Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

file 2858 lines (2428 sloc) 91.056 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
/* ---------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2006
*
* The scheduler and thread-related functionality
*
* --------------------------------------------------------------------------*/

#include "PosixSource.h"
#define KEEP_LOCKCLOSURE
#include "Rts.h"

#include "sm/Storage.h"
#include "RtsUtils.h"
#include "StgRun.h"
#include "Schedule.h"
#include "Interpreter.h"
#include "Printer.h"
#include "RtsSignals.h"
#include "sm/Sanity.h"
#include "Stats.h"
#include "STM.h"
#include "Prelude.h"
#include "ThreadLabels.h"
#include "Updates.h"
#include "Proftimer.h"
#include "ProfHeap.h"
#include "Weak.h"
#include "sm/GC.h" // waitForGcThreads, releaseGCThreads, N
#include "sm/GCThread.h"
#include "Sparks.h"
#include "Capability.h"
#include "Task.h"
#include "AwaitEvent.h"
#if defined(mingw32_HOST_OS)
#include "win32/IOManager.h"
#endif
#include "Trace.h"
#include "RaiseAsync.h"
#include "Threads.h"
#include "Timer.h"
#include "ThreadPaused.h"
#include "Messages.h"
#include "Stable.h"

#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#include <string.h>
#include <stdlib.h>
#include <stdarg.h>

#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif

#ifdef TRACING
#include "eventlog/EventLog.h"
#endif
/* -----------------------------------------------------------------------------
* Global variables
* -------------------------------------------------------------------------- */

#if !defined(THREADED_RTS)
// Blocked/sleeping thrads
StgTSO *blocked_queue_hd = NULL;
StgTSO *blocked_queue_tl = NULL;
StgTSO *sleeping_queue = NULL; // perhaps replace with a hash table?
#endif

/* Set to true when the latest garbage collection failed to reclaim
* enough space, and the runtime should proceed to shut itself down in
* an orderly fashion (emitting profiling info etc.)
*/
rtsBool heap_overflow = rtsFalse;

/* flag that tracks whether we have done any execution in this time slice.
* LOCK: currently none, perhaps we should lock (but needs to be
* updated in the fast path of the scheduler).
*
* NB. must be StgWord, we do xchg() on it.
*/
volatile StgWord recent_activity = ACTIVITY_YES;

/* if this flag is set as well, give up execution
* LOCK: none (changes monotonically)
*/
volatile StgWord sched_state = SCHED_RUNNING;

/* This is used in `TSO.h' and gcc 2.96 insists that this variable actually
* exists - earlier gccs apparently didn't.
* -= chak
*/
StgTSO dummy_tso;

/*
* Set to TRUE when entering a shutdown state (via shutdownHaskellAndExit()) --
* in an MT setting, needed to signal that a worker thread shouldn't hang around
* in the scheduler when it is out of work.
*/
rtsBool shutting_down_scheduler = rtsFalse;

/*
* This mutex protects most of the global scheduler data in
* the THREADED_RTS runtime.
*/
#if defined(THREADED_RTS)
Mutex sched_mutex;
#endif

#if !defined(mingw32_HOST_OS)
#define FORKPROCESS_PRIMOP_SUPPORTED
#endif

// Local stats
#ifdef THREADED_RTS
static nat n_failed_trygrab_idles = 0, n_idle_caps = 0;
#endif

/* -----------------------------------------------------------------------------
* static function prototypes
* -------------------------------------------------------------------------- */

static Capability *schedule (Capability *initialCapability, Task *task);

//
// These functions all encapsulate parts of the scheduler loop, and are
// abstracted only to make the structure and control flow of the
// scheduler clearer.
//
static void schedulePreLoop (void);
static void scheduleFindWork (Capability **pcap);
#if defined(THREADED_RTS)
static void scheduleYield (Capability **pcap, Task *task);
#endif
#if defined(THREADED_RTS)
static nat requestSync (Capability **pcap, Task *task, nat sync_type);
static void acquireAllCapabilities(Capability *cap, Task *task);
static void releaseAllCapabilities(Capability *cap, Task *task);
static void startWorkerTasks (nat from USED_IF_THREADS, nat to USED_IF_THREADS);
#endif
static void scheduleStartSignalHandlers (Capability *cap);
static void scheduleCheckBlockedThreads (Capability *cap);
static void scheduleProcessInbox(Capability **cap);
static void scheduleDetectDeadlock (Capability **pcap, Task *task);
static void schedulePushWork(Capability *cap, Task *task);
#if defined(THREADED_RTS)
static void scheduleActivateSpark(Capability *cap);
#endif
static void schedulePostRunThread(Capability *cap, StgTSO *t);
static rtsBool scheduleHandleHeapOverflow( Capability *cap, StgTSO *t );
static rtsBool scheduleHandleYield( Capability *cap, StgTSO *t,
nat prev_what_next );
static void scheduleHandleThreadBlocked( StgTSO *t );
static rtsBool scheduleHandleThreadFinished( Capability *cap, Task *task,
StgTSO *t );
static rtsBool scheduleNeedHeapProfile(rtsBool ready_to_gc);
static void scheduleDoGC(Capability **pcap, Task *task, rtsBool force_major);

static void deleteThread (Capability *cap, StgTSO *tso);
static void deleteAllThreads (Capability *cap);

#ifdef FORKPROCESS_PRIMOP_SUPPORTED
static void deleteThread_(Capability *cap, StgTSO *tso);
#endif

/* ---------------------------------------------------------------------------
Main scheduling loop.

We use round-robin scheduling, each thread returning to the
scheduler loop when one of these conditions is detected:

* out of heap space
* timer expires (thread yields)
* thread blocks
* thread ends
* stack overflow

GRAN version:
In a GranSim setup this loop iterates over the global event queue.
This revolves around the global event queue, which determines what
to do next. Therefore, it's more complicated than either the
concurrent or the parallel (GUM) setup.
This version has been entirely removed (JB 2008/08).

GUM version:
GUM iterates over incoming messages.
It starts with nothing to do (thus CurrentTSO == END_TSO_QUEUE),
and sends out a fish whenever it has nothing to do; in-between
doing the actual reductions (shared code below) it processes the
incoming messages and deals with delayed operations
(see PendingFetches).
This is not the ugliest code you could imagine, but it's bloody close.

(JB 2008/08) This version was formerly indicated by a PP-Flag PAR,
now by PP-flag PARALLEL_HASKELL. The Eden RTS (in GHC-6.x) uses it,
as well as future GUM versions. This file has been refurbished to
only contain valid code, which is however incomplete, refers to
invalid includes etc.

------------------------------------------------------------------------ */

static Capability *
schedule (Capability *initialCapability, Task *task)
{
  StgTSO *t;
  Capability *cap;
  StgThreadReturnCode ret;
  nat prev_what_next;
  rtsBool ready_to_gc;
#if defined(THREADED_RTS)
  rtsBool first = rtsTrue;
#endif
  
  cap = initialCapability;

  // Pre-condition: this task owns initialCapability.
  // The sched_mutex is *NOT* held
  // NB. on return, we still hold a capability.

  debugTrace (DEBUG_sched, "cap %d: schedule()", initialCapability->no);

  schedulePreLoop();

  // -----------------------------------------------------------
  // Scheduler loop starts here:

  while (1) {

    // Check whether we have re-entered the RTS from Haskell without
    // going via suspendThread()/resumeThread (i.e. a 'safe' foreign
    // call).
    if (cap->in_haskell) {
     errorBelch("schedule: re-entered unsafely.\n"
     " Perhaps a 'foreign import unsafe' should be 'safe'?");
     stg_exit(EXIT_FAILURE);
    }

    // The interruption / shutdown sequence.
    //
    // In order to cleanly shut down the runtime, we want to:
    // * make sure that all main threads return to their callers
    // with the state 'Interrupted'.
    // * clean up all OS threads assocated with the runtime
    // * free all memory etc.
    //
    // So the sequence for ^C goes like this:
    //
    // * ^C handler sets sched_state := SCHED_INTERRUPTING and
    // arranges for some Capability to wake up
    //
    // * all threads in the system are halted, and the zombies are
    // placed on the run queue for cleaning up. We acquire all
    // the capabilities in order to delete the threads, this is
    // done by scheduleDoGC() for convenience (because GC already
    // needs to acquire all the capabilities). We can't kill
    // threads involved in foreign calls.
    //
    // * somebody calls shutdownHaskell(), which calls exitScheduler()
    //
    // * sched_state := SCHED_SHUTTING_DOWN
    //
    // * all workers exit when the run queue on their capability
    // drains. All main threads will also exit when their TSO
    // reaches the head of the run queue and they can return.
    //
    // * eventually all Capabilities will shut down, and the RTS can
    // exit.
    //
    // * We might be left with threads blocked in foreign calls,
    // we should really attempt to kill these somehow (TODO);
    
    switch (sched_state) {
    case SCHED_RUNNING:
break;
    case SCHED_INTERRUPTING:
debugTrace(DEBUG_sched, "SCHED_INTERRUPTING");
        /* scheduleDoGC() deletes all the threads */
        scheduleDoGC(&cap,task,rtsFalse);

        // after scheduleDoGC(), we must be shutting down. Either some
        // other Capability did the final GC, or we did it above,
        // either way we can fall through to the SCHED_SHUTTING_DOWN
        // case now.
        ASSERT(sched_state == SCHED_SHUTTING_DOWN);
        // fall through

    case SCHED_SHUTTING_DOWN:
debugTrace(DEBUG_sched, "SCHED_SHUTTING_DOWN");
// If we are a worker, just exit. If we're a bound thread
// then we will exit below when we've removed our TSO from
// the run queue.
if (!isBoundTask(task) && emptyRunQueue(cap)) {
return cap;
}
break;
    default:
barf("sched_state: %d", sched_state);
    }

    scheduleFindWork(&cap);

    /* work pushing, currently relevant only for THREADED_RTS:
(pushes threads, wakes up idle capabilities for stealing) */
    schedulePushWork(cap,task);

    scheduleDetectDeadlock(&cap,task);

    // Normally, the only way we can get here with no threads to
    // run is if a keyboard interrupt received during
    // scheduleCheckBlockedThreads() or scheduleDetectDeadlock().
    // Additionally, it is not fatal for the
    // threaded RTS to reach here with no threads to run.
    //
    // win32: might be here due to awaitEvent() being abandoned
    // as a result of a console event having been delivered.
#if defined(THREADED_RTS)
    if (first)
    {
    // XXX: ToDo
    // // don't yield the first time, we want a chance to run this
    // // thread for a bit, even if there are others banging at the
    // // door.
    // first = rtsFalse;
    // ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
    }

    scheduleYield(&cap,task);

    if (emptyRunQueue(cap)) continue; // look for work again
#endif

#if !defined(THREADED_RTS) && !defined(mingw32_HOST_OS)
    if ( emptyRunQueue(cap) ) {
ASSERT(sched_state >= SCHED_INTERRUPTING);
    }
#endif

