As mentioned in 4.3, the output of seq2seq models is sequential SBNs, e.g., entity.n.01
NEGATION -1 time.n.08 EQU now right.a.01 AttributeOf -2 Time -1. To
have a fair comparison, we transform the SBNs to DRGs. Sometimes the generated pen-
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man output is legal but the node concept is not accepted by the SMATCH evaluation
script (Cai and Knight, 2013). For example, AM-Parser might generate ).n.01; T5
model might generate " William". In this case, we replace all nonacceptable nodes
with entity.n.01 or remove the inappropriate space. For the ill-formed graphs, we
set the output as (b0 / box) by default.

The results are presented in Table 6.5. Unsurprisingly, DRS-MLM pretrained with gold,
silver, and bronze data performs the best in general. However, despite the utilization
of a slightly larger training dataset in PMB5, the performance of all models, except
AM-parser, exhibits a decline. In particular, the T5 model experiences a substantial
decrease of approximately 10%, resulting from an error rate exceeding 20%. We postulate
that this decline can be attributed to the increased complexity of discourse connective
structures within DRGs in PMB5—a facet that poses a significant challenge for seq2seq
models. In contrast, our compositional model excels due to its capacity to learn structural
information during supertagging and dependency parsing training.

We can also see that AM-parser outperforms UD-Boxer and Neural-Boxer in both PMB4
and PMB5 if only the gold data is used in training. In PMB5, our parser even out-
performs Neural-Boxer trained with both silver and gold data, which indicates that
implicit linguistic knowledge does help the model learn and generalize structures more
effectively.

More importantly, because of the symbolic decoding approach used by am-parser, the
output is always legal, guaranteeing the well-formedness of DRGs. In PMB4, the fine-
tuned T5 model yields the best results in most of the metrics. The better performance
might be caused by the simplicity of the data and the high efficiency of the transformer-
based architecture. By contrast, in PMB5, we notice that T5 model has a very high error
rate (around 20%)13. Upon closer examination of the parsing results, we find that, in most
error cases, the model does not generate legal separators (e.g., <1, >1) but just generates
a single number. As a result, the script cannot assign the scope of connectives to the
nodes and a legal penman cannot be exported. Such a big discrepancy made between
two datasets might be caused by the increased complexity of the graph structures in
PMB5. The huge drop in parsing longer sentences is echoed with (Opitz and Frank, 2022)
who pointed out that T5 outperforms BART in short sentence AMR parsing.

In PMB5, all seq2seq models failed in longer sentences with a very high error rate. We
conducted a manual examination of the output generated by the largest model, DRS-
MLM. Within the test_long dataset, 4 out of 5 generated graphs were ill-formed. Among
these, over 10% contain cyclic subgraphs, while 50% of the errors were attributed to
issues with ill-formed sequential notations. These issues often manifested as nodes
lacking sense numbers or operators missing required arguments. Seq2seq models taking
input sentences as plain strings do not inherently encode structural information and thus

13We also fine-tuned a T5-Large model to check if results get better but the error rate remains 21% and F1
score only increases by 1%.
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Models Dev Test TestLong

P R F1 P R F1 P R F1

Neural-Boxer(G) 58.9 70.5 64.1 53.4 48.4 50.8 0 0 0
T5 Boxer(G) 90.9 60.6 72.7 67.2 67.2 67.2 0 0 0
Neural-Boxer(G+S) 94.2 74.2 83.1 79.7 79.7 79.7 0 0 0
DRS-MLM(G+S+B) 83.8 93.9 88.6 80.0 100.0 88.9 100 10.3 18.6

AM-Paser(Gold) 93.9 93.9 93.9 93.8 93.8 93.8 100 28.8 44.8

Table 6.6: SMATCH score on anaphora resolution of all models evaluated on PMB 5.0.0.
G, S, or B in parentheses refers to the dataset (Gold, Silver, Bronze) used for training.

cannot guarantee the grammaticality of the output. Especially when the input becomes
longer and graph complexity increases, the likelihood of errors in seq2seq model outputs
also rises.

Lastly, we find that if we adopt the more strict evaluation format (Wang et al., 2023), the
advantage of UD-Boxer in accuracy disappears. In PMB4, the SMATCH F score for the
test set drops from 82.0 to 73.8, far behind Neural-Boxer trained with only gold data (F =
79.3).

6.2.1 Anaphora

In PMB5, explicit anaphora information is available, and we are particularly interested
in assessing how effectively our system handles this specific linguistic phenomenon.
For the sake of readability, we will only present the SMATCH score in the text, and the
detailed results are listed in Table 6.6. The SMATCH score only calculates the precision,
recall, and F1 score between the predicted and gold anaphora triple pairs. Notably, our
system outperforms DRS-MLM by a margin of over 5%, despite DRS-MLM being the
top-performing model in overall DRS parsing.

In the test_long set, none of the models exhibit satisfactory performance. No ANA edge
is found in the transformed penman output of T5-Boxer or Neural-Boxer because those
sequential SBNs that contain ANA are filtered out due to their ill-formedness. Although
AM-Parser achieves a relatively low error rate, the recall and F-score for anaphora triples
remain very low. These results underscore the considerable challenge associated with
coreference resolution in longer texts.

6.2.2 Scope

Since scope is an important feature in DRT, we would also like to examine how well
our dependency parsing system performs regarding scope information. To evaluate the
performance, we calculate the SMATCH score between predicted and gold triples that
take member as the edge label. The results for PMB4 and PMB5 can be found in Table 6.7
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and 6.8 respectively. We include the scope results obtained through AM-Parser+heuristic
rules (labeled as AM-Parser-H) for comparison with the dependency parsing strategy
(labeled as AM-Parser-D).

In both tables, our AM-Parser+Dependency system outperforms all models trained with
only gold data except for T5-Boxer evaluated on the eval split. Notably, even the three
heuristic rules, despite their simplicity, still show competitive performance with those
more complex seq2seq models.

Models Dev Test Eval

P R F1 P R F1 P R F1

UD-Boxer(G) 81.4 78.4 79.9 81.9 79.3 80.6 81.1 77.8 79.4
Neural-Boxer(G) 84.7 74.6 79.3 85.5 76.4 80.7 83.0 72.2 77.2
T5 Boxer(G) 93.6 88.1 90.8 93.2 86.5 89.7 94.0 90.5 92.2
Neural-Boxer(G+S) 93.3 89.7 91.5 94.0 90.1 92.0 92.9 88.1 90.4

AM-Paser-D(G) 91.8 90.7 91.2 91.4 91.8 91.6 89.7 89.8 89.8
AM-Parser-H(G) 90.6 88.8 89.7 90.4 90.0 90.2 88.7 88.1 88.4

Table 6.7: SMATCH score on scope resolution of all models evaluated on PMB 4.0.0.

Models Dev Test TestLong

P R F1 P R F1 P R F1

Neural-Boxer(G) 86.3 74.6 80.0 85.6 73.1 78.8 9.2 66.0 16.1
T5 Boxer(G) 94.1 70.9 80.9 93.7 72.8 81.9 79.2 1.8 3.4
Neural-Boxer(G+S) 90.5 83.1 86.6 92.8 79.7 85.7 66.2 9.1 16.1
DRS-MLM(G+S+B) 95.6 91.3 93.4 95.5 89.8 92.5 86.9 5.1 9.6

AM-Paser-D(G) 91.3 91.2 91.2 90.9 90.9 90.9 60.4 50.1 54.8
AM-Parser-H(G) 90.8 90.0 90.4 90.6 90.0 90.3 59.8 51.7 55.3

Table 6.8: SMATCH score on scope resolution of all models evaluated on PMB 5.0.0.

As demonstrated in Figure 6.1, the majority of DRGs in the datasets consist of single-box
structures that have straightforward scope recovery. It would be valuable to assess model
performance specifically on multi-box graphs to check if the models can assign nodes to
specific scopes. Hence, we extract all multi-box graphs from the dev and test splits (and
eval split in PMB4). There are 517/3,540 multibox graphs in PMB4 evaluation datasets
and 403/2,175 in PMB5. Note that we exclude the test_long data from evaluation due to
its inclusion of examples with a high number of boxes, resulting in significantly lower
scope recovery scores. The high error rates of baselines might introduce bias into the
averaged scope score as well.

