
GIS & Co.

Sebastian Ernst, PhD

Processing Spatial Data in Databases and Beyond

What we need to store

• ATM name,

• opening hours,

• location

ATM database

Create statement
ATM database

CREATE TABLE atms (
 id int(11) AUTO_INCREMENT,
 name varchar(30),
 working_hours varchar(10),
 lat float,
 lon float,
)

Find all ATMs within area
ATM database

SELECT
 id, name, lat, lon
FROM
 atms
WHERE
 lat > 50.068902 AND
 lat < 50.063255 AND
 lon > 19.913750 AND
 lon < 19.923878

But how do we handle this?
ATM database

Spatial data
What is spatial data?

• Spatial data usually contains two components:

• spatial component – geometry: location, shape

• attribute component

• Also called geospatial data or georeferenced data.

Types of geometry layers

• raster layers:

• area is divided into a grid of
equally-sized ‘pixels’

• each field is assigned a value

• vector layers:

• objects are described using
basic geometric shapes (point,
line, polygon)

Spatial data

source: National Coastal Data Development Center

Spatial data
Types of geometric primitives

Spatial data
Which of these are proper linestrings?

Coordinate reference systems

• Spherical systems (degrees) vs.
planar systems (meters)

• Catalogued by EPSG (European
Petroleum Survey Group)

• Referred to using SRIDs

• Common SRIDs: EPSG codes
(format: EPSG:xxxx)

Spatial data

source: National Oceanic and Atmospheric Administration

Spherical CRSs

• Locations defined by providing two
coordinates (latitude and longitude) in
degrees

• Sometimes: also elevation (in meters)

• Can express any location on Earth…

• …but pretty useless for
measurements: “What is the distance
from Krakow to Katowice in degrees?”

• Most popular spherical CRS:
EPSG:4326 (WGS-84)

Spatial data

https://en.wikipedia.org/wiki/World_Geodetic_System?wprov=sfti1

Planar CRSs

• Project a certain area onto X/Y
(isometric) coordinates, usually in
meters (sometimes, also Z for
elevation)

• Enable easy measurements

• Precision varies

Spatial data Four zones of the Polish 2000 Coordinate System (PUWG 2000)

zone 5 (EPSG:2176)

zone 6 (EPSG:2177)

zone 7 (EPSG:2178)

zone 8 (EPSG:2179)

Precision of planar CRSs

• Polish CS 1965 (EPSG:3120,
EPSG:2172–2175): distortion up to
20 cm/km (0.2 ‰)

• Polish CS 1992 (EPSG:2180):
distortion up to 90 cm/km (0.9 ‰)

• Polish CS 2000 (EPSG:2176–
2179): up to 7.7 cm/km (0.077 ‰)

• Universal Transverse Mercator
(60 zones): below 1 cm/km (1 ‰)

Spatial data

Well-known text (WKT)

• Simple, text representation of
vector geometries

• Designed to be human-readable

• Has a binary counterpart: WKB
(Well-known binary)

• Often used inside SQL queries or
when browsing spatial data in
non-visual interfaces

Spatial data formats
GEOMETRYCOLLECTION(POINT(4 6),LINESTRING(4 6,
7 10))
POINT ZM (1 1 5 60)
POINT M (1 1 80)
POINT EMPTY
MULTIPOLYGON EMPTY
TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
TIN (((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0,
0 1 0, 1 1 0, 0 0 0)))
POLYHEDRALSURFACE Z (PATCHES
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 0 0, 0 1 0, 0 1 1, 0 0 1, 0 0 0)),
 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
 ((1 1 1, 1 0 1, 0 0 1, 0 1 1, 1 1 1)),
 ((1 1 1, 1 0 1, 1 0 0, 1 1 0, 1 1 1)),
 ((1 1 1, 1 1 0, 0 1 0, 0 1 1, 1 1 1))
)

EWKT/EWKB

• Variation of WKT/WKB
introduced by PostGIS

• Adds SRID, e.g.:  
SRID=4326;POINT(-44.3 60.1)

• Supports up to four ordinate
values (XYZM)