    //
    // Get a thread to run
    //
    t = popRunQueue(cap);

    // Sanity check the thread we're about to run. This can be
    // expensive if there is lots of thread switching going on...
    IF_DEBUG(sanity,checkTSO(t));

#if defined(THREADED_RTS)
    // Check whether we can run this thread in the current task.
    // If not, we have to pass our capability to the right task.
    {
        InCall *bound = t->bound;
      
if (bound) {
if (bound->task == task) {
// yes, the Haskell thread is bound to the current native thread
} else {
debugTrace(DEBUG_sched,
"thread %lu bound to another OS thread",
                           (unsigned long)t->id);
// no, bound to a different Haskell thread: pass to that thread
pushOnRunQueue(cap,t);
continue;
}
} else {
// The thread we want to run is unbound.
if (task->incall->tso) {
debugTrace(DEBUG_sched,
"this OS thread cannot run thread %lu",
                           (unsigned long)t->id);
// no, the current native thread is bound to a different
// Haskell thread, so pass it to any worker thread
pushOnRunQueue(cap,t);
continue;
}
}
    }
#endif

    // If we're shutting down, and this thread has not yet been
    // killed, kill it now. This sometimes happens when a finalizer
    // thread is created by the final GC, or a thread previously
    // in a foreign call returns.
    if (sched_state >= SCHED_INTERRUPTING &&
        !(t->what_next == ThreadComplete || t->what_next == ThreadKilled)) {
        deleteThread(cap,t);
    }

    // If this capability is disabled, migrate the thread away rather
    // than running it. NB. but not if the thread is bound: it is
    // really hard for a bound thread to migrate itself. Believe me,
    // I tried several ways and couldn't find a way to do it.
    // Instead, when everything is stopped for GC, we migrate all the
    // threads on the run queue then (see scheduleDoGC()).
    //
    // ToDo: what about TSO_LOCKED? Currently we're migrating those
    // when the number of capabilities drops, but we never migrate
    // them back if it rises again. Presumably we should, but after
    // the thread has been migrated we no longer know what capability
    // it was originally on.
#ifdef THREADED_RTS
    if (cap->disabled && !t->bound) {
        Capability *dest_cap = &capabilities[cap->no % enabled_capabilities];
        migrateThread(cap, t, dest_cap);
        continue;
    }
#endif

    /* context switches are initiated by the timer signal, unless
* the user specified "context switch as often as possible", with
* +RTS -C0
*/
    if (RtsFlags.ConcFlags.ctxtSwitchTicks == 0
&& !emptyThreadQueues(cap)) {
cap->context_switch = 1;
    }

run_thread:

    // CurrentTSO is the thread to run. t might be different if we
    // loop back to run_thread, so make sure to set CurrentTSO after
    // that.
    cap->r.rCurrentTSO = t;

    startHeapProfTimer();

    // ----------------------------------------------------------------------
    // Run the current thread

    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
    ASSERT(t->cap == cap);
    ASSERT(t->bound ? t->bound->task->cap == cap : 1);

    prev_what_next = t->what_next;

    errno = t->saved_errno;
#if mingw32_HOST_OS
    SetLastError(t->saved_winerror);
#endif

    // reset the interrupt flag before running Haskell code
    cap->interrupt = 0;

    cap->in_haskell = rtsTrue;
    cap->idle = 0;

    dirty_TSO(cap,t);
    dirty_STACK(cap,t->stackobj);

#if defined(THREADED_RTS)
    if (recent_activity == ACTIVITY_DONE_GC) {
        // ACTIVITY_DONE_GC means we turned off the timer signal to
        // conserve power (see #1623). Re-enable it here.
        nat prev;
        prev = xchg((P_)&recent_activity, ACTIVITY_YES);
        if (prev == ACTIVITY_DONE_GC) {
            startTimer();
        }
    } else if (recent_activity != ACTIVITY_INACTIVE) {
        // If we reached ACTIVITY_INACTIVE, then don't reset it until
        // we've done the GC. The thread running here might just be
        // the IO manager thread that handle_tick() woke up via
        // wakeUpRts().
        recent_activity = ACTIVITY_YES;
    }
#endif

    traceEventRunThread(cap, t);

    switch (prev_what_next) {

    case ThreadKilled:
    case ThreadComplete:
/* Thread already finished, return to scheduler. */
ret = ThreadFinished;
break;

    case ThreadRunGHC:
    {
StgRegTable *r;
r = StgRun((StgFunPtr) stg_returnToStackTop, &cap->r);
cap = regTableToCapability(r);
ret = r->rRet;
break;
    }
    
    case ThreadInterpret:
cap = interpretBCO(cap);
ret = cap->r.rRet;
break;

    default:
barf("schedule: invalid what_next field");
    }

    cap->in_haskell = rtsFalse;

    // The TSO might have moved, eg. if it re-entered the RTS and a GC
    // happened. So find the new location:
    t = cap->r.rCurrentTSO;

    // And save the current errno in this thread.
    // XXX: possibly bogus for SMP because this thread might already
    // be running again, see code below.
    t->saved_errno = errno;
#if mingw32_HOST_OS
    // Similarly for Windows error code
    t->saved_winerror = GetLastError();
#endif

    if (ret == ThreadBlocked) {
        if (t->why_blocked == BlockedOnBlackHole) {
            StgTSO *owner = blackHoleOwner(t->block_info.bh->bh);
            traceEventStopThread(cap, t, t->why_blocked + 6,
                                 owner != NULL ? owner->id : 0);
        } else {
            traceEventStopThread(cap, t, t->why_blocked + 6, 0);
        }
    } else {
        traceEventStopThread(cap, t, ret, 0);
    }

    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
    ASSERT(t->cap == cap);

    // ----------------------------------------------------------------------
    
    // Costs for the scheduler are assigned to CCS_SYSTEM
    stopHeapProfTimer();
#if defined(PROFILING)
    cap->r.rCCCS = CCS_SYSTEM;
#endif
    
    schedulePostRunThread(cap,t);

    ready_to_gc = rtsFalse;

    switch (ret) {
    case HeapOverflow:
ready_to_gc = scheduleHandleHeapOverflow(cap,t);
break;

    case StackOverflow:
        // just adjust the stack for this thread, then pop it back
        // on the run queue.
        threadStackOverflow(cap, t);
        pushOnRunQueue(cap,t);
        break;

    case ThreadYielding:
        if (scheduleHandleYield(cap, t, prev_what_next)) {
            // shortcut for switching between compiler/interpreter:
goto run_thread;
}
break;

    case ThreadBlocked:
scheduleHandleThreadBlocked(t);
break;

    case ThreadFinished:
if (scheduleHandleThreadFinished(cap, task, t)) return cap;
ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
break;

    default:
      barf("schedule: invalid thread return code %d", (int)ret);
    }

    if (ready_to_gc || scheduleNeedHeapProfile(ready_to_gc)) {
      scheduleDoGC(&cap,task,rtsFalse);
    }
  } /* end of while() */
}

/* -----------------------------------------------------------------------------
* Run queue operations
* -------------------------------------------------------------------------- */

void
removeFromRunQueue (Capability *cap, StgTSO *tso)
{
    if (tso->block_info.prev == END_TSO_QUEUE) {
        ASSERT(cap->run_queue_hd == tso);
        cap->run_queue_hd = tso->_link;
    } else {
        setTSOLink(cap, tso->block_info.prev, tso->_link);
    }
    if (tso->_link == END_TSO_QUEUE) {
        ASSERT(cap->run_queue_tl == tso);
        cap->run_queue_tl = tso->block_info.prev;
    } else {
        setTSOPrev(cap, tso->_link, tso->block_info.prev);
    }
    tso->_link = tso->block_info.prev = END_TSO_QUEUE;

    IF_DEBUG(sanity, checkRunQueue(cap));
}

/* ----------------------------------------------------------------------------
* Setting up the scheduler loop
* ------------------------------------------------------------------------- */

static void
schedulePreLoop(void)
{
  // initialisation for scheduler - what cannot go into initScheduler()

#if defined(mingw32_HOST_OS) && !defined(USE_MINIINTERPRETER)
    win32AllocStack();
#endif
}

/* -----------------------------------------------------------------------------
* scheduleFindWork()
*
* Search for work to do, and handle messages from elsewhere.
* -------------------------------------------------------------------------- */

static void
scheduleFindWork (Capability **pcap)
{
    scheduleStartSignalHandlers(*pcap);

    scheduleProcessInbox(pcap);

    scheduleCheckBlockedThreads(*pcap);

#if defined(THREADED_RTS)
    if (emptyRunQueue(*pcap)) { scheduleActivateSpark(*pcap); }
#endif
}

#if defined(THREADED_RTS)
STATIC_INLINE rtsBool
shouldYieldCapability (Capability *cap, Task *task, rtsBool didGcLast)
{
    // we need to yield this capability to someone else if..
    // - another thread is initiating a GC, and we didn't just do a GC
    // (see Note [GC livelock])
    // - another Task is returning from a foreign call
    // - the thread at the head of the run queue cannot be run
    // by this Task (it is bound to another Task, or it is unbound
    // and this task it bound).
    //
    // Note [GC livelock]
    //
    // If we are interrupted to do a GC, then we do not immediately do
    // another one. This avoids a starvation situation where one
    // Capability keeps forcing a GC and the other Capabilities make no
    // progress at all.

    return ((pending_sync && !didGcLast) ||
            cap->returning_tasks_hd != NULL ||
            (!emptyRunQueue(cap) && (task->incall->tso == NULL
                                     ? cap->run_queue_hd->bound != NULL
                                     : cap->run_queue_hd->bound != task->incall)));
}

// This is the single place where a Task goes to sleep. There are
// two reasons it might need to sleep:
// - there are no threads to run
// - we need to yield this Capability to someone else
// (see shouldYieldCapability())
//
// Careful: the scheduler loop is quite delicate. Make sure you run
// the tests in testsuite/concurrent (all ways) after modifying this,
// and also check the benchmarks in nofib/parallel for regressions.

static void
scheduleYield (Capability **pcap, Task *task)
{
    Capability *cap = *pcap;
    int didGcLast = rtsFalse;

    // if we have work, and we don't need to give up the Capability, continue.
    //
    if (!shouldYieldCapability(cap,task,rtsFalse) &&
        (!emptyRunQueue(cap) ||
         !emptyInbox(cap) ||
         sched_state >= SCHED_INTERRUPTING)) {
        return;
    }

    // otherwise yield (sleep), and keep yielding if necessary.
    do {
        didGcLast = yieldCapability(&cap,task, !didGcLast);
    }
    while (shouldYieldCapability(cap,task,didGcLast));

    // note there may still be no threads on the run queue at this
    // point, the caller has to check.

