Indexing in Relational Databases

Sebastian Ernst, PhD
Course: Databases Il, EAIIBISIS.IiI8K.5dfa09851a120.22



Database indexing



Database indexing

= An index is a structure which accelerates data lookup in a table.

= An index is defined for specific attributes, called index keys or search keys.

= A dense index contains all values; a sparse one contains only some.

= As most things, choosing indexes is a matter of compromise and judgement: they
may accelerate data lookup (reads), but require rebuilding and balancing on every
insert, update or delete.



Indexing in PostgreSQL

Index types supported by PostgreSQL:

= B-trees (default)
= hash

= GiST/SP-GiST
= GIN

To create a simple index:

CREATE INDEX testl_id_index ON testl (id);


https://en.wikipedia.org/wiki/B-tree

Observing indexes in action

= The EXPLAIN command shows the execution plan of a statement.

= The ANALYZE command collects statistics about the contents of tables and stores
the results in the pg_statistic system catalog.

= EXPLAIN ANALYZE runs the command and provides actual execution statistics.
Note that the command will actually be executed in this case.



Index types



Can be used for domains which have an ordering function. ..

= . ..e.g., when search keys can be compared using: <, <=, =, >=, >
Also applicable: BETWEEN, IN, IS (NOT) NULL

= Can retrieve sorted data (more on that later).



Hash-based indexes

= Only support the equality comparison operator =, i.e. can be only used to find
records with exact value of an attribute.

= Create by adding USING hash to the CREATE INDEX statement:

CREATE INDEX name ON table
USING hash (column);



= GiST (Generalised Search Trees) is an infrastructure that allows implementation of
various indexing strategies for various types of data.

= Out of the box, GiST supports indexing of multidimensional data and use of
geometric operators (via SP-GiST).

= Example — retrieve 10 closest locations:

SELECT * FROM places
ORDER BY location <-> point ‘(101,456)°
LIMIT 10;


https://www.postgresql.org/docs/current/static/functions-geometry.html

= GIN provides “inverted indexes” for indexing of non-atomic data.

= GIN also supports user-defined indexing strategies.
= For example, out of the box PostgreSQL supports strategies for one-dimensional
arrays and their operators.


https://www.postgresql.org/docs/9.6/static/functions-array.html

Advanced index usage




B-tree indexes vs. patterns

= B-tree indexes can be used for pattern matching (LIKE, ~) iff pattern is a constant
anchored to the beginning of the string:
= col LIKE 'foo%'
= col ~ '"“foo'

109, 1

U o

= Also applicable to case-insensitive operators (ILIKE, ~*), but only if pattern starts
with characters not affected by upper/lowercase conversion.



Multi-column indexes

Sometimes, we often need queries with WHERE clauses concerning more than one
attribute:

SELECT * FROM test2
WHERE major = 23
AND minor = 42;

In such case, a multi-column index can be useful:

CREATE INDEX test2_mm_idx

ON test2 (major, minor);

Such indexes can also be used for queries concerning a subset of search key attributes.

10


https://www.postgresql.org/docs/9.6/static/indexes-multicolumn.html

Combining indexes

= A multi-column index can be used if constraints on column values use the AND
logical operator.

= PostgreSQL can also use multiple indexes in one query, or use one index for
multiple vaues.

= Individual indexes are scanned and bitmaps of matching records are created. Later,
these bitmaps are combined using operators from the WHERE clause, e.g. AND or OR.

11



Ordered indexes

= A B-tree index can provide results in a given order.
= By default, search key values are ordered ascending, with nulls at the end, but this

can be changed:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

= An index can be used for queries with ORDER BY clauses identical with that used

for its creation, or one that's completely reversed.

12



= An index can enforce that values in a column are unique (or that combinations of
values are — for multi-column indexes).

= NULL values are never considered identical.

= Unique indexes are created using the CREATE UNIQUE INDEX command.

13



Indexes on expressions

Search keys do not need to include only columns — they can also include expressions.
If an application often performs a query like:

SELECT * FROM testl WHERE lower(coll) ='value';

it may be advisable to create an index on that expression:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

14



Partial indexes

An index can cover only some rows in a table.

For instance, if we want to log network requests, but only index those from outside of
our local subnet, an appropriate index may be used:

CREATE INDEX access_log_client_ip_ix
ON access_log (client_ip)
WHERE NOT
(client_ip > inet '192.168.100.0' AND
client_ip < inet '192.168.100.255');

15



Indexes and collations

= An index only supports a single collation for a given column.
= Constants are automatically cast onto the appropriate collation.

= |f values of different collations are to be compared, an index can be built for that
collation:

CREATE INDEX testlc_content_y_index
ON testlc (content COLLATE "y");

16



	Database indexing
	Index types
	Advanced index usage