Table 6.9 and 6.10 show the SMATCH score only on multibox graphs overall (left) and
specifically the SMATCH score on scope information (right). To calculate the SMATCH
scope score, we only consider the triples that have member as edges. To gain a higher
score, the model must predict the child node, the edge name, and the parent box correctly.

The SMATCHSCOPE in both table does show a similar trend as Table 6.7 and 6.8: our
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dependency-based approach can effectively map the lost scope back to the scopeless
DRG parses. AM-parser with the dependency parses beats all baselines that are trained
exclusively with gold data in both PMB4 and PMB5. In PMB5, the result is even better
than Neural-Boxer trained with both silver and gold data.

Additionally, it is also observed that the general SMATCH score for multi-box DRGs is
lower than DRGs overall, indicating that scope assignment does add more difficulty in
DRG parsing.

(a) PMB4 (b) PMB5

Figure 6.1: Distribution of Multibox Graphs in PMB4 and PMB5

Models SMATCH SMATCHScope

P R F1 P R F1

UD-Boxer 58.2 46.9 51.9 60.3 50.0 54.6
Neural-Boxer(Gold) 63.7 46.8 54.0 68.3 51.5 58.7
T5 Boxer(Gold) 66.6 53.6 59.4 71.5 59.2 64.8
Neural-Boxer(+Silver) 70.0 59.8 64.5 74.0 64.8 69.1

AM-Paser-D(Gold) 64.4 55.8 59.8 69.0 62.1 65.4
AM-Parser-H(Gold) 63.1 54.6 58.5 65.2 57.1 60.9

Table 6.9: SMATCH score on scope resolution of all models evaluated on PMB 4.0.0
multibox graphs.

6.2.3 Reentrancies

Similar to AMR, DRG is graphs rather than trees because it allows reentrancies. In
Table 6.11, we present the SMATCH reentrancy scores achieved by various models in all
of the evaluation datasets in PMB4 and PMB5 respectively.

As noted by Damonte et al. (2017), reentrancies pose a significant challenge for seq2seq
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Models SMATCH SMATCHScope

P R F1 P R F1

Neural-Boxer(Gold) 81.4 62.3 70.6 83.8 63.6 72.3
T5 Boxer(Gold) 90.6 12.2 21.5 75.7 3.9 7.4
Neural-Boxer(+Silver) 91.2 75.9 82.8 92.0 76.2 83.3
DRS-MLM(E) 94.8 81.5 87.7 95.7 81.7 88.2

AM-Paser-D(Gold) 84.0 81.9 83.0 85.2 82.9 84.0
AM-Parser-H(Gold) 81.4 79.4 80.4 80.9 76.1 78.4

Table 6.10: SMATCH score on scope resolution of all models evaluated on PMB 5.0.0
multibox graphs.

models. Given that our compositional parser incorporates linguistic knowledge, our
research aims to empirically investigate its performance in handling reentrancies in DRG
parsing.

By reentrancies in DRG, we do not mean the reentrancies introduced by scope because
otherwise, every concept node can be the case. We also ignore the reentrancies caused
by invertible edges such as PartOf, Part, FeatureOf, and Feature, because the
reentrancy can disappear if we invert the triple. In other words, we only consider the
reentrancies caused by non-scope and non-invertible edges. In PMB4, out of a total of
10,670 examples, 1,273 exhibit reentrancies, with 361 of them originating from the dev,
test, and eval splits. In PMB5, among the 11,377 examples, 1,257 contain reentrancies,
and 158 of these instances are drawn from the dev and test splits.

The evaluation script employed is based on Damonte et al. (2017), with minor modifica-
tions to exclude scope reentrancies from consideration.

Models PMB4 PMB5

P R F1 P R F1

UD-Boxer(G) 69.6 (48.5) 59.1 (9.5) 64.0 (15.9) - - -
Neural-Boxer(G) 76.3 (51.0) 76.0 (26.9) 65.6 (35.2) 79.3 (58.5) 61.3 (4.6) 69.2 (43.5)
T5 Boxer(G) 89.1 (69.8) 76.4 (52.6) 82.3 (60.0) 90.5 (77.8) 63.3 (43.2) 74.5 (55.6)
Neural-Boxer(G+S) 90.2 (78.9) 82.3 (65.9) 86.1 (71.8) 89.7 (83.6) 78.2 (57.5) 83.6 (68.2)
DRS-MLM (G+S+B) - - - 93.6 (86.0) 84.9 (70.9) 89.0 (77.7)

AM-Parser-D(G) 78.2 (70.5) 74.9 (26.6) 76.5 (38.6) 82.4 (70.6) 81.6 (53.4) 82.0 (60.8)

Table 6.11: SMATCH Overall and Reentrancy Scores (in parentheses) for Graphs Con-
taining Reentrancies in all Evaluation datasets of PMB4 and PMB5.

As depicted in Table 6.11, when trained solely on gold data and evaluated on PMB4,
AM-Parser achieves the second-highest ranking, following T5 Boxer. We attribute this
outcome partly to AM-Parser’s potential limitation in predicting coreference relations,
which are known to be pivotal triggers for reentrancies. In PMB4, coreference is not
explicitly annotated. To make more graphs decomposable for training data, we just
remove most of the reentrancy edges. In contrast, within the context of PMB5, AM-Parser
exhibits superior performance compared to its gold-based baselines. Nonetheless, it
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Reentrancies AM-Parser(G) Neural-Boxer(G) T5-Boxer(G) Neural-Boxer(G+S) DRS-MLM(G+S+B)

Coref 84.7 (64.4) 74.1 (55.2) 72.1 (68.6) 85.5 (79.3) 90.7 (82.9)
Coordination 73.8 (46.9) 53.9 (22.1) 75.3 (38.9) 75.3 (58.8) 86.5 (70.4)
Control 84.1 (70.9) 71.7 (57.5) 70.3 (69.1) 86.5 (88.0) 94.8 (90.0)
Relative clause 82.5 (40.0) 57.6 (40.0) 64.8 (21.1) 60.3 (17.1) 92.4 (73.5)
Time 81.7 (67.0) 65.6 (67.0) 77.6 (59.2) 80.0 (59.3) 80.7 (70.5)
Verbalization 86.1 (60.6) 74.3 (31.4) 89.8 (50.0) 80.0 (56.5) 91.8 (78.7)
Miscellaneous 80.1 (30.3) 65.5 (13.3) 54.3 (0.0) 67.1 (13.3) 83.4 (37.0)

Table 6.12: SMATCH score of all models for different types of reentrancies in PMB5.

is noteworthy that a performance gap persists between AM-Parser and the other two
models trained on larger datasets in predicting reentrancies (60.8 vs. 68.2/77.7).

We then did a more fine-grained analysis by categorizing reentrancies into different lin-
guistic structures. Our primary focus lies on 158 examples from PMB5 because our model
trained on PMB5 incorporates coreference resolution and can provide a more objective
comparison with other baselines. We subsequently categorize these 158 instances into 7
groups based on Szubert et al. (2020) but it has been tailored to suit the data in PMB. We
automatically categorize the examples based on POS and NER tags from spaCy pipeline
followed by manual correction. The categories include coreference, control, coordination,
relative clauses, verbalization, time, and miscellaneous. The first four categories are
common linguistic constructions. Verbalization refers to the phenomenon that a non-
predicate element, such as an adjective or a gerund, does not have explicit arguments
in sentences but requires node arguments in meaning representation graphs. Time is
a special category in PMB where a complex time expression introduces reentrancies.
Miscellaneous includes 7 examples: they are adjunct control (2), presupposition (2), and
compound noun phrase (3). Because of their limited number, we group them together.
Examples can be found in Table 6.14 at the end of the chapter.