Spatial data formats
GEOMETRYCOLLECTION(POINT(4 6),LINESTRING(4 6,
7 10))
POINT ZM (1 1 5 60)
POINT M (1 1 80)
POINT EMPTY
MULTIPOLYGON EMPTY
TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))
TIN (((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0,
0 1 0, 1 1 0, 0 0 0)))
POLYHEDRALSURFACE Z (PATCHES
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 0 0, 0 1 0, 0 1 1, 0 0 1, 0 0 0)),
 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
 ((1 1 1, 1 0 1, 0 0 1, 0 1 1, 1 1 1)),
 ((1 1 1, 1 0 1, 1 0 0, 1 1 0, 1 1 1)),
 ((1 1 1, 1 1 0, 0 1 0, 0 1 1, 1 1 1))
)

ESRI Shapefile

• Commonly-used vector geometry
interchange format, introduced in the 1990s

• Dataset consists of several files

• Attribute names limited to 10 characters

• Mandatory files:

• .shp – geometry itself

• .shx – shape index

• .dbf – attributes (dBase IV format)

• Additional files: projection (.prj), indexes,
code page specification, etc.

Spatial data formats

GeoPackage

• “New standard” format, defined
in 2014

• Supports vector and raster data

• Everything in a single file (.gpkg)

• Extended SQLite 3 database file
underneath

Spatial Data Formats

GeoJSON

• JSON-based standard format for
geographic data interchange

• Defined by RFC 7946

• Supports commonly-used
primitives and collections

• Each feature can have arbitrary
JSON properties

Spatial data formats

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [125.6, 10.1]
 },
 "properties": {
 "name": "Dinagat Islands"
 }
}

Geography Markup Language

• Abbreviated as GML

• Primary use: vector features

• Also supported:

• coverages (bitmap layers)

• sensor data streams

Spatial data formats
<gml:Polygon>
 <gml:outerBoundaryIs>
 <gml:LinearRing>
 <gml:coordinates>
 0,0 100,0 100,100 0,100 0,0
 </gml:coordinates>
 </gml:LinearRing>
 </gml:outerBoundaryIs>
</gml:Polygon>
<gml:Point>
 <gml:coordinates>
 100,200
 </gml:coordinates>
</gml:Point>
<gml:LineString>
 <gml:coordinates>
 100,200 150,300
 </gml:coordinates>
</gml:LineString>

OpenStreetMap XML

• Not really a GIS format, but a
format for OpenStreetMap data

• More on OpenStreetMap will follow

• XML-based text format (.osm) that
represents all OpenStreetMap (but
not OGC) primitives

• Files can be huge!

• Has a binary counterpart: PBF
(Protocolbuffer Binary Format)

Spatial data formats
<node id="273470204" lat="50.0679716"
lon="19.9312968" version="1"
changeset="302227" user="Rafal Olearski"
uid="12349" visible="true"
timestamp="2008-06-26T19:21:27Z"/>

<way id="25117187" visible="true"
timestamp="2008-06-26T19:21:30Z" version="1"
changeset="302227" user="Rafal Olearski"
uid="12349">
 <nd ref="273470204"/>
 <nd ref="273470207"/>
 <nd ref="262201253"/>
 <tag k="name" v="Kremerowska"/>
 <tag k="highway" v="residential"/>
 <tag k="oneway" v="yes"/>
</way>

AutoCAD DWG/DXF

• Also not really a GIS format

• CAD drawings can have
geographic (planar) coordinates

• Data organised in layers

• DXF is the ‘open’ format; DWG
can be converted e.g. using the
ODA File Converter tool

Spatial data formats

Spatial data formats
Converting between formats

• GDAL has ogrinfo & ogr2ogr shell tools

• Python: Fiona

• Shapefiles: shp2pgsql (bundled w/PostGIS)

• OSM data: osmosis, osm2pgsql

Spatial RDBMSs
Spatial database features

• Data types. A spatial database must support data types which allow for
storing map elements.

• Spatial operations. We need functions which construct, process and analyse
spatial objects (area, distance, etc.).

• Exchange of spatial data. The system must be able to exchange spatial data
with other systems.

• Spatial data indexing. As already mentioned, traditional indexes are not
optimised for spatial queries.

Most popular implementations

• MySQL supports spatial data since
version 5.0 (not entirely OpenGIS
compliant).

• PostGIS – a PostgreSQL extension,
provides OpenGIS-compliant data
types and analytic functions.

• Oracle Spatial – an OpenGIS-compliant
Oracle extension.

• IBM DB2 Spatial Extender, Geodetic
Extender.

• Spatialite – spatially-enabled SQLite

Spatial RDBMSs

Data indexing

• Classical indexes are usually based
on structures like B-trees, only
applicable for one-dimensional data.

