
Indexing in Relational Databases

Sebastian Ernst, PhD
Course: Databases II, EAIiIBISIS.Ii8K.5dfa09851a120.22

1



Database indexing



Database indexing

• An index is a structure which accelerates data lookup in a table.
• An index is defined for specific attributes, called index keys or search keys.
• A dense index contains all values; a sparse one contains only some.
• As most things, choosing indexes is a matter of compromise and judgement: they

may accelerate data lookup (reads), but require rebuilding and balancing on every
insert, update or delete.

2



Indexing in PostgreSQL

Index types supported by PostgreSQL:

• B-trees (default)
• hash
• GiST/SP-GiST
• GIN

To create a simple index:

CREATE INDEX test1_id_index ON test1 (id);

3

https://en.wikipedia.org/wiki/B-tree


Observing indexes in action

• The EXPLAIN command shows the execution plan of a statement.
• The ANALYZE command collects statistics about the contents of tables and stores

the results in the pg_statistic system catalog.
• EXPLAIN ANALYZE runs the command and provides actual execution statistics.

Note that the command will actually be executed in this case.

4



Index types



B-trees

• Can be used for domains which have an ordering function. . .
• . . . e.g., when search keys can be compared using: <, <=, =, >=, >
• Also applicable: BETWEEN, IN, IS (NOT) NULL
• Can retrieve sorted data (more on that later).

5



Hash-based indexes

• Only support the equality comparison operator =, i.e. can be only used to find
records with exact value of an attribute.

• Create by adding USING hash to the CREATE INDEX statement:

CREATE INDEX name ON table
USING hash (column);

6



GiST

• GiST (Generalised Search Trees) is an infrastructure that allows implementation of
various indexing strategies for various types of data.

• Out of the box, GiST supports indexing of multidimensional data and use of
geometric operators (via SP-GiST).

• Example – retrieve 10 closest locations:

SELECT * FROM places
ORDER BY location <-> point ‘(101,456)’
LIMIT 10;

7

https://www.postgresql.org/docs/current/static/functions-geometry.html


GIN

• GIN provides “inverted indexes” for indexing of non-atomic data.
• GIN also supports user-defined indexing strategies.
• For example, out of the box PostgreSQL supports strategies for one-dimensional

arrays and their operators.

8

https://www.postgresql.org/docs/9.6/static/functions-array.html


Advanced index usage



B-tree indexes vs. patterns

• B-tree indexes can be used for pattern matching (LIKE, ~) iff pattern is a constant
anchored to the beginning of the string:

• col LIKE 'foo%'
• col ~ 'ˆfoo'
• col LIKE '%bar'

• Also applicable to case-insensitive operators (ILIKE, ~*), but only if pattern starts
with characters not affected by upper/lowercase conversion.

9



Multi-column indexes

Sometimes, we often need queries with WHERE clauses concerning more than one
attribute:

SELECT * FROM test2
WHERE major = 23
AND minor = 42;

In such case, a multi-column index can be useful:

CREATE INDEX test2_mm_idx
ON test2 (major, minor);

Such indexes can also be used for queries concerning a subset of search key attributes.

10

https://www.postgresql.org/docs/9.6/static/indexes-multicolumn.html


Combining indexes

• A multi-column index can be used if constraints on column values use the AND
logical operator.

• PostgreSQL can also use multiple indexes in one query, or use one index for
multiple vaues.

• Individual indexes are scanned and bitmaps of matching records are created. Later,
these bitmaps are combined using operators from the WHERE clause, e.g. AND or OR.

11



Ordered indexes

• A B-tree index can provide results in a given order.
• By default, search key values are ordered ascending, with nulls at the end, but this

can be changed:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

• An index can be used for queries with ORDER BY clauses identical with that used
for its creation, or one that’s completely reversed.

12



Unique indexes

• An index can enforce that values in a column are unique (or that combinations of
values are – for multi-column indexes).

• NULL values are never considered identical.
• Unique indexes are created using the CREATE UNIQUE INDEX command.

13



Indexes on expressions

Search keys do not need to include only columns – they can also include expressions.

If an application often performs a query like:

SELECT * FROM test1 WHERE lower(col1) ='value';

it may be advisable to create an index on that expression:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

14



Partial indexes

An index can cover only some rows in a table.

For instance, if we want to log network requests, but only index those from outside of
our local subnet, an appropriate index may be used:

CREATE INDEX access_log_client_ip_ix
ON access_log (client_ip)
WHERE NOT

(client_ip > inet '192.168.100.0' AND
client_ip < inet '192.168.100.255');

15



Indexes and collations

• An index only supports a single collation for a given column.
• Constants are automatically cast onto the appropriate collation.
• If values of different collations are to be compared, an index can be built for that

collation:

CREATE INDEX test1c_content_y_index
ON test1c (content COLLATE "y");

16


	Database indexing
	Index types
	Advanced index usage