Overall, AM-Parser still outperforms other gold-only neural models in all reentrancy
types. It performs particularly better in predicting the time reentrancy and relative clause
than Neural-Box trained with both silver and gold data. In Table 6.12, Miscellaneous and
Coordination seem hard to parse. After having a close look at the parse errors, we find
that these two groups are typically multi-box graphs. For example, for the coordination
sentence Is this baby a he or a she?, there are three NEGATION boxes introduced by or.
However, all models fail to predict the correct number of boxes. Apart from structural
complexity, because there are only 7 examples in the Miscellaneous group, one tiny error
can make a big difference in the result.

Yao and Koller (2022) and Kim and Linzen (2020) mentioned that seq2seq models fail
in structural generalization which means the model cannot derive meaningful repre-
sentations from a new combination of learned structures (e.g., PP recursion). However,
according to Table 6.12, more data used in training does lead to better structural predic-
tion. This hypothesis gains credibility owing to the substantial presence of overlapping
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vocabulary and sentence structures observed across different partitions of the PMB
datasets. Whether more data forces the seq2seq models to be more structure-aware or
generalize structurally will be explored in future work.

6.3 Error Analysis

In this section, we analyze errors from two levels: macro-level and micro-level, where
the former refers to the analysis based on various important aspects of DRGs and the
latter focuses on the analysis of individual cases.

6.3.1 Macro Level

Table 6.13 presents a detailed overview of the AM-Parser’s performance on the PMB5
test set. Notably, our findings on other splits and datasets, including PMB4, exhibit
consistent trends. For the sake of brevity, we include a single table here, while additional
results for other datasets can be referenced in Appendix A.

In the table, No Discourse, No Operators, No Senses evaluates the DRGs without
considering discourse edges, operator edges, and sense number respectively. Names,
Negations, Discourses, Constants, Roles, Members, and Concepts only evaluate the
performance of the model in predicting named entities, negation edge, discourse edge,
constant node, roles, box memberships, concept nodes respectively. More specifically, the
evaluation counts how many target nodes/edges are correctly predicted. Con_ metrics
specify the performance of the model in predicting specific POS, i.e., noun, adjective,
adverb, and verb, in concepts. The _triple metrics evaluate the prediction of specific
types of triples. In other words, it evaluates the combination of nodes and edges.

As can be found from the table, our parser performs relatively worse in the Names

category and Discourse category. For sense disambiguation, it is challenging for AM-
Parser to disambiguate the senses of adjectives and verbs. This also explains why if we
ignore the sense number of the node and reevaluate the output, the F score increases by
2%.

6.3.2 Micro-Level

We filter to 60 graph parses that have a SMATCH F score below 0.6. What seems very
challenging to AM-Parser is proper nouns. 11/16 parses that have an F score below 0.5
contain at least one proper noun. Another challenge is the ellipsis. Different from AMR
where ellipsis introduces reentrancies, in DRG, the omitted node is made explicit in the
graph, which makes the node-token alignment challenging.

Some errors are caused by imperfection of the data, such as node-token alignment errors
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Category P R F

Smatch 85.8 85.7 85.7
No Roles 87.3 87.1 87.2
No Discourse 85.8 85.7 85.7
No Operators 85.8 85.6 85.7
No Senses 79.0 78.9 79.0
Names 80.1 77.9 79.0
Negation 98.8 82.5 89.9
Discourse 88.9 72.7 80.0
Roles 89.5 89.9 89.7
Ana 93.8 93.8 93.8
Members 97.6 98.0 97.8
Concepts 84.7 84.9 84.8
Con_noun 87.5 88.0 87.7
Con_adj 76.1 76.8 76.4
Con_adv 83.0 77.2 80.0
Con_verb 76.4 75.6 76.0
Roles_triple 81.7 81.6 81.7
Ana_triple 93.8 93.8 93.8
Names_triple 72.9 73.1 73.0
Members_triple 90.8 90.8 90.8
Operators_triple 89.9 89.2 89.5
Discourses_triple 86.2 71.9 78.4

Table 6.13: Evaluation results of AM-Parser+Dependency on PMB5 test split

and examples themselves. For example, in Figure 6.2, three NEGATION boxes are
aligned with a meaningless comma. All rhetorical questions are annotated in this way.
Given that in most cases, punctuations do not represent meaning, this special case of the
comma is probably not learned by AM-Parser. There are also examples that are purely
names or website addresses such as Yedinstvo or The El Aqsa Intifadah which stand as a
single DRG.

NEGATION <1 % ,
NEGATION <1 %

flower.n.01 % This flower
time.n.08 EQU now % is
beautiful.a.01 AttributeOf -2 Time -1 % beautiful

NEGATION <2 %
NEGATION <1 % n’t

beautiful.a.01 Time +1 AttributeOf +2 %
time.n.08 EQU now % is
entity.n.01 % it?

Figure 6.2: SBN for the sentence The flower is beautiful, isn’t it?
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6.4 Summary

In summary, in this chapter, we evaluate the compositional AM-Parser and its symbolic or seq2seq
baseline models. We find that

• When data is limited, our AM-Parser+Dependency system outperforms most of the purely
symbolic or purely neural seq2seq models in PMB dataset particularly in PMB5. It also
shows robust performance in scope assignment, coreference resolution, and the parsing of
reentrancies.

• Both our heuristics-based and dependency-based approach can effectively map the scope
back and achieve competitive performance or even surpass the seq2seq models with larger
training data.

• A compositional model shows more stable and better performance as well as generates more
grammatical graphs when the graphs become more complex in size and structure.

• However, AM-Parser still faces challenges in parsing proper nouns, ellipsis, and complex
multibox graphs.
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Category Count Example DRG

Coreference 44 She fell off her horse.

Control 21 I want to marry Martyna.

Coordination 21 I’m hungry and thirsty.

Relative clause 8 I was rereading the letters you sent to me.

Verbalization 31 Dublin is my favourite town.

Time 29 I was born on 18th March 1994.

Table 6.14: Examples of different reentrancy types and their count in PMB5 dev and test
set.
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Chapter 7

Conclusion

In this chapter, we answer the research questions we raised and point out future directions for
further research.

7.1 Overall Assessment

This work is the first attempt to parse DRGs compositionally with performance as competitive as
other neural baselines. Before addressing our research questions, we summarize the strengths and
weaknesses of our system. Our system demonstrates several notable advantages.

• It effectively handles both compositional and non-compositional aspects (i.e., scope and
anaphora resolution) of DRS.

• When training data is limited, it consistently achieves competitive performance, often
outperforming strong baselines in both the PMB4 and PMB5 datasets.

• It exhibits a remarkably low error rate.

• Furthermore, it showcases robust performance when parsing more complex, longer, or OOD
inputs.

However, we must acknowledge certain limitations:

• It might not perform optimally with sentences containing proper nouns or ellipses.

• It relies on token-node alignment provided by PMB. In cases where SemBank lacks such
annotations, they must be acquired before training.

• The system comprises two models: AM-Parser and Dozat and Manning (2018)’s biaffine
dependency parser, which makes it somewhat cumbersome.

We list some possible solutions to some of the drawbacks mentioned above in Section 7.3.
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7.2 Overall Conclusion

We now turn to answering the research questions we proposed in Chapter 1.

Q1: Regarding compositionality, how can DRGs be simplified to achieve compositionality
by AM-Algebra while retaining linguistic knowledge and preserving essential structural
information?

To tackle the first question, we propose new simplified DRG formats, which we call Simplified
DRG and Scopeless DRG. The former format keeps the necessary scope edges by assuming that
children nodes inherit the scope information from their parents. The latter format only keeps
the scope edges that connect isolate subgraphs. In other words, the second format keeps as few
reentrancy edges introduced by scope as possible. The scope information of simplified DRG can
mostly recovered by three simple rules.

To allow more graphs to be decomposable, we add a special token START to be aligned with the
top box. We also reverse invertible edges and remove coreference edges to reduce reentrancy
edges.

After the simplification of graphs, over 90% of the DRGs can be decomposed for training. They
also contain the key semantic information of the graph. The removed edges can also be recovered
after postprocessing.

Q2: Regarding non-compositionality, how to recover the non-decomposable information, more
specifically, anaphora and scope assignment?