    *pcap = cap;
    return;
}
#endif
    
/* -----------------------------------------------------------------------------
* schedulePushWork()
*
* Push work to other Capabilities if we have some.
* -------------------------------------------------------------------------- */

static void
schedulePushWork(Capability *cap USED_IF_THREADS,
Task *task USED_IF_THREADS)
{
  /* following code not for PARALLEL_HASKELL. I kept the call general,
future GUM versions might use pushing in a distributed setup */
#if defined(THREADED_RTS)

    Capability *free_caps[n_capabilities], *cap0;
    nat i, n_free_caps;

    // migration can be turned off with +RTS -qm
    if (!RtsFlags.ParFlags.migrate) return;

    // Check whether we have more threads on our run queue, or sparks
    // in our pool, that we could hand to another Capability.
    if (cap->run_queue_hd == END_TSO_QUEUE) {
        if (sparkPoolSizeCap(cap) < 2) return;
    } else {
        if (cap->run_queue_hd->_link == END_TSO_QUEUE &&
            sparkPoolSizeCap(cap) < 1) return;
    }

    // First grab as many free Capabilities as we can.
    for (i=0, n_free_caps=0; i < n_capabilities; i++) {
cap0 = &capabilities[i];
        if (cap != cap0 && !cap0->disabled && tryGrabCapability(cap0,task)) {
if (!emptyRunQueue(cap0)
                || cap0->returning_tasks_hd != NULL
                || cap0->inbox != (Message*)END_TSO_QUEUE) {
// it already has some work, we just grabbed it at
// the wrong moment. Or maybe it's deadlocked!
releaseCapability(cap0);
} else {
free_caps[n_free_caps++] = cap0;
}
}
    }

    // we now have n_free_caps free capabilities stashed in
    // free_caps[]. Share our run queue equally with them. This is
    // probably the simplest thing we could do; improvements we might
    // want to do include:
    //
    // - giving high priority to moving relatively new threads, on
    // the gournds that they haven't had time to build up a
    // working set in the cache on this CPU/Capability.
    //
    // - giving low priority to moving long-lived threads

    if (n_free_caps > 0) {
StgTSO *prev, *t, *next;
#ifdef SPARK_PUSHING
rtsBool pushed_to_all;
#endif

debugTrace(DEBUG_sched,
"cap %d: %s and %d free capabilities, sharing...",
cap->no,
(!emptyRunQueue(cap) && cap->run_queue_hd->_link != END_TSO_QUEUE)?
"excess threads on run queue":"sparks to share (>=2)",
n_free_caps);

i = 0;
#ifdef SPARK_PUSHING
pushed_to_all = rtsFalse;
#endif

if (cap->run_queue_hd != END_TSO_QUEUE) {
prev = cap->run_queue_hd;
t = prev->_link;
prev->_link = END_TSO_QUEUE;
for (; t != END_TSO_QUEUE; t = next) {
next = t->_link;
t->_link = END_TSO_QUEUE;
                if (t->bound == task->incall // don't move my bound thread
|| tsoLocked(t)) { // don't move a locked thread
setTSOLink(cap, prev, t);
                    setTSOPrev(cap, t, prev);
prev = t;
} else if (i == n_free_caps) {
#ifdef SPARK_PUSHING
pushed_to_all = rtsTrue;
#endif
i = 0;
// keep one for us
setTSOLink(cap, prev, t);
                    setTSOPrev(cap, t, prev);
prev = t;
} else {
appendToRunQueue(free_caps[i],t);

                    traceEventMigrateThread (cap, t, free_caps[i]->no);

if (t->bound) { t->bound->task->cap = free_caps[i]; }
t->cap = free_caps[i];
i++;
}
}
cap->run_queue_tl = prev;

            IF_DEBUG(sanity, checkRunQueue(cap));
}

#ifdef SPARK_PUSHING
/* JB I left this code in place, it would work but is not necessary */

// If there are some free capabilities that we didn't push any
// threads to, then try to push a spark to each one.
if (!pushed_to_all) {
StgClosure *spark;
// i is the next free capability to push to
for (; i < n_free_caps; i++) {
if (emptySparkPoolCap(free_caps[i])) {
spark = tryStealSpark(cap->sparks);
if (spark != NULL) {
                        /* TODO: if anyone wants to re-enable this code then
* they must consider the fizzledSpark(spark) case
* and update the per-cap spark statistics.
*/
debugTrace(DEBUG_sched, "pushing spark %p to capability %d", spark, free_caps[i]->no);

            traceEventStealSpark(free_caps[i], t, cap->no);

newSpark(&(free_caps[i]->r), spark);
}
}
}
}
#endif /* SPARK_PUSHING */

// release the capabilities
for (i = 0; i < n_free_caps; i++) {
task->cap = free_caps[i];
releaseAndWakeupCapability(free_caps[i]);
}
    }
    task->cap = cap; // reset to point to our Capability.

#endif /* THREADED_RTS */

}

/* ----------------------------------------------------------------------------
* Start any pending signal handlers
* ------------------------------------------------------------------------- */

#if defined(RTS_USER_SIGNALS) && !defined(THREADED_RTS)
static void
scheduleStartSignalHandlers(Capability *cap)
{
    if (RtsFlags.MiscFlags.install_signal_handlers && signals_pending()) {
        // safe outside the lock
startSignalHandlers(cap);
    }
}
#else
static void
scheduleStartSignalHandlers(Capability *cap STG_UNUSED)
{
}
#endif

/* ----------------------------------------------------------------------------
* Check for blocked threads that can be woken up.
* ------------------------------------------------------------------------- */

static void
scheduleCheckBlockedThreads(Capability *cap USED_IF_NOT_THREADS)
{
#if !defined(THREADED_RTS)
    //
    // Check whether any waiting threads need to be woken up. If the
    // run queue is empty, and there are no other tasks running, we
    // can wait indefinitely for something to happen.
    //
    if ( !emptyQueue(blocked_queue_hd) || !emptyQueue(sleeping_queue) )
    {
awaitEvent (emptyRunQueue(cap));
    }
#endif
}

/* ----------------------------------------------------------------------------
* Detect deadlock conditions and attempt to resolve them.
* ------------------------------------------------------------------------- */

static void
scheduleDetectDeadlock (Capability **pcap, Task *task)
{
    Capability *cap = *pcap;
    /*
* Detect deadlock: when we have no threads to run, there are no
* threads blocked, waiting for I/O, or sleeping, and all the
* other tasks are waiting for work, we must have a deadlock of
* some description.
*/
    if ( emptyThreadQueues(cap) )
    {
#if defined(THREADED_RTS)
/*
* In the threaded RTS, we only check for deadlock if there
* has been no activity in a complete timeslice. This means
* we won't eagerly start a full GC just because we don't have
* any threads to run currently.
*/
if (recent_activity != ACTIVITY_INACTIVE) return;
#endif

debugTrace(DEBUG_sched, "deadlocked, forcing major GC...");

// Garbage collection can release some new threads due to
// either (a) finalizers or (b) threads resurrected because
// they are unreachable and will therefore be sent an
// exception. Any threads thus released will be immediately
// runnable.
        scheduleDoGC (pcap, task, rtsTrue/*force major GC*/);
        cap = *pcap;
        // when force_major == rtsTrue. scheduleDoGC sets
        // recent_activity to ACTIVITY_DONE_GC and turns off the timer
        // signal.

if ( !emptyRunQueue(cap) ) return;

#if defined(RTS_USER_SIGNALS) && !defined(THREADED_RTS)
/* If we have user-installed signal handlers, then wait
* for signals to arrive rather then bombing out with a
* deadlock.
*/
if ( RtsFlags.MiscFlags.install_signal_handlers && anyUserHandlers() ) {
debugTrace(DEBUG_sched,
"still deadlocked, waiting for signals...");

awaitUserSignals();

if (signals_pending()) {
startSignalHandlers(cap);
}

// either we have threads to run, or we were interrupted:
ASSERT(!emptyRunQueue(cap) || sched_state >= SCHED_INTERRUPTING);

            return;
}
#endif

#if !defined(THREADED_RTS)
/* Probably a real deadlock. Send the current main thread the
* Deadlock exception.
*/
if (task->incall->tso) {
switch (task->incall->tso->why_blocked) {
case BlockedOnSTM:
case BlockedOnBlackHole:
case BlockedOnMsgThrowTo:
case BlockedOnMVar:
throwToSingleThreaded(cap, task->incall->tso,
(StgClosure *)nonTermination_closure);
return;
default:
barf("deadlock: main thread blocked in a strange way");
}
}
return;
#endif
    }
}


/* ----------------------------------------------------------------------------
* Send pending messages (PARALLEL_HASKELL only)
* ------------------------------------------------------------------------- */

#if defined(PARALLEL_HASKELL)
static void
scheduleSendPendingMessages(void)
{

# if defined(PAR) // global Mem.Mgmt., omit for now
    if (PendingFetches != END_BF_QUEUE) {
        processFetches();
    }
# endif
    
    if (RtsFlags.ParFlags.BufferTime) {
// if we use message buffering, we must send away all message
// packets which have become too old...
sendOldBuffers();
    }
}
#endif

/* ----------------------------------------------------------------------------
* Process message in the current Capability's inbox
* ------------------------------------------------------------------------- */

static void
scheduleProcessInbox (Capability **pcap USED_IF_THREADS)
{
#if defined(THREADED_RTS)
    Message *m, *next;
    int r;
    Capability *cap = *pcap;

    while (!emptyInbox(cap)) {
        if (cap->r.rCurrentNursery->link == NULL ||
            g0->n_new_large_words >= large_alloc_lim) {
            scheduleDoGC(pcap, cap->running_task, rtsFalse);
            cap = *pcap;
        }

        // don't use a blocking acquire; if the lock is held by
        // another thread then just carry on. This seems to avoid
        // getting stuck in a message ping-pong situation with other
        // processors. We'll check the inbox again later anyway.
        //
        // We should really use a more efficient queue data structure
        // here. The trickiness is that we must ensure a Capability
        // never goes idle if the inbox is non-empty, which is why we
        // use cap->lock (cap->lock is released as the last thing
        // before going idle; see Capability.c:releaseCapability()).
        r = TRY_ACQUIRE_LOCK(&cap->lock);
        if (r != 0) return;

        m = cap->inbox;
        cap->inbox = (Message*)END_TSO_QUEUE;

        RELEASE_LOCK(&cap->lock);

        while (m != (Message*)END_TSO_QUEUE) {
            next = m->link;
            executeMessage(cap, m);
            m = next;
        }
    }
#endif
}

/* ----------------------------------------------------------------------------
* Activate spark threads (PARALLEL_HASKELL and THREADED_RTS)
* ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
static void
scheduleActivateSpark(Capability *cap)
{
    if (anySparks() && !cap->disabled)
    {
        createSparkThread(cap);
        debugTrace(DEBUG_sched, "creating a spark thread");
    }
}
#endif // PARALLEL_HASKELL || THREADED_RTS

