
 Testing Reliability of Quorum Systems

 This task is designed for students who are interested in the DepFast research project.

 To select candidates, we are assigning a challenging technical task. If you cannot make
 progress now, please feel free to contact us later (best by email) when you gain more
 experience with computer science. If you make good progress, we can consider your application
 for our research groups. We hope that you will enjoy the challenge and learn valuable
 information, even if we may not select you.

 You should do the task individually but feel free to search online (e.g., on StackOverflow) for
 any problems you may run into.

 We understand that the task is challenging, and that you may run into problems. Do your best to
 try to resolve them. Research is open-ended by nature, and you won't always have someone
 available to help, hence why this task is good for us to evaluate students :)

 Task

 In this assignment, we will write code to test the reliability of a quorum system. Quorum systems
 implement Replicated State Machines (RSM) that are linearizable, fault-tolerant groups of
 replicas coordinated using a consensus algorithm (e.g., Paxos , Raft , etc). Given their properties
 of fault tolerance and strong consistency, quorum systems are at the core of large-scale
 distributed infrastructures. Taking Kubernetes (a large-scale cluster management system) as an
 example. Kubernetes uses etcd , a quorum system that implements Raft, as the centralized data
 store to maintain the cluster states.

 In this assignment, we will write code to test the reliability of quorum systems. We will evaluate
 whether real-world quorum system implementations deliver the fault tolerance properties that
 are promised by the consensus protocols.

 In fact, our research shows that real-world quorum system implementations often fall short. For
 example, Yoo et al. made the following observation – “ existing RSM system implementations
 cannot consistently tolerate fail-slow faults on one follower node. ” Take RethinkDB, another Raft
 implementation, as an example. They report that if they slow down a follower node in
 RethinkDB, the leader will crash (yes, it is true!). This is counterintuitive, because the consensus
 algorithm is supposed to tolerate a minority of faulty nodes.

 1. Select a Quorum System

 You can select any quorum system. If you do not have an idea what system to pick, you can
 use a Raft implementation listed on the Raft website .

https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://www.usenix.org/node/184041.
https://etcd.io/
https://tianyin.github.io/pub/depfast.pdf
https://www.usenix.org/node/184041.
https://raft.github.io/

 You are welcome (and encouraged) to select systems built on other consensus protocols (e.g.,
 Paxos, MultiPaxos, EPaxos, Copilot, etc).

 Q1: What is your quorum system of choice?
 RethinkDB

 2. Run The Quorum System and Measure The Baseline Performance

 You are responsible for compiling, building, and running the quorum systems you decide.

 You can run your quorum system on one machine in a pseudo-distributed mode, where each
 node runs as a process connected through the local loopback. All the experiments in this
 assignment can be done with a pseudo-distributed setup.

 Once you have a quorum system, find a client workload so that you can measure the
 performance of your quorum system. You should be able to find a client workload from the
 source-code repo, because developers need them to test their systems, too.

 After all the hard work, you have a quorum system running happily on your machine.

 Q2: Please describe your configuration.

 I set three cpu as server node and the rest one as client.

 Q3: What is your client workload?

 I choose workloada in YCSB as client workload. I set operation count to 250000 and update
 ratio to 1.0 to make the result distinctive.

 Please run the client workload on your quorum system and record the performance, which is
 referred to as baseline performance (i.e., performance without any faults).

 Q4: What is your baseline performance? Plot the throughput-latency figure (how does
 such a paper look like? the x-axis is the throughput and the y-axis is the latency, see
 Figure 7 in this paper). The latency should be average or P50 latency.

 After much testing I found out that when the number of clients is around 14, the performance is
 the highest. I also tried out numbers like 256 and 512 just like mentioned in the paper and the
 performance didn’t show any improvement.

https://github.com/rethinkdb/rethinkdb
https://www.usenix.org/system/files/osdi20-ngo.pdf

 3. Fail-Injection Testing

 Now, let’s assess the fault tolerance of the quorum system of choice. The way we are going to
 do it is to inject the following types of faults during the client workload into a node:

 ● Crashing behavior
 ● Slow CPU
 ● Memory contention

 We then measure the performance in the same way you measure your baseline performance.
 We will compare the performance with faults with the baseline performance (without faults). The
 difference indicates the fault tolerance level – ideally, there is no difference.

 Please inject the above three types of faults into both a leader node and a follower node
 respectively. So, you will have the following 6 different cases:

 ● Crashing behavior on leader
 ● Crashing behavior on follower
 ● Slow CPU on leader
 ● Slow CPU on follower

 ● Memory contention on leader
 ● Memory contention on follower

 Later, you will report the performance with the above faults and compare it with the baseline
 performance in each scenario.

 You can choose how to simulate the three types of faults above, but you need a programmable
 way rather than manually doing things.

 We developed a xonsh -based fault-injection tool named Slooo which already implements the
 faults in a simple framework, https://github.com/xlab-uiuc/slooo/tree/main/faults

 Please use Slooo to implement the fault injection so that everything is codified and easy to
 manage.

 Q5: How do you simulate crash, slow CPU and memory contention?

 Use cgroup to restrict cpu usage to simulate slow CPU. Use cgroup to restrict the memory
 usage of processes.

 Q6: Please plot the performance with faults on the leader node and compare it with the
 baseline performance.

https://xon.sh/
https://github.com/xlab-uiuc/slooo
https://github.com/xlab-uiuc/slooo/tree/main/faults

 Q7: Please explain the above results. Is it expected? Why or why not? You will receive
 bonus points if you are able to pinpoint the code.

 When faults injected in leader node, the performance degraded significantly. As shown in the
 graph, the latency is much higher and the throughput is much lower under the condition of the
 same number of clients and the same workload. The result is expected, the performance should
 be debased since leader is responsible for state replication and send PRC to the follower
 periodically. Since there is only one leader at a specific term, once a leader node become slow
 the latency will increase.

 Q8: Please plot the performance with faults on the follower node and compare it with the
 baseline performance.

 Q9: Please explain the above results. Is it expected? Why or why not? You will receive
 bonus points if you are able to pinpoint the code.

 The graph above shows when the follower node becomes slow, the performance degrades
 severely. The result is not as expected. Theoretically, when a minority of followers become slow,
 it will not affect the performance of the whole system since the quorum system is fault tolerance
 for minority node faults.

 Q10: For the slow CPU and memory contention, could you vary the level of
 slowness/contention and report the results?

 When the percentage usage of cpu decrease, the latency increase and the throughput
 decrease.

 When setting memory limit to 15M, 20M, 200M both follower and leader result in timeout.

 Submission Instruction

 Write your answer for Q1–Q10 (with figures) in a PDF file. Please put your code and answers in
 a repository on GitHub and tell us (tyxu) about the repository link.