Regarding coreference resolution, we incorporate this task into the training of AM-Parser. We
introduce a new POS tag p to mark the antecedent and anaphor nodes. The F1 score for detecting
them achieves over 93% in PMB5.

To resolve the scope assignment, we propose two approaches. The symbolic one follows the same
assumption of DRG simplification. It only contains three rules, but it performs well overall. By
contrast, the other approach relies on the parse result from a dependency parser. Since AM-Parser
generates token-node alignment, the dependency parser predicts the relationship between tokens
in terms of scope. We then map the scope back to DRGs by leveraging the two outputs. This
approach works particularly well in multi-box DRGs. In both PMB data, the Smatch F score of
scope of our system shows a competitive result as Neural-Boxer trained with silver and gold data
(PMB4 65.4 vs. 69.1; PMB5 84.0 vs. 83.3).

Q3: How effectively does a compositional approach perform in comparison to its non-
compositional neural or symbolic counterparts?

We find that with limited training data, our parser performs well in both PMB4 and PMB5. It
ranks second among all models trained with only gold data in PMB4 and beats all other parsers
in PMB5. An interesting observation is that, despite PMB5 having a larger training set, most
seq2seq models, with the exception of our compositional parser, exhibit comparatively weaker
performance in PMB5. This discrepancy can be attributed to the structural complexity of PMB5.
Our parser, however, demonstrates remarkable robustness and maintains high performance levels
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in the face of this increased structural complexity presented by PMB5. It even shows superior
performance than Neural-Boxer trained with both silver and gold data.

Additionally, only our compositional parser performs relatively well when parsing longer input
sequences. All seq2seq models, even including the SOTA model DRS-MLM, fail in parsing long
sentences with a low error rate.

7.3 Directions for future work

There is still much space for improvement in our system. As we look ahead to future research
endeavors, it is worth mentioning the following interesting directions.

Multilingual compositional DRS parsing PMB is a parallel multilingual corpus. Both
PMB4 and PMB5 contain DRS representations in German, Dutch, and Italian. PMB5 also contains
some examples in Chinese and Japanese. If our parser works well in English, it is also expected to
work in other languages.

Joint learning Since AM-Parser contains a dependency parser by , it is possible to combine AM-
tree dependency parsing and scope edge dependency parsing by joint learning. The dependency
parser is required to generate both the dependency tree and the scope-related dependency graph.
It would also be helpful to take advantage of an off-the-shelf NER tagger to help the model parse
proper nouns.

Exploring Compositional Generalization of our system and its neural counterparts
Dankers et al. (2022) find that neural networks exhibit increased compositional abilities with larger
training datasets in machine translation tasks. However, the study also highlights the instability of
model performance under these conditions. Building upon these findings, we find it interesting to
investigate how the incorporation of silver and bronze data into the training process affects the
performance and stability of seq2seq models in DRG parsing. To answer this question, a dataset
to test compositional generalization is needed. Since PMB has a relatively small vocabulary, it is
common to observe a significant overlap in terms of words across different sentences (e.g., She is
eight months pregnant in the train split vs. Mary is two months pregnant. in the test split). The lexical
similarity provides a favorable condition for designing a corpus to test structural complexity.
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Appendix A

Evaluation Results of All Experiments

A.1 Results of PMB4

This section reports the result details of experiments on PMB4.

Metric Dev Test Eval

P R F P R F P R F

Smatch 86.9 85.4 86.2 86.4 86.2 86.3 84.5 84.1 84.3
No Roles 88.1 86.6 87.4 87.7 87.6 87.7 86.1 85.7 85.9
No Discourse 86.9 85.4 86.2 86.4 86.2 86.3 84.5 84.1 84.3
No Operators 86.9 85.5 86.2 86.5 86.3 86.4 84.6 84.2 84.4
No Senses 79.3 77.9 78.6 79.1 78.9 79.0 77.7 77.3 77.5
Names 90.7 89.2 89.9 90.8 89.5 90.1 88.0 88.2 88.1
Negation 97.1 89.8 93.3 94.2 85.3 89.5 89.6 92.6 91.1
Discourse 92.2 74.0 82.1 85.3 77.3 81.1 84.7 62.5 71.9
Roles 90.6 89.8 90.2 90.1 89.9 90.0 87.9 88.2 88.0
Members 98.3 97.4 97.8 97.4 98.4 97.9 97.2 97.9 97.5
Concepts 86.0 84.9 85.5 86.0 86.5 86.2 83.3 83.4 83.3
Con_noun 90.4 89.4 89.9 89.5 90.5 90.0 87.1 87.5 87.3
Con_adj 78.8 77.7 78.3 80.1 80.4 80.3 74.3 74.6 74.4
Con_adv 90.5 90.5 90.5 80.6 79.4 80.0 83.8 83.8 83.8
Con_verb 71.6 70.3 70.9 74.8 73.6 74.2 71.6 70.8 71.2
Roles_triple 82.3 81.4 81.9 82.8 82.8 82.8 79.3 79.7 79.5
Names_triple 88.0 88.1 88.0 85.9 86.3 86.1 82.8 84.5 83.6
Members_triple 91.8 90.7 91.2 91.4 91.8 91.6 89.7 89.9 89.8
Operators_triple 92.0 87.3 89.6 90.7 88.2 89.4 90.7 86.0 88.3
Discourses_triple 90.0 72.7 80.4 78.9 71.7 75.1 80.4 60.7 69.2

Table A.1: SMATCH Scores for AM-Parser+Dependency trained on scopeless DRGs on PMB4
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Metric Dev Test Eval

P R F P R F P R F

Smatch 86.5 85.0 85.7 85.9 85.7 85.8 84.1 83.7 83.9
No Roles 87.7 86.2 87.0 87.3 87.1 87.2 85.7 85.3 85.5
No Discourse 86.5 85.0 85.7 85.9 85.7 85.8 84.1 83.7 83.9
No Operators 86.5 85.0 85.8 86.0 85.8 85.9 84.1 83.8 83.9
No Senses 78.8 77.5 78.1 78.6 78.5 78.5 77.5 77.1 77.3
Names 90.7 89.2 89.9 90.8 89.5 90.1 88.0 88.2 88.1
Negation 97.1 89.8 93.3 94.2 85.3 89.5 89.6 92.6 91.1
Discourse 92.2 74.0 82.1 85.3 77.3 81.1 84.7 62.5 71.9
Roles 90.6 89.8 90.2 90.1 89.9 90.0 87.9 88.2 88.0
Members 98.3 97.4 97.8 97.4 98.4 97.9 97.2 97.9 97.5
Concepts 86.0 84.9 85.5 86.0 86.5 86.2 83.3 83.4 83.3
Con_noun 90.4 89.4 89.9 89.5 90.5 90.0 87.1 87.5 87.3
Con_adj 78.8 77.7 78.3 80.1 80.4 80.3 74.3 74.6 74.4
Con_adv 90.5 90.5 90.5 80.6 79.4 80.0 83.8 83.8 83.8
Con_verb 71.6 70.3 70.9 74.8 73.6 74.2 71.6 70.8 71.2
Roles_triple 82.4 81.6 82.0 82.7 82.6 82.6 79.3 79.7 79.5
Names_triple 87.5 87.5 87.5 86.0 86.4 86.2 81.7 83.5 82.6
Members_triple 90.6 88.8 89.7 90.4 90.0 90.2 88.7 88.1 88.4
Operators_triple 92.0 87.3 89.6 91.0 88.5 89.8 90.7 86.0 88.3
Discourses_triple 90.0 72.7 80.4 78.9 71.7 75.1 80.9 61.0 69.5

Table A.2: SMATCH Scores for AM-Parser+Heurestics trained on scopeless DRGs on PMB4