/* ----------------------------------------------------------------------------
* After running a thread...
* ------------------------------------------------------------------------- */

static void
schedulePostRunThread (Capability *cap, StgTSO *t)
{
    // We have to be able to catch transactions that are in an
    // infinite loop as a result of seeing an inconsistent view of
    // memory, e.g.
    //
    // atomically $ do
    // [a,b] <- mapM readTVar [ta,tb]
    // when (a == b) loop
    //
    // and a is never equal to b given a consistent view of memory.
    //
    if (t -> trec != NO_TREC && t -> why_blocked == NotBlocked) {
        if (!stmValidateNestOfTransactions (t -> trec)) {
            debugTrace(DEBUG_sched | DEBUG_stm,
                       "trec %p found wasting its time", t);
            
            // strip the stack back to the
            // ATOMICALLY_FRAME, aborting the (nested)
            // transaction, and saving the stack of any
            // partially-evaluated thunks on the heap.
            throwToSingleThreaded_(cap, t, NULL, rtsTrue);
            
// ASSERT(get_itbl((StgClosure *)t->sp)->type == ATOMICALLY_FRAME);
        }
    }

  /* some statistics gathering in the parallel case */
}

/* -----------------------------------------------------------------------------
* Handle a thread that returned to the scheduler with ThreadHeepOverflow
* -------------------------------------------------------------------------- */

static rtsBool
scheduleHandleHeapOverflow( Capability *cap, StgTSO *t )
{
    // did the task ask for a large block?
    if (cap->r.rHpAlloc > BLOCK_SIZE) {
// if so, get one and push it on the front of the nursery.
bdescr *bd;
lnat blocks;

blocks = (lnat)BLOCK_ROUND_UP(cap->r.rHpAlloc) / BLOCK_SIZE;

        if (blocks > BLOCKS_PER_MBLOCK) {
            barf("allocation of %ld bytes too large (GHC should have complained at compile-time)", (long)cap->r.rHpAlloc);
        }

debugTrace(DEBUG_sched,
"--<< thread %ld (%s) stopped: requesting a large block (size %ld)\n",
(long)t->id, what_next_strs[t->what_next], blocks);
    
// don't do this if the nursery is (nearly) full, we'll GC first.
if (cap->r.rCurrentNursery->link != NULL ||
cap->r.rNursery->n_blocks == 1) { // paranoia to prevent infinite loop
// if the nursery has only one block.

            bd = allocGroup_lock(blocks);
            cap->r.rNursery->n_blocks += blocks;

// link the new group into the list
bd->link = cap->r.rCurrentNursery;
bd->u.back = cap->r.rCurrentNursery->u.back;
if (cap->r.rCurrentNursery->u.back != NULL) {
cap->r.rCurrentNursery->u.back->link = bd;
} else {
cap->r.rNursery->blocks = bd;
}
cap->r.rCurrentNursery->u.back = bd;

// initialise it as a nursery block. We initialise the
// step, gen_no, and flags field of *every* sub-block in
// this large block, because this is easier than making
// sure that we always find the block head of a large
// block whenever we call Bdescr() (eg. evacuate() and
// isAlive() in the GC would both have to do this, at
// least).
{
bdescr *x;
for (x = bd; x < bd + blocks; x++) {
                    initBdescr(x,g0,g0);
                    x->free = x->start;
x->flags = 0;
}
}

// This assert can be a killer if the app is doing lots
// of large block allocations.
IF_DEBUG(sanity, checkNurserySanity(cap->r.rNursery));

// now update the nursery to point to the new block
cap->r.rCurrentNursery = bd;

// we might be unlucky and have another thread get on the
// run queue before us and steal the large block, but in that
// case the thread will just end up requesting another large
// block.
pushOnRunQueue(cap,t);
return rtsFalse; /* not actually GC'ing */
}
    }
    
    if (cap->r.rHpLim == NULL || cap->context_switch) {
        // Sometimes we miss a context switch, e.g. when calling
        // primitives in a tight loop, MAYBE_GC() doesn't check the
        // context switch flag, and we end up waiting for a GC.
        // See #1984, and concurrent/should_run/1984
        cap->context_switch = 0;
        appendToRunQueue(cap,t);
    } else {
        pushOnRunQueue(cap,t);
    }
    return rtsTrue;
    /* actual GC is done at the end of the while loop in schedule() */
}

/* -----------------------------------------------------------------------------
* Handle a thread that returned to the scheduler with ThreadYielding
* -------------------------------------------------------------------------- */

static rtsBool
scheduleHandleYield( Capability *cap, StgTSO *t, nat prev_what_next )
{
    /* put the thread back on the run queue. Then, if we're ready to
* GC, check whether this is the last task to stop. If so, wake
* up the GC thread. getThread will block during a GC until the
* GC is finished.
*/

    ASSERT(t->_link == END_TSO_QUEUE);
    
    // Shortcut if we're just switching evaluators: don't bother
    // doing stack squeezing (which can be expensive), just run the
    // thread.
    if (cap->context_switch == 0 && t->what_next != prev_what_next) {
debugTrace(DEBUG_sched,
"--<< thread %ld (%s) stopped to switch evaluators",
(long)t->id, what_next_strs[t->what_next]);
return rtsTrue;
    }

    // Reset the context switch flag. We don't do this just before
    // running the thread, because that would mean we would lose ticks
    // during GC, which can lead to unfair scheduling (a thread hogs
    // the CPU because the tick always arrives during GC). This way
    // penalises threads that do a lot of allocation, but that seems
    // better than the alternative.
    if (cap->context_switch != 0) {
        cap->context_switch = 0;
        appendToRunQueue(cap,t);
    } else {
        pushOnRunQueue(cap,t);
    }

    IF_DEBUG(sanity,
//debugBelch("&& Doing sanity check on yielding TSO %ld.", t->id);
checkTSO(t));

    return rtsFalse;
}

/* -----------------------------------------------------------------------------
* Handle a thread that returned to the scheduler with ThreadBlocked
* -------------------------------------------------------------------------- */

static void
scheduleHandleThreadBlocked( StgTSO *t
#if !defined(DEBUG)
    STG_UNUSED
#endif
    )
{

      // We don't need to do anything. The thread is blocked, and it
      // has tidied up its stack and placed itself on whatever queue
      // it needs to be on.

    // ASSERT(t->why_blocked != NotBlocked);
    // Not true: for example,
    // - the thread may have woken itself up already, because
    // threadPaused() might have raised a blocked throwTo
    // exception, see maybePerformBlockedException().

#ifdef DEBUG
    traceThreadStatus(DEBUG_sched, t);
#endif
}

/* -----------------------------------------------------------------------------
* Handle a thread that returned to the scheduler with ThreadFinished
* -------------------------------------------------------------------------- */

static rtsBool
scheduleHandleThreadFinished (Capability *cap STG_UNUSED, Task *task, StgTSO *t)
{
    /* Need to check whether this was a main thread, and if so,
* return with the return value.
*
* We also end up here if the thread kills itself with an
* uncaught exception, see Exception.cmm.
*/

    // blocked exceptions can now complete, even if the thread was in
    // blocked mode (see #2910).
    awakenBlockedExceptionQueue (cap, t);

      //
      // Check whether the thread that just completed was a bound
      // thread, and if so return with the result.
      //
      // There is an assumption here that all thread completion goes
      // through this point; we need to make sure that if a thread
      // ends up in the ThreadKilled state, that it stays on the run
      // queue so it can be dealt with here.
      //

      if (t->bound) {

if (t->bound != task->incall) {
#if !defined(THREADED_RTS)
// Must be a bound thread that is not the topmost one. Leave
// it on the run queue until the stack has unwound to the
// point where we can deal with this. Leaving it on the run
// queue also ensures that the garbage collector knows about
// this thread and its return value (it gets dropped from the
// step->threads list so there's no other way to find it).
appendToRunQueue(cap,t);
return rtsFalse;
#else
// this cannot happen in the threaded RTS, because a
// bound thread can only be run by the appropriate Task.
barf("finished bound thread that isn't mine");
#endif
}

ASSERT(task->incall->tso == t);

if (t->what_next == ThreadComplete) {
if (task->incall->ret) {
                  // NOTE: return val is stack->sp[1] (see StgStartup.hc)
                  *(task->incall->ret) = (StgClosure *)task->incall->tso->stackobj->sp[1];
}
task->incall->stat = Success;
} else {
if (task->incall->ret) {
*(task->incall->ret) = NULL;
}
if (sched_state >= SCHED_INTERRUPTING) {
                  if (heap_overflow) {
                      task->incall->stat = HeapExhausted;
                  } else {
                      task->incall->stat = Interrupted;
                  }
} else {
task->incall->stat = Killed;
}
}
#ifdef DEBUG
removeThreadLabel((StgWord)task->incall->tso->id);
#endif

          // We no longer consider this thread and task to be bound to
          // each other. The TSO lives on until it is GC'd, but the
          // task is about to be released by the caller, and we don't
          // want anyone following the pointer from the TSO to the
          // defunct task (which might have already been
          // re-used). This was a real bug: the GC updated
          // tso->bound->tso which lead to a deadlock.
          t->bound = NULL;
          task->incall->tso = NULL;

return rtsTrue; // tells schedule() to return
      }

      return rtsFalse;
}

/* -----------------------------------------------------------------------------
* Perform a heap census
* -------------------------------------------------------------------------- */

static rtsBool
scheduleNeedHeapProfile( rtsBool ready_to_gc STG_UNUSED )
{
    // When we have +RTS -i0 and we're heap profiling, do a census at
    // every GC. This lets us get repeatable runs for debugging.
    if (performHeapProfile ||
        (RtsFlags.ProfFlags.heapProfileInterval==0 &&
RtsFlags.ProfFlags.doHeapProfile && ready_to_gc)) {
        return rtsTrue;
    } else {
        return rtsFalse;
    }
}

/* -----------------------------------------------------------------------------
* Start a synchronisation of all capabilities
* -------------------------------------------------------------------------- */

// Returns:
// 0 if we successfully got a sync
// non-0 if there was another sync request in progress,
// and we yielded to it. The value returned is the
// type of the other sync request.
//
#if defined(THREADED_RTS)
static nat requestSync (Capability **pcap, Task *task, nat sync_type)
{
    nat prev_pending_sync;

    prev_pending_sync = cas(&pending_sync, 0, sync_type);

    if (prev_pending_sync)
    {
do {
            debugTrace(DEBUG_sched, "someone else is trying to sync (%d)...",
                       prev_pending_sync);
            ASSERT(*pcap);
            yieldCapability(pcap,task,rtsTrue);
        } while (pending_sync);
        return prev_pending_sync; // NOTE: task->cap might have changed now
    }
    else
    {
        return 0;
    }
}

