
S/PDIF library

Publication Date: 2023/10/18
Document Number: NoneA



S/PDIF library

IN THIS DOCUMENT

· Summary

· Required Software (dependencies)

· Documentation

· Support

· Required Software (dependencies)

· Typical Resource Usage

· External Signal Description

· Usage

· API

· Known Issues

· lib_spdif Change Log

Version 5.0.1

Vendor XMOS

scope General Use

1 Summary

A software defined S/PDIF library that allows you to transmit and receive S/PDIF data via xCORE ports.
S/PDIF is a digital data streaming interface. The components in the library are controlled via C using the
XMOS multicore extensions (xC) and provides both a S/PDIF receiver and transmitter.

1.1 Features

· Supports stereo S/PDIF receive up to sample rates up to 96KHz

· Supports stereo S/PDIF transmit up to 192KHz

1.2 Software Version and Dependencies

The CHANGELOG contains information about the current and previous versions. For a list of direct
dependencies, look for DEPENDENT_MODULES in lib_spdif/module_build_info.

1.3 Related Application Notes

The following application notes use this library:

· AN00231 - SPDIF Receive to I2S output using Asynchronous Sample Rate Conversion

2 Required Software (dependencies)

· None

2



S/PDIF library

3 Documentation

You can find the documentation for this software in the /doc directory of the package.

4 Support

This package is supported by XMOS Ltd. Issues can be raised against the software at:

· http://www.xmos.com/support

5 Required Software (dependencies)

· None

6 Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores
Transmit 1 1 (1-bit) 1 ~3.3K 1
Receive 1 1 (1-bit) 1 ~3.5K 1

3

http://www.xmos.com/support


S/PDIF library

7 External Signal Description

The library implements the S/PDIF (Sony/Philips Digital Interface Format) protocol for carrying uncom-
pressed stereo PCM data of up to 24bits.

7.1 Connecting to the xCORE as Transmitter

The precise transmission frequencies supported depend on the availability of an external clock (e.g. a PLL
or a crystal oscillator) that runs at a frequency of channels * sampleRate * 64 or a power-of-2 multiple.
For example, for 2 channels at 192 KHz the external clock has to run at a frequency of 24.576 MHz. This
same frequency also supports 2 channels at 48 KHz (which requires a minimum frequency of 6.144 MHz).
If both 44,1 and 48 KHz frequencies are to be supported, both a 24.576 MHz and a 22.579 MHz master
clock is required.

The connection of an S/PDIF transmit line to the xCORE is shown in Figure 1.

Figure 1: Connecting S/PDIF transmit

1 bit
port

xCORE device

Clock

D-type flip-flop

D Q
S/PDIF tx

1 bit
port

The output signal will contain jitter at the level of +-1 core clock (<2ns for a 500 MHz xcore) this is typically
inconsequential but if lower jitter levels are desired the signal can be re-clocked by the external master
clock to reduce the jitter to that of the external master clock. A simple D-type flip flop can be used for this
purpose.

The incoming clock signal is used to drive an internal clock and can be sharedwith other software functions
using the same master clock (e.g. ADAT transmit or I2S).

7.2 Connecting to the xCORE as Receiver

The receiver can receive stereo PCM signals up to 192 KHz.

The connection of an S/PDIF receiver line to the xCORE is shown in Figure 2.

Figure 2: Connecting S/PDIF receiver

xCORE device

S/PDIF rx
1 bit
port

4



S/PDIF library

Only a single wire is connected - the clock is recovered from the incoming data stream.

8 Usage

All S/PDIF functions can be accessed via the spdif.h header:

#include <spdif.h>

lib_spdif should also be added to the USED_MODULES field of the application Makefile.

8.1 S/PDIF Transmitter

S/PDIF components are instantiated as parallel tasks that run in a par statement. The application can
connect via a channel connection.

Figure 3: S/PDIF transmit task diagram

S/PDIF
tx

S/PDIF
txappapp

channel

For example, the following code instantiates an S/PDIF transmitter component and connects to it:

buffered out port :32 p_spdif_tx = XS1_PORT_1K;

in port p_mclk_in = XS1_PORT_1L;

clock clk_audio = XS1_CLKBLK_1;

int main(void)

{

chanend c_spdif;

par

{

on tile [0]:

{

spdif_tx_port_config(p_spdif_tx , clk_audio , p_mclk_in , 0);

spdif_tx(p_spdif_tx , c_spdif);

}

on tile [0]: my_application(c_spdif);

}

return 0;

}

The helper function spdif_tx_port_config() clocks the clock-block from the master clock port and, in
turn, clocks the S/PDIF transmit port from this clock-block.