Metric Dev Test Eval

P R F P R F P R F

Smatch 85.5 83.9 84.7 85.7 84.7 85.2 85.2 83.7 84.4
No Roles 86.9 85.3 86.1 87.0 86.0 86.5 86.7 85.2 85.9
No Discourse 85.5 83.9 84.7 85.7 84.7 85.2 85.1 83.7 84.4
No Operators 85.5 84.0 84.8 85.8 84.8 85.3 85.2 83.8 84.5
No Senses 78.2 76.9 77.5 78.5 77.5 78.0 78.2 76.9 77.5
Names 88.4 88.8 88.6 89.8 89.0 89.4 92.8 89.7 91.2
Negation 97.4 59.4 73.8 92.4 57.1 70.5 92.4 70.2 79.8
Discourse 84.3 44.8 58.5 84.1 49.3 62.2 78.7 46.3 58.3
Roles 88.8 89.6 89.2 89.4 89.1 89.3 87.5 87.9 87.7
Members 97.7 97.6 97.6 97.2 97.8 97.5 97.7 97.4 97.5
Concepts 84.8 84.3 84.5 85.4 85.5 85.4 84.8 84.0 84.4
Con_noun 89.0 88.7 88.9 89.2 89.8 89.5 89.1 88.0 88.6
Con_adj 79.6 77.5 78.5 79.4 79.4 79.4 76.0 76.3 76.2
Con_adv 84.7 85.7 85.2 80.3 83.8 82.0 81.9 86.8 84.3
Con_verb 70.6 69.6 70.1 72.8 71.4 72.1 71.7 70.8 71.3
Roles_triple 80.9 80.8 80.9 81.8 81.8 81.8 80.7 81.0 80.8
Names_triple 87.2 87.0 87.1 88.0 87.5 87.8 88.0 87.9 88.0
Members_triple 90.3 88.8 89.5 90.6 90.3 90.5 90.5 89.9 90.2
Operators_triple 91.7 86.6 89.1 90.9 89.2 90.0 91.4 86.3 88.8
Discourses_triple 89.2 72.7 80.1 89.6 72.0 80.2 89.3 71.9 80.3

Table A.3: SMATCH Scores for AM-Parser+Heurestics trained on simplified DRGs on PMB4
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Metric Dev Test Eval

P R F P R F P R F

Smatch 85.6 84.1 84.8 85.7 84.7 85.2 85.0 83.6 84.3
No Roles 87.0 85.5 86.3 87.0 85.9 86.5 86.6 85.1 85.8
No Discourse 85.6 84.1 84.8 85.7 84.7 85.2 85.0 83.6 84.3
No Operators 85.7 84.2 84.9 85.8 84.8 85.3 85.1 83.7 84.4
No Senses 78.4 77.0 77.7 78.5 77.5 78.0 78.1 76.8 77.4
Names 88.4 88.8 88.6 89.8 89.0 89.4 92.8 89.7 91.2
Negation 97.4 59.4 73.8 92.4 57.1 70.5 92.4 70.2 79.8
Discourse 84.3 44.8 58.5 84.1 49.3 62.2 78.7 46.3 58.3
Roles 88.8 89.6 89.2 89.4 89.1 89.3 87.5 87.9 87.7
Members 97.7 97.6 97.6 97.2 97.8 97.5 97.7 97.4 97.5
Concepts 84.8 84.3 84.5 85.4 85.5 85.4 84.8 84.0 84.4
Con_noun 89.0 88.7 88.9 89.2 89.8 89.5 89.1 88.0 88.6
Con_adj 79.6 77.5 78.5 79.4 79.4 79.4 76.0 76.3 76.2
Con_adv 84.7 85.7 85.2 80.3 83.8 82.0 81.9 86.8 84.3
Con_verb 70.6 69.6 70.1 72.8 71.4 72.1 71.7 70.8 71.3
Roles_triple 80.9 80.8 80.9 81.8 81.8 81.8 80.7 81.0 80.8
Names_triple 85.8 87.4 86.6 85.2 86.5 85.8 87.6 86.2 86.9
Members_triple 90.7 90.0 90.4 90.7 90.7 90.7 90.3 89.6 90.0
Operators_triple 90.9 86.4 88.6 90.8 87.8 89.3 92.0 86.3 89.1
Discourses_triple 83.0 44.9 58.2 78.8 45.7 57.9 76.9 46.9 58.2

Table A.4: SMATCH Scores for AM-Parser+Dependency trained on simplified DRGs on PMB4

dev test eval

P R F P R F P R F

Smatch 83.6 73.9 78.4 84.0 75.2 79.3 81.0 70.7 75.5
No Roles 85.6 75.7 80.4 86.0 77.0 81.3 83.2 72.6 77.5
No Discourse 83.6 73.9 78.4 83.9 75.2 79.3 81.0 70.7 75.5
No Operators 83.7 74.0 78.6 84.2 75.4 79.6 81.3 71.0 75.8
No Senses 83.2 73.5 78.0 83.6 74.9 79.0 80.4 70.2 74.9
Names 86.8 73.8 79.8 82.6 75.2 78.7 87.1 71.3 78.4
Negation 88.0 66.8 76.0 86.9 70.0 77.5 75.0 69.4 72.1
Discourse 87.3 57.3 69.2 77.2 58.7 66.7 72.7 50.0 59.3
Roles 85.8 74.5 79.8 87.5 76.7 81.8 83.6 70.7 76.6
Members 98.2 86.1 91.8 98.9 87.7 93.0 98.0 84.4 90.7
Concepts 65.9 57.8 61.6 67.4 59.8 63.4 63.7 54.9 59.0
Con_noun 75.6 66.7 70.9 76.2 67.8 71.8 72.6 62.9 67.4
Con_adj 26.5 23.9 25.1 34.9 29.9 32.2 28.0 24.1 25.9
Con_adv 68.1 56.0 61.4 69.1 55.9 61.8 56.1 47.1 51.2
Con_verb 43.2 36.5 39.6 44.5 39.5 41.9 43.0 36.4 39.4
Roles_triple 68.8 60.4 64.3 70.5 62.4 66.2 66.6 57.3 61.6
Names_triple 81.1 69.3 74.8 74.0 67.4 70.5 77.4 64.2 70.2
Members_triple 84.7 74.6 79.3 85.5 76.4 80.7 83.0 72.2 77.2
Operators_triple 93.7 83.2 88.1 94.3 85.8 89.9 91.4 81.2 86.0
Discourses_triple 84.5 55.9 67.3 75.0 57.3 65.0 70.0 50.5 58.7

Table A.5: SMATCH Scores for Neural-Boxer trained on gold SBNs in PMB4
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dev test eval

P R F P R F P R F

Smatch 75.1 71.8 73.4 75.6 72.1 73.8 74.5 70.6 72.5
No Roles 80.1 76.6 78.3 80.8 77.1 78.9 79.7 75.5 77.5
No Discourse 75.1 71.8 73.4 75.6 72.1 73.8 74.5 70.6 72.5
No Operators 76.0 72.6 74.2 76.3 72.8 74.5 75.3 71.3 73.2
No Senses 74.3 71.0 72.6 74.7 71.2 72.9 73.8 69.9 71.8
Names 14.1 12.5 13.2 16.7 14.9 15.8 14.7 12.4 13.4
Negation 90.9 85.6 88.2 94.9 75.9 84.3 88.4 81.8 85.0
Discourse 75.0 6.2 11.5 100.0 6.7 12.5 91.7 13.8 23.9
Roles 63.0 58.1 60.5 63.5 58.1 60.7 62.6 57.0 59.7
Members 94.5 92.2 93.4 94.5 92.4 93.4 94.7 91.9 93.3
Concepts 67.4 65.8 66.6 68.1 66.6 67.4 67.1 65.1 66.1
Con_noun 71.7 68.3 70.0 72.4 69.7 71.0 72.0 67.8 69.9
Con_adj 58.8 67.0 62.7 58.9 69.4 63.7 56.9 65.3 60.8
Con_adv 34.8 64.3 45.2 26.7 51.5 35.2 31.6 52.9 39.6
Con_verb 60.3 55.8 58.0 61.2 55.3 58.1 58.7 55.5 57.1
Roles_triple 59.1 57.4 58.3 59.4 57.4 58.4 58.3 56.1 57.2
Names_triple 37.5 33.7 35.5 38.6 35.2 36.8 37.6 32.5 34.9
Members_triple 81.4 78.4 79.9 81.9 79.3 80.6 81.1 77.8 79.4
Operators_triple 78.0 77.4 77.7 80.0 79.7 79.9 79.1 77.6 78.3
Discourses_triple 68.8 5.9 10.9 100.0 6.8 12.8 89.6 14.1 24.4