//
// Grab all the capabilities except the one we already hold. Used
// when synchronising before a single-threaded GC (SYNC_SEQ_GC), and
// before a fork (SYNC_OTHER).
//
// Only call this after requestSync(), otherwise a deadlock might
// ensue if another thread is trying to synchronise.
//
static void acquireAllCapabilities(Capability *cap, Task *task)
{
    Capability *tmpcap;
    nat i;

    for (i=0; i < n_capabilities; i++) {
        debugTrace(DEBUG_sched, "grabbing all the capabilies (%d/%d)", i, n_capabilities);
        tmpcap = &capabilities[i];
        if (tmpcap != cap) {
            // we better hope this task doesn't get migrated to
            // another Capability while we're waiting for this one.
            // It won't, because load balancing happens while we have
            // all the Capabilities, but even so it's a slightly
            // unsavoury invariant.
            task->cap = tmpcap;
            waitForReturnCapability(&tmpcap, task);
            if (tmpcap->no != i) {
                barf("acquireAllCapabilities: got the wrong capability");
            }
        }
    }
    task->cap = cap;
}

static void releaseAllCapabilities(Capability *cap, Task *task)
{
    nat i;

    for (i = 0; i < n_capabilities; i++) {
        if (cap->no != i) {
            task->cap = &capabilities[i];
            releaseCapability(&capabilities[i]);
        }
    }
    task->cap = cap;
}
#endif

/* -----------------------------------------------------------------------------
* Perform a garbage collection if necessary
* -------------------------------------------------------------------------- */

static void
scheduleDoGC (Capability **pcap, Task *task USED_IF_THREADS,
              rtsBool force_major)
{
    Capability *cap = *pcap;
    rtsBool heap_census;
#ifdef THREADED_RTS
    rtsBool idle_cap[n_capabilities];
    rtsBool gc_type;
    nat i, sync;
    StgTSO *tso;
#endif

    if (sched_state == SCHED_SHUTTING_DOWN) {
        // The final GC has already been done, and the system is
        // shutting down. We'll probably deadlock if we try to GC
        // now.
        return;
    }

#ifdef THREADED_RTS
    if (sched_state < SCHED_INTERRUPTING
        && RtsFlags.ParFlags.parGcEnabled
        && N >= RtsFlags.ParFlags.parGcGen
        && ! oldest_gen->mark)
    {
        gc_type = SYNC_GC_PAR;
    } else {
        gc_type = SYNC_GC_SEQ;
    }

    // In order to GC, there must be no threads running Haskell code.
    // Therefore, the GC thread needs to hold *all* the capabilities,
    // and release them after the GC has completed.
    //
    // This seems to be the simplest way: previous attempts involved
    // making all the threads with capabilities give up their
    // capabilities and sleep except for the *last* one, which
    // actually did the GC. But it's quite hard to arrange for all
    // the other tasks to sleep and stay asleep.
    //

    /* Other capabilities are prevented from running yet more Haskell
threads if pending_sync is set. Tested inside
yieldCapability() and releaseCapability() in Capability.c */

    do {
        sync = requestSync(pcap, task, gc_type);
        cap = *pcap;
        if (sync == SYNC_GC_SEQ || sync == SYNC_GC_PAR) {
            // someone else had a pending sync request for a GC, so
            // let's assume GC has been done and we don't need to GC
            // again.
            return;
        }
        if (sched_state == SCHED_SHUTTING_DOWN) {
            // The scheduler might now be shutting down. We tested
            // this above, but it might have become true since then as
            // we yielded the capability in requestSync().
            return;
        }
    } while (sync);

    interruptAllCapabilities();

    // The final shutdown GC is always single-threaded, because it's
    // possible that some of the Capabilities have no worker threads.
    
    if (gc_type == SYNC_GC_SEQ)
    {
        traceEventRequestSeqGc(cap);
    }
    else
    {
        traceEventRequestParGc(cap);
        debugTrace(DEBUG_sched, "ready_to_gc, grabbing GC threads");
    }

    if (gc_type == SYNC_GC_SEQ)
    {
        // single-threaded GC: grab all the capabilities
        acquireAllCapabilities(cap,task);
    }
    else
    {
        // If we are load-balancing collections in this
        // generation, then we require all GC threads to participate
        // in the collection. Otherwise, we only require active
        // threads to participate, and we set gc_threads[i]->idle for
        // any idle capabilities. The rationale here is that waking
        // up an idle Capability takes much longer than just doing any
        // GC work on its behalf.

        if (RtsFlags.ParFlags.parGcNoSyncWithIdle == 0
            || (RtsFlags.ParFlags.parGcLoadBalancingEnabled &&
                N >= RtsFlags.ParFlags.parGcLoadBalancingGen)) {
            for (i=0; i < n_capabilities; i++) {
                if (capabilities[i].disabled) {
                    idle_cap[i] = tryGrabCapability(&capabilities[i], task);
                } else {
                    idle_cap[i] = rtsFalse;
                }
            }
        } else {
            for (i=0; i < n_capabilities; i++) {
                if (capabilities[i].disabled) {
                    idle_cap[i] = tryGrabCapability(&capabilities[i], task);
                } else if (i == cap->no ||
                           capabilities[i].idle < RtsFlags.ParFlags.parGcNoSyncWithIdle) {
                    idle_cap[i] = rtsFalse;
                } else {
                    idle_cap[i] = tryGrabCapability(&capabilities[i], task);
                    if (!idle_cap[i]) {
                        n_failed_trygrab_idles++;
                    } else {
                        n_idle_caps++;
                    }
                }
            }
        }

        // We set the gc_thread[i]->idle flag if that
        // capability/thread is not participating in this collection.
        // We also keep a local record of which capabilities are idle
        // in idle_cap[], because scheduleDoGC() is re-entrant:
        // another thread might start a GC as soon as we've finished
        // this one, and thus the gc_thread[]->idle flags are invalid
        // as soon as we release any threads after GC. Getting this
        // wrong leads to a rare and hard to debug deadlock!

        for (i=0; i < n_capabilities; i++) {
            gc_threads[i]->idle = idle_cap[i];
            capabilities[i].idle++;
        }

        // For all capabilities participating in this GC, wait until
        // they have stopped mutating and are standing by for GC.
        waitForGcThreads(cap);
#if defined(THREADED_RTS)
        // Stable point where we can do a global check on our spark counters
        ASSERT(checkSparkCountInvariant());
#endif
    }

#endif

    IF_DEBUG(scheduler, printAllThreads());

delete_threads_and_gc:
    /*
* We now have all the capabilities; if we're in an interrupting
* state, then we should take the opportunity to delete all the
* threads in the system.
*/
    if (sched_state == SCHED_INTERRUPTING) {
deleteAllThreads(cap);
#if defined(THREADED_RTS)
        // Discard all the sparks from every Capability. Why?
        // They'll probably be GC'd anyway since we've killed all the
        // threads. It just avoids the GC having to do any work to
        // figure out that any remaining sparks are garbage.
        for (i = 0; i < n_capabilities; i++) {
            capabilities[i].spark_stats.gcd +=
                sparkPoolSize(capabilities[i].sparks);
            // No race here since all Caps are stopped.
            discardSparksCap(&capabilities[i]);
        }
#endif
        sched_state = SCHED_SHUTTING_DOWN;
    }
    
    /*
* When there are disabled capabilities, we want to migrate any
* threads away from them. Normally this happens in the
* scheduler's loop, but only for unbound threads - it's really
* hard for a bound thread to migrate itself. So we have another
* go here.
*/
#if defined(THREADED_RTS)
    for (i = enabled_capabilities; i < n_capabilities; i++) {
        Capability *tmp_cap, *dest_cap;
        tmp_cap = &capabilities[i];
        ASSERT(tmp_cap->disabled);
        if (i != cap->no) {
            dest_cap = &capabilities[i % enabled_capabilities];
            while (!emptyRunQueue(tmp_cap)) {
                tso = popRunQueue(tmp_cap);
                migrateThread(tmp_cap, tso, dest_cap);
                if (tso->bound) {
                  traceTaskMigrate(tso->bound->task,
                                   tso->bound->task->cap,
                                   dest_cap);
                  tso->bound->task->cap = dest_cap;
                }
            }
        }
    }
#endif

    heap_census = scheduleNeedHeapProfile(rtsTrue);

#if defined(THREADED_RTS)
    // reset pending_sync *before* GC, so that when the GC threads
    // emerge they don't immediately re-enter the GC.
    pending_sync = 0;
    GarbageCollect(force_major || heap_census, heap_census, gc_type, cap);
#else
    GarbageCollect(force_major || heap_census, heap_census, 0, cap);
#endif

    traceSparkCounters(cap);

    switch (recent_activity) {
    case ACTIVITY_INACTIVE:
        if (force_major) {
            // We are doing a GC because the system has been idle for a
            // timeslice and we need to check for deadlock. Record the
            // fact that we've done a GC and turn off the timer signal;
            // it will get re-enabled if we run any threads after the GC.
            recent_activity = ACTIVITY_DONE_GC;
            stopTimer();
            break;
        }
        // fall through...

    case ACTIVITY_MAYBE_NO:
        // the GC might have taken long enough for the timer to set
        // recent_activity = ACTIVITY_MAYBE_NO or ACTIVITY_INACTIVE,
        // but we aren't necessarily deadlocked:
        recent_activity = ACTIVITY_YES;
        break;

    case ACTIVITY_DONE_GC:
        // If we are actually active, the scheduler will reset the
        // recent_activity flag and re-enable the timer.
        break;
    }

#if defined(THREADED_RTS)
    // Stable point where we can do a global check on our spark counters
    ASSERT(checkSparkCountInvariant());
#endif

    // The heap census itself is done during GarbageCollect().
    if (heap_census) {
        performHeapProfile = rtsFalse;
    }

#if defined(THREADED_RTS)
    if (gc_type == SYNC_GC_PAR)
    {
        releaseGCThreads(cap);
        for (i = 0; i < n_capabilities; i++) {
            if (i != cap->no) {
                if (idle_cap[i]) {
                    ASSERT(capabilities[i].running_task == task);
                    task->cap = &capabilities[i];
                    releaseCapability(&capabilities[i]);
                } else {
                    ASSERT(capabilities[i].running_task != task);
                }
            }
        }
        task->cap = cap;
    }
#endif

    if (heap_overflow && sched_state < SCHED_INTERRUPTING) {
        // GC set the heap_overflow flag, so we should proceed with
        // an orderly shutdown now. Ultimately we want the main
        // thread to return to its caller with HeapExhausted, at which
        // point the caller should call hs_exit(). The first step is
        // to delete all the threads.
        //
        // Another way to do this would be to raise an exception in
        // the main thread, which we really should do because it gives
        // the program a chance to clean up. But how do we find the
        // main thread? It should presumably be the same one that
        // gets ^C exceptions, but that's all done on the Haskell side
        // (GHC.TopHandler).
sched_state = SCHED_INTERRUPTING;
        goto delete_threads_and_gc;
    }