5



S/PDIF library

The application can communicate with the components via API functions that take the channel end as
arguments e.g.:

void my_application(chanend c_spdif)

{

int32_t sample = 0;

spdif_tx_reconfigure_sample_rate(c, 96000, 12288000);

while (1)

{

sample ++;

spdif_tx_output(c_spdif , sample , sample + 1);

}

}

8.2 Configuring the Underlying Clock

When using the transmit component, the internal clock needs to be configured to run off the incoming
signal e.g.:

spdif_tx_port_config(p_spdif_tx , clk_audio , p_mclk_in , 7);

This function needs to be called before the spdif_tx function in the programs par statement.

In this function the configure_clock_srcwill configure a clock to run off an incoming port (see the XMOS
tools user guide for more information). The set_clock_fall_delay function configures an internal delay
from the incoming clock signal to the internal clock. This will enable the correct alignment of outgoing
data with the clock. Other components such as I2S can still be used with the same clock after setting this
delay.

Note, the delay value shown above is a typical example andmay need to be tuned for the specific hardware
being used.

8.3 S/PDIF Receiver

S/PDIF components are instantiated as parallel tasks that run in a par statement. The application can
connect via a channel connection.

Figure 4: S/PDIF receiver task diagram

S/PDIF
rx

S/PDIF
rxappapp

channel

For example, the following code instantiates an S/PDIF receiver component and connects to it:

6



S/PDIF library

port p_spdif_rx = XS1_PORT_1F;

clock audio_clk = XS1_CLKBLK_1;

int main(void)

{

streaming chan c;

par

{

spdif_rx(c, p_spdif_rx , audio_clk , 96000);

handle_samples(c);

}

return 0;

}

The application can communicate with the components via API functions that take the channel end as
arguments e.g.:

void my_application(streaming chanend c)

{

int32_t sample;

size_t index;

size_t left_count , right_count;

while (1)

{

select

{

case spdif_receive_sample(c, sample , index):

// sample contains the 24bit data

// You can process the audio data here

if (index == 0)

left_count ++;

else

right_count ++;

break;

}

...

Note that a program can react to incoming samples using a select statement. More information on
using par and select statements can be found in the XMOS Programming Guide (see XM-004440-PC).

7

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


S/PDIF library

9 API

9.1 Creating an S/PDIF Receiver Instance

Function spdif_rx
Description S/PDIF receive function.

This function provides an S/PDIF receiver component. It is capable of receiving 44100,
48000, 88200, 96000, 176400 and 192000 Hz sample rates.
The receiver will modifiy the divider of the clock-block to lock to the incoming sample
rate.

Type void spdif_rx(streaming chanend c,
in port p,
clock clk,
unsigned sample_freq_estimate)

Parameters p S/PDIF input port.

c Channel to connect to the application.

clk A clock block used internally to clock data.

sample_freq_estimate
The initial expected sample rate (in Hz).

8



S/PDIF library

9.2 S/PDIF Receiver API

Function spdif_receive_sample
Description Receive a sample from the S/PDIF component.

This function receives a sample from the S/PDIF component. It is a “select handler”
so can be used within a select e.g.
int32_t sample;

size_t index;

select {

case spdif_receive_sample(c, sample , index):

// use sample and index here ...

...

break;

...

The case in this select will fire when the S/PDIF component has data ready.

Type void
spdif_receive_sample(streaming chanend c,

int32_t &sample,
size_t &index)

Parameters c chanend connected to the S/PDIF receiver component

sample This reference parameter gets set with the incoming sample data

index This is the index of the same in the current frame (i.e. 0 for left channel
and 1 for right channel).

Function spdif_receive_shutdown
Description Shutdown the S/PDIF component.

This function shuts down the SPDIF RX component causing the call to spdif_rx() to
return.

Type void
spdif_receive_shutdown(streaming chanend c)

Parameters c chanend connected to the S/PDIF receiver component

9



S/PDIF library

9.3 Creating an S/PDIF Transmitter Instance

Function spdif_tx_port_config
Description S/PDIF transmit configure port function.