Table A.6: SMATCH Scores for UD-Boxer in PMB4

dev test eval

P R F P R F P R F

Smatch 92.3 87.1 89.6 91.3 86.0 88.6 92.6 88.3 90.4
No Roles 93.4 88.0 90.6 92.7 87.3 89.9 93.6 89.3 91.4
No Discourse 92.3 87.1 89.6 91.3 86.0 88.6 92.5 88.3 90.4
No Operators 92.4 87.1 89.7 91.4 86.0 88.6 92.6 88.4 90.5
No Senses 92.6 87.3 89.8 91.5 86.2 88.8 92.7 88.5 90.5
Names 91.7 87.5 89.6 95.0 86.4 90.5 92.5 89.0 90.7
Negation 98.6 74.9 85.1 94.8 90.9 92.8 98.6 82.9 90.1
Discourse 95.5 87.5 91.3 92.5 77.5 84.4 93.2 90.7 91.9
Roles 92.5 86.8 89.6 91.8 85.3 88.5 93.7 88.1 90.8
Members 98.9 93.1 95.9 98.7 92.5 95.5 99.1 94.5 96.8
Concepts 86.4 81.3 83.8 85.2 79.8 82.4 86.8 82.8 84.7
Con_noun 92.4 86.8 89.5 90.4 84.6 87.4 92.8 88.6 90.6
Con_adj 77.0 73.7 75.3 77.4 74.2 75.8 73.8 73.1 73.5
Con_adv 86.4 83.3 84.8 89.8 77.9 83.5 91.2 76.5 83.2
Con_verb 67.2 62.9 65.0 67.7 63.4 65.5 68.2 64.6 66.4
Roles_triple 85.1 79.9 82.4 84.0 78.5 81.2 85.9 81.2 83.5
Names_triple 90.4 86.6 88.5 91.7 84.0 87.7 88.4 85.1 86.7
Members_triple 93.7 88.2 90.8 93.0 87.4 90.1 94.0 89.7 91.8
Operators_triple 96.4 90.5 93.3 95.7 90.6 93.0 95.9 91.9 93.9
Discourses_triple 95.3 88.6 91.9 92.0 78.7 84.8 92.7 90.8 91.7

Table A.7: SMATCH Scores for T5 trained on gold SBNs on PMB4
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dev test eval

P R F P R F P R F

Smatch 92.3 89.1 90.7 92.6 88.8 90.6 91.6 86.9 89.2
No Roles 93.4 90.1 91.7 93.7 89.9 91.8 93.0 88.2 90.6
No Discourse 92.3 89.1 90.7 92.6 88.8 90.6 91.6 86.9 89.2
No Operators 92.4 89.1 90.7 92.6 88.9 90.7 91.7 87.0 89.3
No Senses 92.4 89.1 90.7 92.6 88.8 90.6 91.6 86.9 89.2
Names 90.9 85.0 87.9 91.0 82.4 86.5 93.3 84.6 88.7
Negation 98.3 92.5 95.3 97.5 90.0 93.6 96.4 88.4 92.2
Discourse 95.6 89.6 92.5 91.7 88.0 89.8 93.1 83.8 88.2
Roles 92.5 88.7 90.5 93.0 88.0 90.5 91.5 85.6 88.5
Members 99.0 95.1 97.0 99.2 94.9 97.0 98.9 93.6 96.2
Concepts 84.9 81.6 83.3 86.5 82.8 84.6 84.4 79.8 82.0
Con_noun 90.3 87.1 88.7 91.3 87.3 89.3 89.8 84.9 87.3
Con_adj 72.3 67.3 69.7 76.4 74.1 75.2 70.4 66.3 68.3
Con_adv 87.5 75.0 80.8 85.2 76.5 80.6 93.0 77.9 84.8
Con_verb 68.9 66.9 67.9 72.0 69.0 70.5 68.2 65.3 66.7
Roles_triple 85.4 81.9 83.6 86.3 82.3 84.2 84.2 79.5 81.8
Names_triple 89.1 84.0 86.5 87.0 79.3 83.0 89.9 82.4 86.0
Members_triple 93.3 89.7 91.5 94.0 90.1 92.0 92.9 88.1 90.4
Operators_triple 96.4 93.2 94.8 96.3 92.7 94.5 96.8 91.5 94.1
Discourses_triple 96.3 90.5 93.3 91.8 88.1 89.9 94.1 87.2 90.5

Table A.8: SMATCH Scores for Neural-Boxer trained on gold and silver SBNs on PMB4
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A.2 Results of PMB5

This section reports the result details of experiments on PMB5. The tables here are larger than the
ones in the previous section because they also contain evaluation of the anaphora pairs.

dev test test_long

P R F P R F P R F

Smatch 86.7 86.4 86.6 85.6 85.4 85.5 48.2 42.0 44.9
No Roles 87.9 87.6 87.8 87.0 86.8 86.9 50.7 44.2 47.2
No Discourse 86.7 86.4 86.6 85.6 85.4 85.5 48.3 42.0 44.9
No Operators 86.7 86.4 86.5 85.5 85.3 85.4 48.3 42.0 45.0
No Senses 80.1 79.8 79.9 78.7 78.5 78.6 47.6 41.4 44.3
Names 85.7 82.8 84.2 80.1 77.9 79.0 - - -
Negation 98.1 92.0 95.0 98.8 82.5 89.9 - - -
Discourse 90.9 82.4 86.4 88.9 72.7 80.0 - - -
Roles 91.6 90.8 91.2 89.5 89.9 89.7 - - -
Ana 93.9 93.9 93.9 93.8 93.8 93.8 - - -
Members 97.8 98.0 97.9 97.6 98.0 97.8 - - -
Concepts 86.2 86.0 86.1 84.7 84.9 84.8 - - -
Con_noun 89.4 89.5 89.5 87.5 88.0 87.7 - - -
Con_adj 76.1 75.2 75.6 76.1 76.8 76.4 - - -
Con_adv 84.7 76.9 80.6 83.0 77.2 80.0 - - -
Con_verb 76.2 75.8 76.0 76.4 75.6 76.0 - - -
Roles_triple 84.0 83.6 83.8 81.7 81.5 81.6 48.4 42.5 45.2
Ana_triple 93.9 93.9 93.9 93.8 93.8 93.8 100.0 28.8 44.8
Names_triple 78.8 78.4 78.6 72.9 73.2 73.0 35.3 28.2 31.4
Members_triple 90.3 89.5 89.9 90.3 89.7 90.0 59.6 51.6 55.3
Operators_triple 90.3 90.1 90.2 89.4 88.7 89.0 72.8 62.5 67.3
Discourses_triple 90.6 83.9 87.1 86.2 71.9 78.4 66.1 32.7 43.7

Table A.9: SMATCH Scores for AM-Parser+Heurestics trained on scopeless DRGs in PMB5 (-
means there is an error when running the evaluation script and the result is unavailable)
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dev test test_long