#ifdef SPARKBALANCE
    /* JB
Once we are all together... this would be the place to balance all
spark pools. No concurrent stealing or adding of new sparks can
occur. Should be defined in Sparks.c. */
    balanceSparkPoolsCaps(n_capabilities, capabilities);
#endif

#if defined(THREADED_RTS)
    if (gc_type == SYNC_GC_SEQ) {
        // release our stash of capabilities.
        releaseAllCapabilities(cap, task);
    }
#endif

    return;
}

/* ---------------------------------------------------------------------------
* Singleton fork(). Do not copy any running threads.
* ------------------------------------------------------------------------- */

pid_t
forkProcess(HsStablePtr *entry
#ifndef FORKPROCESS_PRIMOP_SUPPORTED
STG_UNUSED
#endif
           )
{
#ifdef FORKPROCESS_PRIMOP_SUPPORTED
    pid_t pid;
    StgTSO* t,*next;
    Capability *cap;
    nat g;
    Task *task = NULL;
    nat i;
#ifdef THREADED_RTS
    nat sync;
#endif

    debugTrace(DEBUG_sched, "forking!");
    
    task = newBoundTask();

    cap = NULL;
    waitForReturnCapability(&cap, task);

#ifdef THREADED_RTS
    do {
        sync = requestSync(&cap, task, SYNC_OTHER);
    } while (sync);

    acquireAllCapabilities(cap,task);

    pending_sync = 0;
#endif

    // no funny business: hold locks while we fork, otherwise if some
    // other thread is holding a lock when the fork happens, the data
    // structure protected by the lock will forever be in an
    // inconsistent state in the child. See also #1391.
    ACQUIRE_LOCK(&sched_mutex);
    ACQUIRE_LOCK(&sm_mutex);
    ACQUIRE_LOCK(&stable_mutex);
    ACQUIRE_LOCK(&task->lock);

    for (i=0; i < n_capabilities; i++) {
        ACQUIRE_LOCK(&capabilities[i].lock);
    }

    stopTimer(); // See #4074

#if defined(TRACING)
    flushEventLog(); // so that child won't inherit dirty file buffers
#endif

    pid = fork();
    
    if (pid) { // parent

        startTimer(); // #4074

        RELEASE_LOCK(&sched_mutex);
        RELEASE_LOCK(&sm_mutex);
        RELEASE_LOCK(&stable_mutex);
        RELEASE_LOCK(&task->lock);

        for (i=0; i < n_capabilities; i++) {
            releaseCapability_(&capabilities[i],rtsFalse);
            RELEASE_LOCK(&capabilities[i].lock);
        }
        boundTaskExiting(task);

// just return the pid
        return pid;

    } else { // child
#if defined(THREADED_RTS)
        initMutex(&sched_mutex);
        initMutex(&sm_mutex);
        initMutex(&stable_mutex);
        initMutex(&task->lock);

        for (i=0; i < n_capabilities; i++) {
            initMutex(&capabilities[i].lock);
        }
#endif

#ifdef TRACING
        resetTracing();
#endif

        // Now, all OS threads except the thread that forked are
// stopped. We need to stop all Haskell threads, including
// those involved in foreign calls. Also we need to delete
// all Tasks, because they correspond to OS threads that are
// now gone.

        for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
          for (t = generations[g].threads; t != END_TSO_QUEUE; t = next) {
                next = t->global_link;
// don't allow threads to catch the ThreadKilled
// exception, but we do want to raiseAsync() because these
// threads may be evaluating thunks that we need later.
                deleteThread_(t->cap,t);

                // stop the GC from updating the InCall to point to
                // the TSO. This is only necessary because the
                // OSThread bound to the TSO has been killed, and
                // won't get a chance to exit in the usual way (see
                // also scheduleHandleThreadFinished).
                t->bound = NULL;
          }
}

        discardTasksExcept(task);

        for (i=0; i < n_capabilities; i++) {
            cap = &capabilities[i];

            // Empty the run queue. It seems tempting to let all the
            // killed threads stay on the run queue as zombies to be
            // cleaned up later, but some of them may correspond to
            // bound threads for which the corresponding Task does not
            // exist.
            cap->run_queue_hd = END_TSO_QUEUE;
            cap->run_queue_tl = END_TSO_QUEUE;

            // Any suspended C-calling Tasks are no more, their OS threads
            // don't exist now:
            cap->suspended_ccalls = NULL;

#if defined(THREADED_RTS)
            // Wipe our spare workers list, they no longer exist. New
            // workers will be created if necessary.
            cap->spare_workers = NULL;
            cap->n_spare_workers = 0;
            cap->returning_tasks_hd = NULL;
            cap->returning_tasks_tl = NULL;
#endif

            // Release all caps except 0, we'll use that for starting
            // the IO manager and running the client action below.
            if (cap->no != 0) {
                task->cap = cap;
                releaseCapability(cap);
            }
        }
        cap = &capabilities[0];
        task->cap = cap;

        // Empty the threads lists. Otherwise, the garbage
// collector may attempt to resurrect some of these threads.
        for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
            generations[g].threads = END_TSO_QUEUE;
        }

        // On Unix, all timers are reset in the child, so we need to start
        // the timer again.
        initTimer();
        startTimer();

        // TODO: need to trace various other things in the child
        // like startup event, capabilities, process info etc
        traceTaskCreate(task, cap);

#if defined(THREADED_RTS)
        ioManagerStartCap(&cap);
#endif

        rts_evalStableIO(&cap, entry, NULL); // run the action
rts_checkSchedStatus("forkProcess",cap);

rts_unlock(cap);
hs_exit(); // clean up and exit
stg_exit(EXIT_SUCCESS);
    }
#else /* !FORKPROCESS_PRIMOP_SUPPORTED */
    barf("forkProcess#: primop not supported on this platform, sorry!\n");
#endif
}

/* ---------------------------------------------------------------------------
* Changing the number of Capabilities
*
* Changing the number of Capabilities is very tricky! We can only do
* it with the system fully stopped, so we do a full sync with
* requestSync(SYNC_OTHER) and grab all the capabilities.
*
* Then we resize the appropriate data structures, and update all
* references to the old data structures which have now moved.
* Finally we release the Capabilities we are holding, and start
* worker Tasks on the new Capabilities we created.
*
* ------------------------------------------------------------------------- */
   
void
setNumCapabilities (nat new_n_capabilities USED_IF_THREADS)
{
#if !defined(THREADED_RTS)
    if (new_n_capabilities != 1) {
        errorBelch("setNumCapabilities: not supported in the non-threaded RTS");
    }
    return;
#elif defined(NOSMP)
    if (new_n_capabilities != 1) {
        errorBelch("setNumCapabilities: not supported on this platform");
    }
    return;
#else
    Task *task;
    Capability *cap;
    nat sync;
    StgTSO* t;
    nat g, n;
    Capability *old_capabilities = NULL;

    if (new_n_capabilities == enabled_capabilities) return;

    debugTrace(DEBUG_sched, "changing the number of Capabilities from %d to %d",
               enabled_capabilities, new_n_capabilities);
    
    cap = rts_lock();
    task = cap->running_task;

    do {
        sync = requestSync(&cap, task, SYNC_OTHER);
    } while (sync);

    acquireAllCapabilities(cap,task);

    pending_sync = 0;

    if (new_n_capabilities < enabled_capabilities)
    {
        // Reducing the number of capabilities: we do not actually
        // remove the extra capabilities, we just mark them as
        // "disabled". This has the following effects:
        //
        // - threads on a disabled capability are migrated away by the
        // scheduler loop
        //
        // - disabled capabilities do not participate in GC
        // (see scheduleDoGC())
        //
        // - No spark threads are created on this capability
        // (see scheduleActivateSpark())
        //
        // - We do not attempt to migrate threads *to* a disabled
        // capability (see schedulePushWork()).
        //
        // but in other respects, a disabled capability remains
        // alive. Threads may be woken up on a disabled capability,
        // but they will be immediately migrated away.
        //
        // This approach is much easier than trying to actually remove
        // the capability; we don't have to worry about GC data
        // structures, the nursery, etc.
        //
        for (n = new_n_capabilities; n < enabled_capabilities; n++) {
            capabilities[n].disabled = rtsTrue;
            traceCapDisable(&capabilities[n]);
        }
        enabled_capabilities = new_n_capabilities;
    }
    else
    {
        // Increasing the number of enabled capabilities.
        //
        // enable any disabled capabilities, up to the required number
        for (n = enabled_capabilities;
             n < new_n_capabilities && n < n_capabilities; n++) {
            capabilities[n].disabled = rtsFalse;
            traceCapEnable(&capabilities[n]);
        }
        enabled_capabilities = n;

        if (new_n_capabilities > n_capabilities) {
#if defined(TRACING)
            // Allocate eventlog buffers for the new capabilities. Note this
            // must be done before calling moreCapabilities(), because that
            // will emit events about creating the new capabilities and adding
            // them to existing capsets.
            tracingAddCapapilities(n_capabilities, new_n_capabilities);
#endif

            // Resize the capabilities array
            // NB. after this, capabilities points somewhere new. Any pointers
            // of type (Capability *) are now invalid.
            old_capabilities = moreCapabilities(n_capabilities, new_n_capabilities);

            // update our own cap pointer
            cap = &capabilities[cap->no];

            // Resize and update storage manager data structures
            storageAddCapabilities(n_capabilities, new_n_capabilities);

            // Update (Capability *) refs in the Task manager.
            updateCapabilityRefs();

            // Update (Capability *) refs from TSOs
            for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
                for (t = generations[g].threads; t != END_TSO_QUEUE; t = t->global_link) {
                    t->cap = &capabilities[t->cap->no];
                }
            }
        }
    }

    // We're done: release the original Capabilities
    releaseAllCapabilities(cap,task);

    // Start worker tasks on the new Capabilities
    startWorkerTasks(n_capabilities, new_n_capabilities);

    // finally, update n_capabilities
    if (new_n_capabilities > n_capabilities) {
        n_capabilities = enabled_capabilities = new_n_capabilities;
    }

    // We can't free the old array until now, because we access it
    // while updating pointers in updateCapabilityRefs().
    if (old_capabilities) {
        stgFree(old_capabilities);
    }

    rts_unlock(cap);

#endif // THREADED_RTS
}



/* ---------------------------------------------------------------------------
* Delete all the threads in the system
* ------------------------------------------------------------------------- */
   
static void
deleteAllThreads ( Capability *cap )
{
    // NOTE: only safe to call if we own all capabilities.

