Skip to content
master
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

README.md

Meta-Weight-Net

NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for noisy labels). The implementation of class imbalance is available at https://github.com/xjtushujun/Meta-weight-net_class-imbalance.

================================================================================================================================================================

This is the code for the paper: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting
Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng* To be presented at NeurIPS 2019.

If you find this code useful in your research then please cite

@inproceedings{han2018coteaching,
  title={Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting},
  author={Shu, Jun and Xie, Qi and Yi, Lixuan and Zhao, Qian and Zhou, Sanping and Xu, Zongben and Meng, Deyu},
  booktitle={NeurIPS},
  year={2019}
}

Setups

The requiring environment is as bellow:

  • Linux
  • Python 3+
  • PyTorch 0.4.0
  • Torchvision 0.2.0

Running Meta-Weight-Net on benchmark datasets (CIFAR-10 and CIFAR-100).

Here is an example:

python train_WRN-28-10_Meta_PGC.py --dataset cifar10 --corruption_type unif(flip2) --corruption_prob 0.6

The default network structure is WRN-28-10, if you want to train with ResNet32 model, please reset the learning rate delay policy.

A stable version is relased.

python MW-Net.py --dataset cifar10 --corruption_type unif(flip2) --corruption_prob 0.6

Acknowledgements

We thank the Pytorch implementation on glc(https://github.com/mmazeika/glc) and learning-to-reweight-examples(https://github.com/danieltan07/learning-to-reweight-examples).

Contact: Jun Shu (xjtushujun@gmail.com); Deyu Meng(dymeng@mail.xjtu.edu.cn).

About

NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for noisy labels).

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.