P R F P R F P R F

Smatch 86.9 86.3 86.6 85.7 84.7 85.2 44.7 36.5 40.2
No Roles 88.1 87.5 87.8 87.0 85.9 86.5 48.0 39.1 43.1
No Discourse 86.9 86.3 86.6 85.7 84.7 85.2 44.8 36.6 40.3
No Operators 86.9 86.3 86.6 85.7 84.6 85.1 45.4 37.0 40.8
No Senses 80.1 79.6 79.9 78.9 78.0 78.4 44.1 36.0 39.7
Names 82.6 79.2 80.8 82.6 79.2 80.8 - - -
Negation 98.3 57.0 72.2 98.3 57.0 72.2 - - -
Discourse 78.1 64.9 70.9 78.1 64.9 70.9 - - -
Roles 90.4 89.6 90.0 90.4 89.6 90.0 - - -
Ana 100.0 93.8 96.8 100.0 93.8 96.8 - - -
Members 96.9 97.0 96.9 96.9 97.0 96.9 - - -
Concepts 85.2 84.8 85.0 85.2 84.8 85.0 - - -
Con_noun 87.9 88.1 88.0 87.9 88.1 88.0 - - -
Con_adj 76.2 76.5 76.4 76.2 76.5 76.4 - - -
Con_adv 80.7 80.7 80.7 80.7 80.7 80.7 - - -
Con_verb 77.8 75.1 76.4 77.8 75.1 76.4 - - -
Con_pron 0.0 0.0 0.0 0.0 0.0 0.0 - - -
Roles_triple 82.2 81.0 81.6 82.2 81.0 81.6 45.4 38.3 41.6
Ana_triple 100.0 93.8 96.8 100.0 93.8 96.8 93.2 39.0 55.0
Names_triple 73.7 73.8 73.7 73.7 73.8 73.7 34.2 30.0 32.0
Members_triple 90.6 90.3 90.4 90.6 90.3 90.5 58.1 46.3 51.5
Operators_triple 89.7 88.9 89.3 89.7 88.9 89.3 64.0 53.5 58.3
Discourses_triple 79.1 66.8 72.4 79.1 66.8 72.4 55.1 15.6 24.3

Table A.10: SMATCH Scores for AM-Parser+Heurestics trained on simplified DRGs in PMB5 (-
means there is an error when running the evaluation script and the result is unavailable)
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Dev Test Test Long

Category P R F P R F P R F

Smatch 87.3 87.0 87.2 85.8 85.7 85.7 48.6 40.5 44.1
No Roles 88.5 88.2 88.3 87.3 87.1 87.2 - - -
No Discourse 87.3 87.0 87.2 85.8 85.7 85.7 - - -
No Operators 87.2 86.9 87.1 85.8 85.6 85.7 - - -
No Senses 80.5 80.2 80.4 79.0 78.9 79.0 - - -
Names 85.7 82.8 84.2 80.1 77.9 79.0 - - -
Negation 98.1 92.0 95.0 98.8 82.5 89.9 - - -
Discourse 90.9 82.4 86.4 88.9 72.7 80.0 - - -
Roles 91.6 90.8 91.2 89.5 89.9 89.7 - - -
Ana 93.9 93.9 93.9 93.8 93.8 93.8 - - -
Members 97.8 98.0 97.9 97.6 98.0 97.8 - - -
Concepts 86.2 86.0 86.1 84.7 84.9 84.8 - - -
Con_noun 89.4 89.5 89.5 87.5 88.0 87.7 - - -
Con_adj 76.1 75.2 75.6 76.1 76.8 76.4 - - -
Con_adv 84.7 76.9 80.6 83.0 77.2 80.0 - - -
Con_verb 76.2 75.8 76.0 76.4 75.6 76.0 - - -
Roles_triple 83.8 83.4 83.6 81.7 81.6 81.7 48.5 40.7 44.3
Ana_triple 93.9 93.9 93.9 93.8 93.8 93.8 100.0 27.8 43.5
Names_triple 79.2 78.8 79.0 72.9 73.1 73.0 35.1 26.8 30.4
Members_triple 91.3 91.2 91.3 90.8 90.8 90.8 60.6 50.2 54.9
Operators_triple 90.2 90.0 90.1 89.9 89.2 89.5 73.0 60.3 66.0
Discourses_triple 90.6 83.9 87.1 86.2 71.9 78.4 65.9 31.3 42.4

Table A.11: SMATCH Scores for AM-Parser+Dependency trained on scopeless DRGs in PMB5 (-
means there is an error when running the evaluation script and the result is unavailable)
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dev test test_long

P R F P R F P R F

Smatch 86.9 86.3 86.6 85.8 84.7 85.3 45.1 30.9 36.7
No Roles 88.1 87.4 87.7 84.0 87.2 85.6 - - -
No Discourse 86.9 86.3 86.6 85.8 84.8 85.3 - - -
No Operators 86.9 86.3 86.6 86.3 85.3 85.8 - - -
No Senses 80.2 79.7 80.0 78.9 77.9 78.4 - - -
Names 85.5 82.2 83.8 82.6 79.2 80.8 - - -
Negation 98.2 72.9 83.7 98.3 57.0 72.2 - - -
Discourse 86.5 75.3 80.5 78.1 64.9 70.9 - - -
Roles 91.2 90.6 90.9 90.4 89.6 90.0 - - -
Ana 94.3 100.0 97.1 100.0 93.8 96.8 - - -
Members 97.5 97.8 97.7 96.9 97.0 96.9 - - -
Concepts 86.1 86.0 86.1 85.2 84.8 85.0 - - -
Con_noun 88.8 88.9 88.9 87.9 88.1 88.0 - - -
Con_adj 76.6 76.1 76.3 76.2 76.5 76.4 - - -
Con_adv 83.1 75.4 79.0 80.7 80.7 80.7 - - -
Con_verb 78.4 77.8 78.1 77.8 75.1 76.4 - - -
Roles_triple 83.5 83.0 83.3 82.2 81.0 81.6 82.2 81.0 81.6
Ana_triple 94.3 100.0 97.1 100.0 93.8 96.8 100.0 27.8 30.4
Names_triple 79.4 78.4 78.9 74.2 74.4 74.3 35.1 26.8 30.4
Members_triple 91.3 91.2 91.2 90.7 90.4 90.5 60.6 50.2 54.9
Operators_triple 89.3 89.5 89.4 89.8 89.0 89.4 73.0 60.3 66.0
Discourses_triple 85.7 77.7 81.5 78.7 66.4 72.1 65.9 31.3 42.4

Table A.12: SMATCH Scores for AM-Parser+Dependency trained on simplified DRGs in PMB5 (-
means there is an error when running the evaluation script and the result is unavailable)
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dev test test_long

P R F P R F P R F

Smatch 71.2 92.9 80.6 72.6 91.9 81.1 2.4 74.8 4.7
No Roles 72.0 93.9 81.5 73.5 93.0 82.1 - - -
No Discourse 71.2 92.9 80.6 72.6 91.9 81.1 - - -
No Operators 71.2 92.9 80.6 72.6 91.9 81.1 - - -
No Senses 73.0 95.3 82.7 74.3 94.0 83.0 - - -
Names 73.6 88.9 80.6 75.4 83.0 79.0 - - -
Negation 0.0 0.0 0.0 0.0 0.0 0.0 - - -
Discourse 0.0 0.0 0.0 0.0 0.0 0.0 - - -
Roles 72.2 93.3 81.4 74.2 92.2 82.3 - - -
Ana 63.6 95.5 76.4 68.8 68.8 68.8 - - -
Members 75.5 99.1 85.7 77.2 98.4 86.5 - - -
Concepts 66.4 87.2 75.4 67.9 86.6 76.1 - - -
Con_noun 70.9 92.5 80.3 71.8 90.7 80.2 - - -
Con_adj 56.0 72.1 63.0 63.9 80.4 71.2 - - -
Con_adv 60.0 79.6 68.4 61.4 87.5 72.2 - - -
Con_verb 52.0 70.0 59.7 54.4 71.9 61.9 - - -
Roles_triple 65.8 86.6 74.8 66.5 85.4 74.8 1.2 57.3 2.4
Ana_triple 60.6 90.9 72.7 67.2 67.2 67.2 0.0 0.0 0.0
Names_triple 74.4 89.7 81.4 76.9 84.6 80.5 1.7 46.6 3.3
Members_triple 70.9 94.1 80.9 72.8 93.7 81.9 1.8 79.2 3.4
Operators_triple 73.7 96.8 83.7 74.1 94.8 83.2 2.3 85.1 4.4
Discourses_triple 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table A.13: SMATCH Scores for T5-Boxer trained on gold SBNs in PMB5 (- means there is an
error when running the evaluation script and the result is unavailable)
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dev test test_long