    StgTSO* t, *next;
    nat g;

    debugTrace(DEBUG_sched,"deleting all threads");
    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
        for (t = generations[g].threads; t != END_TSO_QUEUE; t = next) {
                next = t->global_link;
                deleteThread(cap,t);
        }
    }

    // The run queue now contains a bunch of ThreadKilled threads. We
    // must not throw these away: the main thread(s) will be in there
    // somewhere, and the main scheduler loop has to deal with it.
    // Also, the run queue is the only thing keeping these threads from
    // being GC'd, and we don't want the "main thread has been GC'd" panic.

#if !defined(THREADED_RTS)
    ASSERT(blocked_queue_hd == END_TSO_QUEUE);
    ASSERT(sleeping_queue == END_TSO_QUEUE);
#endif
}

/* -----------------------------------------------------------------------------
Managing the suspended_ccalls list.
Locks required: sched_mutex
-------------------------------------------------------------------------- */

STATIC_INLINE void
suspendTask (Capability *cap, Task *task)
{
    InCall *incall;
    
    incall = task->incall;
    ASSERT(incall->next == NULL && incall->prev == NULL);
    incall->next = cap->suspended_ccalls;
    incall->prev = NULL;
    if (cap->suspended_ccalls) {
cap->suspended_ccalls->prev = incall;
    }
    cap->suspended_ccalls = incall;
}

STATIC_INLINE void
recoverSuspendedTask (Capability *cap, Task *task)
{
    InCall *incall;

    incall = task->incall;
    if (incall->prev) {
incall->prev->next = incall->next;
    } else {
ASSERT(cap->suspended_ccalls == incall);
cap->suspended_ccalls = incall->next;
    }
    if (incall->next) {
incall->next->prev = incall->prev;
    }
    incall->next = incall->prev = NULL;
}

/* ---------------------------------------------------------------------------
* Suspending & resuming Haskell threads.
*
* When making a "safe" call to C (aka _ccall_GC), the task gives back
* its capability before calling the C function. This allows another
* task to pick up the capability and carry on running Haskell
* threads. It also means that if the C call blocks, it won't lock
* the whole system.
*
* The Haskell thread making the C call is put to sleep for the
* duration of the call, on the suspended_ccalling_threads queue. We
* give out a token to the task, which it can use to resume the thread
* on return from the C function.
*
* If this is an interruptible C call, this means that the FFI call may be
* unceremoniously terminated and should be scheduled on an
* unbound worker thread.
* ------------------------------------------------------------------------- */
   
void *
suspendThread (StgRegTable *reg, rtsBool interruptible)
{
  Capability *cap;
  int saved_errno;
  StgTSO *tso;
  Task *task;
#if mingw32_HOST_OS
  StgWord32 saved_winerror;
#endif

  saved_errno = errno;
#if mingw32_HOST_OS
  saved_winerror = GetLastError();
#endif

  /* assume that *reg is a pointer to the StgRegTable part of a Capability.
*/
  cap = regTableToCapability(reg);

  task = cap->running_task;
  tso = cap->r.rCurrentTSO;

  traceEventStopThread(cap, tso, THREAD_SUSPENDED_FOREIGN_CALL, 0);

  // XXX this might not be necessary --SDM
  tso->what_next = ThreadRunGHC;

  threadPaused(cap,tso);

  if (interruptible) {
    tso->why_blocked = BlockedOnCCall_Interruptible;
  } else {
    tso->why_blocked = BlockedOnCCall;
  }

  // Hand back capability
  task->incall->suspended_tso = tso;
  task->incall->suspended_cap = cap;

  ACQUIRE_LOCK(&cap->lock);

  suspendTask(cap,task);
  cap->in_haskell = rtsFalse;
  releaseCapability_(cap,rtsFalse);
  
  RELEASE_LOCK(&cap->lock);

  errno = saved_errno;
#if mingw32_HOST_OS
  SetLastError(saved_winerror);
#endif
  return task;
}

StgRegTable *
resumeThread (void *task_)
{
    StgTSO *tso;
    InCall *incall;
    Capability *cap;
    Task *task = task_;
    int saved_errno;
#if mingw32_HOST_OS
    StgWord32 saved_winerror;
#endif

    saved_errno = errno;
#if mingw32_HOST_OS
    saved_winerror = GetLastError();
#endif

    incall = task->incall;
    cap = incall->suspended_cap;
    task->cap = cap;

    // Wait for permission to re-enter the RTS with the result.
    waitForReturnCapability(&cap,task);
    // we might be on a different capability now... but if so, our
    // entry on the suspended_ccalls list will also have been
    // migrated.

    // Remove the thread from the suspended list
    recoverSuspendedTask(cap,task);

    tso = incall->suspended_tso;
    incall->suspended_tso = NULL;
    incall->suspended_cap = NULL;
    tso->_link = END_TSO_QUEUE; // no write barrier reqd

    traceEventRunThread(cap, tso);
    
    /* Reset blocking status */
    tso->why_blocked = NotBlocked;

    if ((tso->flags & TSO_BLOCKEX) == 0) {
        // avoid locking the TSO if we don't have to
        if (tso->blocked_exceptions != END_BLOCKED_EXCEPTIONS_QUEUE) {
            maybePerformBlockedException(cap,tso);
        }
    }
    
    cap->r.rCurrentTSO = tso;
    cap->in_haskell = rtsTrue;
    errno = saved_errno;
#if mingw32_HOST_OS
    SetLastError(saved_winerror);
#endif

    /* We might have GC'd, mark the TSO dirty again */
    dirty_TSO(cap,tso);
    dirty_STACK(cap,tso->stackobj);

    IF_DEBUG(sanity, checkTSO(tso));

    return &cap->r;
}

/* ---------------------------------------------------------------------------
* scheduleThread()
*
* scheduleThread puts a thread on the end of the runnable queue.
* This will usually be done immediately after a thread is created.
* The caller of scheduleThread must create the thread using e.g.
* createThread and push an appropriate closure
* on this thread's stack before the scheduler is invoked.
* ------------------------------------------------------------------------ */

void
scheduleThread(Capability *cap, StgTSO *tso)
{
    // The thread goes at the *end* of the run-queue, to avoid possible
    // starvation of any threads already on the queue.
    appendToRunQueue(cap,tso);
}

void
scheduleThreadOn(Capability *cap, StgWord cpu USED_IF_THREADS, StgTSO *tso)
{
    tso->flags |= TSO_LOCKED; // we requested explicit affinity; don't
// move this thread from now on.
#if defined(THREADED_RTS)
    cpu %= enabled_capabilities;
    if (cpu == cap->no) {
appendToRunQueue(cap,tso);
    } else {
        migrateThread(cap, tso, &capabilities[cpu]);
    }
#else
    appendToRunQueue(cap,tso);
#endif
}

void
scheduleWaitThread (StgTSO* tso, /*[out]*/HaskellObj* ret, Capability **pcap)
{
    Task *task;
    DEBUG_ONLY( StgThreadID id );
    Capability *cap;

    cap = *pcap;

    // We already created/initialised the Task
    task = cap->running_task;

    // This TSO is now a bound thread; make the Task and TSO
    // point to each other.
    tso->bound = task->incall;
    tso->cap = cap;

    task->incall->tso = tso;
    task->incall->ret = ret;
    task->incall->stat = NoStatus;

    appendToRunQueue(cap,tso);

    DEBUG_ONLY( id = tso->id );
    debugTrace(DEBUG_sched, "new bound thread (%lu)", (unsigned long)id);

    cap = schedule(cap,task);

    ASSERT(task->incall->stat != NoStatus);
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);

    debugTrace(DEBUG_sched, "bound thread (%lu) finished", (unsigned long)id);
    *pcap = cap;
}

/* ----------------------------------------------------------------------------
* Starting Tasks
* ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
void scheduleWorker (Capability *cap, Task *task)
{
    // schedule() runs without a lock.
    cap = schedule(cap,task);

    // On exit from schedule(), we have a Capability, but possibly not
    // the same one we started with.

    // During shutdown, the requirement is that after all the
    // Capabilities are shut down, all workers that are shutting down
    // have finished workerTaskStop(). This is why we hold on to
    // cap->lock until we've finished workerTaskStop() below.
    //
    // There may be workers still involved in foreign calls; those
    // will just block in waitForReturnCapability() because the
    // Capability has been shut down.
    //
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap,rtsFalse);
    workerTaskStop(task);
    RELEASE_LOCK(&cap->lock);
}
#endif

/* ---------------------------------------------------------------------------
* Start new worker tasks on Capabilities from--to
* -------------------------------------------------------------------------- */

static void
startWorkerTasks (nat from USED_IF_THREADS, nat to USED_IF_THREADS)
{
#if defined(THREADED_RTS)
    nat i;
    Capability *cap;

    for (i = from; i < to; i++) {
        cap = &capabilities[i];
        ACQUIRE_LOCK(&cap->lock);
        startWorkerTask(cap);
        RELEASE_LOCK(&cap->lock);
    }
#endif
}

/* ---------------------------------------------------------------------------
* initScheduler()
*
* Initialise the scheduler. This resets all the queues - if the
* queues contained any threads, they'll be garbage collected at the
* next pass.
*
* ------------------------------------------------------------------------ */

void
initScheduler(void)
{
#if !defined(THREADED_RTS)
  blocked_queue_hd = END_TSO_QUEUE;
  blocked_queue_tl = END_TSO_QUEUE;
  sleeping_queue = END_TSO_QUEUE;
#endif

  sched_state = SCHED_RUNNING;
  recent_activity = ACTIVITY_YES;

#if defined(THREADED_RTS)
  /* Initialise the mutex and condition variables used by
* the scheduler. */
  initMutex(&sched_mutex);
#endif
  
  ACQUIRE_LOCK(&sched_mutex);

  /* A capability holds the state a native thread needs in
* order to execute STG code. At least one capability is
* floating around (only THREADED_RTS builds have more than one).
*/
  initCapabilities();

  initTaskManager();

  /*
* Eagerly start one worker to run each Capability, except for
* Capability 0. The idea is that we're probably going to start a
* bound thread on Capability 0 pretty soon, so we don't want a
* worker task hogging it.
*/
  startWorkerTasks(1, n_capabilities);

  RELEASE_LOCK(&sched_mutex);

}

void
exitScheduler (rtsBool wait_foreign USED_IF_THREADS)
               /* see Capability.c, shutdownCapability() */
{
    Task *task = NULL;

    task = newBoundTask();

    // If we haven't killed all the threads yet, do it now.
    if (sched_state < SCHED_SHUTTING_DOWN) {
sched_state = SCHED_INTERRUPTING;
        Capability *cap = task->cap;
        waitForReturnCapability(&cap,task);
        scheduleDoGC(&cap,task,rtsTrue);
        ASSERT(task->incall->tso == NULL);
        releaseCapability(cap);
    }
    sched_state = SCHED_SHUTTING_DOWN;

    shutdownCapabilities(task, wait_foreign);