This function configures a port to be used by the SPDIF transmit function.
This function takes a delay for the clock that is to be passed into the S/PDIF transmitter
component. It sets the clock such that output data is slightly delayed. This will work if
I2S is clocked off the same clock but ensures S/PDIF functions correctly.

Type void
spdif_tx_port_config(out buffered port:32 p,

clock clk,
in port p_mclk,
unsigned delay)

Parameters p the port that the S/PDIF component will use

clk the clock that the S/PDIF component will use

p_mclk The clock connected to the master clock frequency. Usually this
should be configured to be driven by an incoming master system
clock.

delay delay to uses to sync the SPDIF signal at the external flip-flop

Function spdif_tx
Description S/PDIF transmit function.

This function provides an S/PDIF transmit component. It is capable of 11025, 12000,
22050, 24000, 44100, 48000, 88200, 96000, and 192000 Hz sample rates.
The sample rate can be dynamically changes during the operation of the component.
Note that the first API call to this component should be to reconfigure the sample rate
(using the spdif_tx_reconfigure_sample_rate() function).

Type void
spdif_tx(buffered out port:32 p_spdif, chanend c)

Parameters p_spdif The output port to transmit to

c chanend to connect to the application

10



S/PDIF library

9.4 S/PDIF Transmitter API

Function spdif_tx_reconfigure_sample_rate
Description Reconfigure the S/PDIF tx component to a new sample rate.

This function instructs the S/PDIF transmitter component to change sample rate.

Type void
spdif_tx_reconfigure_sample_rate(chanend c_spdif_tx,

unsigned sample_frequency,
unsigned master_clock_frequency)

Parameters c_spdif_tx chanend connected to the S/PDIF transmitter

sample_frequency
The required new sample frequency in Hz.

master_clock_frequency
The master_clock_frequency that the S/PDIF transmitter is using

Function spdif_tx_output
Description Output a sample pair to the S/PDIF transmitter component.

This function will output a left channel and right channel sample to the S/PDIF trans-
mitter.

Type void spdif_tx_output(chanend c_spdif_tx,
unsigned lsample,
unsigned rsample)

Parameters c_spdif_tx chanend connected to the S/PDIF transmitter

lsample left sample to transmit

rsample right sample to transmit

Appendix A Known Issues

· None

Appendix B lib_spdif Change Log

Appendix B.1 HEAD

· CHANGED: Receiver rearchitected for improved performance and jitter tolerance

11



S/PDIF library

Appendix B.2 5.0.1

· FIXED: Reinstated graceful handling of bad sample-rate/master-clock pair

Appendix B.3 5.0.0

· CHANGED: Updated examples for new XK-AUDIO-316-MC board

· CHANGED: Updated transmit to simplified implementation (note, no longer supports XS1 based devices)

· CHANGED: Removed headers SpdifReceive.h and SpdifTransmit.h. Users should include spdif.h

Appendix B.4 4.2.1

· CHANGED: Documentation updates

Appendix B.5 4.2.0

· ADDED: Added shutdown function for S/PDIF Receiver

· CHANGED: spdif_tx_example updated to use XK-AUDIO-216-MC

Appendix B.6 4.1.0

· CHANGED: Use XMOS Public Licence Version 1

· CHANGED: Rearrange documentation files

Appendix B.7 4.0.1

· REMOVED: Unrequired cpanfile

Appendix B.8 4.0.0

· CHANGED: Build files updated to support new “xcommon” behaviour in xwaf.

Appendix B.9 3.1.0

· Add library wscript to enable applications built using xwaf

Appendix B.10 3.0.0

· spdif_tx() no longer configures port. Additional function spdif_tx_port_config() provided. Allows sharing
of clockblock with other tasks

Appendix B.11 2.0.2

· Fixed exception when running on xCORE-200 targets

12



S/PDIF library

Appendix B.12 2.0.1

· Update to source code license and copyright

Appendix B.13 2.0.0

· Move to library format. New documentation and helper functions.

Appendix B.14 1.3.1

· Added .type and .size directives to SpdifReceive. This is required for the function to show up in
xTIMEcomposer binary viewer

Appendix B.15 1.3.0

· Added this file

· Removed xcommon dep

Copyright © 2023, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it
to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.

13


	Summary
	Required Software (dependencies)
	Documentation
	Support
	Required Software (dependencies)
	Typical Resource Usage
	External Signal Description
	Usage
	API
	Known Issues
	lib_spdif Change Log