P R F P R F P R F

Smatch 72.6 83.6 77.7 70.6 82.1 75.9 8.8 59.7 15.4
No Roles 74.4 85.7 79.6 72.3 84.2 77.8 - - -
No Discourse 72.6 83.6 77.7 70.6 82.1 75.9 - - -
No Operators 72.8 83.8 77.9 70.7 82.3 76.1 - - -
No Senses 73.0 84.1 78.2 70.9 82.5 76.3 - - -
Names 62.7 77.5 69.3 59.5 74.7 66.2 - - -
Negation 80.4 93.3 86.4 73.0 91.8 81.3 - - -
Discourse 49.4 82.4 61.8 39.0 85.7 53.6 - - -
Roles 73.0 86.5 79.2 71.6 85.6 78.0 - - -
Ana 72.7 57.1 64.0 50.0 53.3 51.6 - - -
Members 84.5 98.7 91.0 83.0 98.1 89.9 - - -
Concepts 59.4 69.4 64.0 57.9 68.4 62.7 - - -
Con_noun 66.4 77.0 71.3 65.2 76.7 70.5 - - -
Con_adj 28.6 37.6 32.5 28.1 33.9 30.7 - - -
Con_adv 41.5 58.7 48.6 35.1 57.1 43.5 - - -
Con_verb 41.9 47.9 44.7 39.8 46.7 43.0 - - -
Roles_triple 60.8 71.2 65.6 58.2 68.9 63.1 7.0 50.5 12.3
Ana_triple 70.5 58.9 64.1 48.4 53.4 50.8 0.0 0.0 0.0
Names_triple 56.2 68.7 61.8 49.8 61.6 55.1 5.3 42.2 9.4
Members_triple 74.5 86.3 80.0 73.0 85.5 78.8 9.2 66.0 16.1
Operators_triple 81.8 91.8 86.5 80.1 90.1 84.8 9.8 72.4 17.2
Discourses_triple 49.8 79.3 61.2 39.3 82.9 53.3 15.2 69.2 24.9

Table A.14: SMATCH Scores for Neural-Boxer trained on gold SBNs in PMB5 (- means there is an
error when running the evaluation script and the result is unavailable)
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dev test test_long

P R F P R F P R F

Smatch 81.9 89.1 85.4 79.1 91.1 84.7 5.5 60.0 15.4
No Roles 83.0 90.3 86.5 80.1 92.2 85.7 - - -
No Discourse 81.9 89.1 85.4 79.1 91.1 84.7 - - -
No Operators 82.0 89.2 85.5 79.2 91.2 84.7 - - -
No Senses 84.2 91.6 87.7 80.2 92.3 85.8 - - -
Names 53.9 66.9 59.7 61.7 85.6 71.7 - - -
Negation 86.2 97.5 91.5 84.0 91.8 87.7 - - -
Discourse 77.6 97.1 86.3 80.5 98.4 88.6 - - -
Roles 80.9 90.6 85.5 76.5 91.3 83.2 - - -
Ana 78.8 100 88.1 81.2 81.2 81.2 - - -
Members 89.9 98.2 93.9 84.0 98.3 90.6 - - -
Concepts 72.8 79.4 76.0 72.7 84.9 78.3 - - -
Con_noun 78.9 86.2 82.4 76.6 89.6 82.5 - - -
Con_adj 59.7 64.4 62.0 59.6 72.0 65.2 - - -
Con_adv 61.5 75.5 67.8 50.9 70.7 59.2 - - -
Con_verb 53.2 57.2 55.2 62.7 71.5 66.8 - - -
Roles_triple 72.4 79.9 76.0 72.1 84.4 77.8 3.4 33.0 6.2
Ana_triple 74.2 94.2 83.1 79.7 79.7 79.7 0.0 0.0 0.0
Names_triple 60.0 73.3 66.0 60.8 82.6 70.1 1.1 14.2 2.1
Members_triple 83.0 90.5 86.6 79.7 92.8 85.7 5.8 55.2 10.5
Operators_triple 86.2 92.0 89.0 82.3 94.5 88.0 6.6 61.1 11.9
Discourses_triple 75.5 96.4 84.7 79.7 97.1 87.5 10.7 65.0 18.3

Table A.15: SMATCH Scores for Neural-Boxer trained on gold+silver SBNs in PMB5 (- means
there is an error when running the evaluation script and the result is unavailable)
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dev test test_long

P R F P R F P R F

Smatch 90.4 94.7 92.5 88.7 94.4 91.5 5.5 81.6 10.2
No Roles 91.3 95.5 93.3 89.6 95.3 92.4 - - -
No Discourse 90.4 94.6 92.5 88.7 94.4 91.5 - - -
No Operators 90.4 94.7 92.5 88.8 94.4 91.5 - - -
No Senses 91.9 96.2 94.0 90.4 96.1 93.2 - - -
Names 88.3 92.0 90.1 83.7 88.4 86.0 - - -
Negation 92.4 99.5 95.9 85.5 100 92.2 - - -
Discourse 89.4 100 94.4 89.6 100 94.5 - - -
Roles 89.8 94.4 92.0 88.3 94.2 91.1 - - -
Ana 93.9 83.8 88.6 100 80.0 88.9 - - -
Members 94.6 99.2 96.9 93.2 99.4 96.2 - - -
Concepts 86.3 90.5 88.4 84.2 89.8 86.9 - - -
Con_noun 89.7 94.2 91.9 87.5 93.3 90.3 - - -
Con_adj 76.4 81.0 78.6 75.2 83.2 79.0 - - -
Con_adv 81.5 88.3 84.8 77.2 88.0 82.2 - - -
Con_verb 76.1 78.6 77.4 74.7 78.5 76.5 - - -
Roles_triple 86.0 90.1 88.0 83.4 88.8 86.0 3.7 66.9 7.0
Ana_triple 90.9 81.1 85.7 100 80.0 88.9 9.1 73.3 16.2
Names_triple 88.5 92.2 90.3 84.9 89.4 87.1 3.9 71.8 7.3
Members_triple 91.3 95.6 93.4 89.8 95.5 92.5 5.1 86.4 9.6
Operators_triple 92.4 97.7 95.0 90.4 97.4 93.7 4.7 79.5 8.9
Discourses_triple 89.2 99.7 94.1 88.8 99.2 93.7 8.7 97.9 16.0

Table A.16: SMATCH Scores for DRS-MLM trained on gold+silver+bronze SBNs in PMB5 (-
means there is an error when running the evaluation script and the result is unavailable)



Appendix B

B.1 Hyperparameters in AM-Parser

The hyperparameters used in the experiments that show the best performance on the scopeless
SBN training data are summarized in Table B.1.

Hyperparameter Value
Activation function tanh
Optimizer Adam
Learning rate 0.001
Epochs 100
Early Stopping 20
Dim of lemma embeddings 64
Dim of POS embeddings 32
Dim of NE embeddings 16
Minimum lemma frequency 7
Hidden layers in all MLPs 1
Hidden units in LSTM (per direction) 256
Hidden units in edge existence MLP 256
Hidden units in edge label MLP 256
Hidden units in supertagger MLP 1024
Hidden units in lexical label tagger MLP 1024
Layer dropout in LSTMs 0.35
Recurrent dropout in LSTMs 0.4
Input dropout 0.35
Dropout in edge existence MLP 0.0
Dropout in edge label MLP 0.0
Dropout in supertagger MLP 0.4
Dropout in lexical label tagger MLP 0.4

Table B.1: Common hyperparameters used in all experiments in AM-Parser.
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B.2 hyperparameters of (Dozat and Manning, 2018)

We adopt the same configuration of the model except we only take character and tags into em-
bedding and we fine-tune a RoBERTa-large model instead of BiLSTM. The hyperparameter table
below is copied from Dozat and Manning (2018) Table 2.

Parameter Value

Hidden Sizes
Word/Glove/POS/Lemma/Char 100
GloVe linear 125
Char LSTM 1 @ 400
Char linear 100
BiLSTM 3 @ 600
Arc/Label 600

Dropout Rates (drop prob)
Word/GloVe/POS/Lemma 20%
Char LSTM (FF/recur) 33%
Char linear 33%
BiLSTM (FF/recur) 45%/25%
Arc/Label 25%/33%

Loss & Optimizer
Interpolation (λ) .025
L2 regularization 3e−9

Learning rate 1e−3

Adam β1 0
Adam β2 .95

Table B.2: Final hyperparameter configuration in Dozat and Manning (2018).
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