• Spatial data is usually 2D or 3D.

• We may use two independent 1D
indexes, but that limits query
flexibility.

• Instead, spatial indexes are based
on the concept of the MBR
(Minimum Bounding Rectangle)

Spatial RDBMSs

Indexing using R-trees

• Similar to B-trees, but used to
index multidimensional data.

• Divide space into nested,
overlapping regions.

• Close regions are placed in one
tree node.

Spatial RDBMSs

General characteristics

• PostgreSQL add-on.

• GPL license.

• Available for all platforms
supported by PostgreSQL

• Supports (E)WKT/(E)WKB,
GeoJSON

• GIST-based indexing

PostGIS

PostGIS
Database structure

• Three system tables spatial_ref_sys, geometry_columns and
geography_columns store data regarding spatial reference system and spatial
columns

• Before version 2.x, spatial columns had to be added using the
AddGeometryColumn function:  
SELECT AddGeometryColumn('parks','park_geom',
 128, 'GEOMETRY', 2);

• Now, everything is done in the CREATE statement.

PostGIS
Geometry vs. geography

• The GEOMETRY type may use any of the available reference systems;
distances are calculated as straight-line distances on a plane in a given
system.

• The GEOGRAPHY type always stores longitude/latitude in degrees (WGS-84),
but distances are calculated using the shape of the spheroid.

• More in PostGIS docs.

http://postgis.net/docs/using_postgis_dbmanagement.html#PostGIS_Geography

Practical usage

• Link: Reference manual

• Buffer function – used more
commonly than you might think

• Some more complex examples:
link

PostGIS

http://postgis.net/docs/manual-3.0/reference.html
http://postgis.net/docs/manual-3.0/using_postgis_dbmanagement.html#examples_spatial_sql

General characteristics

• GeoPandas extends Pandas by adding
geometric types and operations

• Uses:

• shapely for operations

• fiona for I/O

• descartes and matplotlib for plotting

• Supports spatial joins, reprojecting
CRSs… and all that Pandas can do

• Pandas: Comparison with SQL

GeoPandas

https://geopandas.org
https://pandas.pydata.org
https://github.com/Toblerity/Shapely
https://fiona.readthedocs.io/en/latest/
https://pypi.org/project/descartes/
https://matplotlib.org
https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html

Open-source GIS software

• Formerly known as Quantum GIS

• I/O in many supported formats

• Visualisation and editing

• Data filtering, labelling and rule-
based rendering

• Supports Linux (repos/binaries for
most distributions), Windows
(directly or via OSGeo4W) and
macOS (use HomeBrew Caskroom!)

QGIS

Open Source Geospatial Foundation

• Provides tools, teaching
materials and promotes the use
of open-source GIS tools

• OSGeo4W, OSGeo4mac,
OSGeoLive are easy-to-install
sets of GIS tools (including e.g.
QGIS)

OSGeo

Open-source map renderer

• Used as “industry standard” for
rendering maps

• Many supported input formats

• Cross-platform

Mapnik

OpenStreetMap
A collaborative map of the world

• Edited by the community, just like Wikipedia

• Central repository (uses MySQL), not really interesting for us

• Web interface allows for map browsing, edition and (small) downloads

• Extra tools: converters, editors (more advanced than the web-based one)

OpenStreetMap
The Web interface

• http://www.openstreetmap.org

• Uses Leaflet.js

• Provides basic editing tools

• Can export some OSM XML

Data model

• Basic elements:

• nodes,

• ways,

• relations.

• Parameters for each element (e.g.
road class, building type) are
assigned as key/value pairs.

• Link: map features and their
attributes.

OpenStreetMap

http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Map_Features
http://wiki.openstreetmap.org/wiki/Map_Features

OpenStreetMap
Tracking changes

• OSM keeps all history of changes

• Changesets describe changes introduced in a given editing session by a
given user

• Operations: add, modify, delete

• Each changeset has a bounding box

OpenStreetMap
Getting the data

• Download entire globe: planet.osm

• Currently approximately 95 GB (XML/bz2), 54 GB (PBF)

• Better solution: download only the region you need, e.g. from GeoFabrik...

• …and crop using the Osmosis utility

http://download.geofabrik.de

OpenStreetMap
Tools

• Editors: Potlatch, JOSM

• Data processing: Osmium, Osmosis

• Data conversion: osm2pgsql, osm2pgrouting, but also Osmosis

• Python support: OSMnx