    // debugBelch("n_failed_trygrab_idles = %d, n_idle_caps = %d\n",
    // n_failed_trygrab_idles, n_idle_caps);

    boundTaskExiting(task);
}

void
freeScheduler( void )
{
    nat still_running;

    ACQUIRE_LOCK(&sched_mutex);
    still_running = freeTaskManager();
    // We can only free the Capabilities if there are no Tasks still
    // running. We might have a Task about to return from a foreign
    // call into waitForReturnCapability(), for example (actually,
    // this should be the *only* thing that a still-running Task can
    // do at this point, and it will block waiting for the
    // Capability).
    if (still_running == 0) {
        freeCapabilities();
        if (n_capabilities != 1) {
            stgFree(capabilities);
        }
    }
    RELEASE_LOCK(&sched_mutex);
#if defined(THREADED_RTS)
    closeMutex(&sched_mutex);
#endif
}

void markScheduler (evac_fn evac USED_IF_NOT_THREADS,
                    void *user USED_IF_NOT_THREADS)
{
#if !defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
    evac(user, (StgClosure **)(void *)&sleeping_queue);
#endif
}

/* -----------------------------------------------------------------------------
performGC

This is the interface to the garbage collector from Haskell land.
We provide this so that external C code can allocate and garbage
collect when called from Haskell via _ccall_GC.
-------------------------------------------------------------------------- */

static void
performGC_(rtsBool force_major)
{
    Task *task;
    Capability *cap = NULL;

    // We must grab a new Task here, because the existing Task may be
    // associated with a particular Capability, and chained onto the
    // suspended_ccalls queue.
    task = newBoundTask();
    
    // TODO: do we need to traceTask*() here?

    waitForReturnCapability(&cap,task);
    scheduleDoGC(&cap,task,force_major);
    releaseCapability(cap);
    boundTaskExiting(task);
}

void
performGC(void)
{
    performGC_(rtsFalse);
}

void
performMajorGC(void)
{
    performGC_(rtsTrue);
}

/* ---------------------------------------------------------------------------
Interrupt execution
- usually called inside a signal handler so it mustn't do anything fancy.
------------------------------------------------------------------------ */

void
interruptStgRts(void)
{
    sched_state = SCHED_INTERRUPTING;
    interruptAllCapabilities();
#if defined(THREADED_RTS)
    wakeUpRts();
#endif
}

/* -----------------------------------------------------------------------------
Wake up the RTS
This function causes at least one OS thread to wake up and run the
scheduler loop. It is invoked when the RTS might be deadlocked, or
an external event has arrived that may need servicing (eg. a
keyboard interrupt).

In the single-threaded RTS we don't do anything here; we only have
one thread anyway, and the event that caused us to want to wake up
will have interrupted any blocking system call in progress anyway.
-------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
void wakeUpRts(void)
{
    // This forces the IO Manager thread to wakeup, which will
    // in turn ensure that some OS thread wakes up and runs the
    // scheduler loop, which will cause a GC and deadlock check.
    ioManagerWakeup();
}
#endif

/* -----------------------------------------------------------------------------
Deleting threads

This is used for interruption (^C) and forking, and corresponds to
raising an exception but without letting the thread catch the
exception.
-------------------------------------------------------------------------- */

static void
deleteThread (Capability *cap STG_UNUSED, StgTSO *tso)
{
    // NOTE: must only be called on a TSO that we have exclusive
    // access to, because we will call throwToSingleThreaded() below.
    // The TSO must be on the run queue of the Capability we own, or
    // we must own all Capabilities.

    if (tso->why_blocked != BlockedOnCCall &&
tso->why_blocked != BlockedOnCCall_Interruptible) {
        throwToSingleThreaded(tso->cap,tso,NULL);
    }
}

#ifdef FORKPROCESS_PRIMOP_SUPPORTED
static void
deleteThread_(Capability *cap, StgTSO *tso)
{ // for forkProcess only:
  // like deleteThread(), but we delete threads in foreign calls, too.

    if (tso->why_blocked == BlockedOnCCall ||
tso->why_blocked == BlockedOnCCall_Interruptible) {
tso->what_next = ThreadKilled;
appendToRunQueue(tso->cap, tso);
    } else {
deleteThread(cap,tso);
    }
}
#endif

/* -----------------------------------------------------------------------------
raiseExceptionHelper
This function is called by the raise# primitve, just so that we can
move some of the tricky bits of raising an exception from C-- into
C. Who knows, it might be a useful re-useable thing here too.
-------------------------------------------------------------------------- */

StgWord
raiseExceptionHelper (StgRegTable *reg, StgTSO *tso, StgClosure *exception)
{
    Capability *cap = regTableToCapability(reg);
    StgThunk *raise_closure = NULL;
    StgPtr p, next;
    StgRetInfoTable *info;
    //
    // This closure represents the expression 'raise# E' where E
    // is the exception raise. It is used to overwrite all the
    // thunks which are currently under evaluataion.
    //

    // OLD COMMENT (we don't have MIN_UPD_SIZE now):
    // LDV profiling: stg_raise_info has THUNK as its closure
    // type. Since a THUNK takes at least MIN_UPD_SIZE words in its
    // payload, MIN_UPD_SIZE is more approprate than 1. It seems that
    // 1 does not cause any problem unless profiling is performed.
    // However, when LDV profiling goes on, we need to linearly scan
    // small object pool, where raise_closure is stored, so we should
    // use MIN_UPD_SIZE.
    //
    // raise_closure = (StgClosure *)RET_STGCALL1(P_,allocate,
    // sizeofW(StgClosure)+1);
    //

    //
    // Walk up the stack, looking for the catch frame. On the way,
    // we update any closures pointed to from update frames with the
    // raise closure that we just built.
    //
    p = tso->stackobj->sp;
    while(1) {
info = get_ret_itbl((StgClosure *)p);
next = p + stack_frame_sizeW((StgClosure *)p);
switch (info->i.type) {

case UPDATE_FRAME:
// Only create raise_closure if we need to.
if (raise_closure == NULL) {
raise_closure =
(StgThunk *)allocate(cap,sizeofW(StgThunk)+1);
                SET_HDR(raise_closure, &stg_raise_info, cap->r.rCCCS);
raise_closure->payload[0] = exception;
}
            updateThunk(cap, tso, ((StgUpdateFrame *)p)->updatee,
                        (StgClosure *)raise_closure);
p = next;
continue;

        case ATOMICALLY_FRAME:
debugTrace(DEBUG_stm, "found ATOMICALLY_FRAME at %p", p);
            tso->stackobj->sp = p;
            return ATOMICALLY_FRAME;

case CATCH_FRAME:
            tso->stackobj->sp = p;
return CATCH_FRAME;

        case CATCH_STM_FRAME:
debugTrace(DEBUG_stm, "found CATCH_STM_FRAME at %p", p);
            tso->stackobj->sp = p;
            return CATCH_STM_FRAME;

        case UNDERFLOW_FRAME:
            tso->stackobj->sp = p;
            threadStackUnderflow(cap,tso);
            p = tso->stackobj->sp;
            continue;

        case STOP_FRAME:
            tso->stackobj->sp = p;
return STOP_FRAME;

        case CATCH_RETRY_FRAME:
default:
p = next;
continue;
}
    }
}


/* -----------------------------------------------------------------------------
findRetryFrameHelper

This function is called by the retry# primitive. It traverses the stack
leaving tso->sp referring to the frame which should handle the retry.

This should either be a CATCH_RETRY_FRAME (if the retry# is within an orElse#)
or should be a ATOMICALLY_FRAME (if the retry# reaches the top level).

We skip CATCH_STM_FRAMEs (aborting and rolling back the nested tx that they
create) because retries are not considered to be exceptions, despite the
similar implementation.

We should not expect to see CATCH_FRAME or STOP_FRAME because those should
not be created within memory transactions.
-------------------------------------------------------------------------- */

StgWord
findRetryFrameHelper (Capability *cap, StgTSO *tso)
{
  StgPtr p, next;
  StgRetInfoTable *info;

  p = tso->stackobj->sp;
  while (1) {
    info = get_ret_itbl((StgClosure *)p);
    next = p + stack_frame_sizeW((StgClosure *)p);
    switch (info->i.type) {
      
    case ATOMICALLY_FRAME:
debugTrace(DEBUG_stm,
"found ATOMICALLY_FRAME at %p during retry", p);
        tso->stackobj->sp = p;
return ATOMICALLY_FRAME;
      
    case CATCH_RETRY_FRAME:
debugTrace(DEBUG_stm,
"found CATCH_RETRY_FRAME at %p during retrry", p);
        tso->stackobj->sp = p;
return CATCH_RETRY_FRAME;
      
    case CATCH_STM_FRAME: {
        StgTRecHeader *trec = tso -> trec;
StgTRecHeader *outer = trec -> enclosing_trec;
        debugTrace(DEBUG_stm,
"found CATCH_STM_FRAME at %p during retry", p);
        debugTrace(DEBUG_stm, "trec=%p outer=%p", trec, outer);
        stmAbortTransaction(cap, trec);
        stmFreeAbortedTRec(cap, trec);
tso -> trec = outer;
        p = next;
        continue;
    }
      
    case UNDERFLOW_FRAME:
        threadStackUnderflow(cap,tso);
        p = tso->stackobj->sp;
        continue;

    default:
      ASSERT(info->i.type != CATCH_FRAME);
      ASSERT(info->i.type != STOP_FRAME);
      p = next;
      continue;
    }
  }
}

/* -----------------------------------------------------------------------------
resurrectThreads is called after garbage collection on the list of
threads found to be garbage. Each of these threads will be woken
up and sent a signal: BlockedOnDeadMVar if the thread was blocked
on an MVar, or NonTermination if the thread was blocked on a Black
Hole.

Locks: assumes we hold *all* the capabilities.
-------------------------------------------------------------------------- */

void
resurrectThreads (StgTSO *threads)
{
    StgTSO *tso, *next;
    Capability *cap;
    generation *gen;

    for (tso = threads; tso != END_TSO_QUEUE; tso = next) {
next = tso->global_link;

        gen = Bdescr((P_)tso)->gen;
tso->global_link = gen->threads;
gen->threads = tso;

debugTrace(DEBUG_sched, "resurrecting thread %lu", (unsigned long)tso->id);

// Wake up the thread on the Capability it was last on
cap = tso->cap;

switch (tso->why_blocked) {
case BlockedOnMVar:
/* Called by GC - sched_mutex lock is currently held. */
throwToSingleThreaded(cap, tso,
(StgClosure *)blockedIndefinitelyOnMVar_closure);
break;
case BlockedOnBlackHole:
throwToSingleThreaded(cap, tso,
(StgClosure *)nonTermination_closure);
break;
case BlockedOnSTM:
throwToSingleThreaded(cap, tso,
(StgClosure *)blockedIndefinitelyOnSTM_closure);
break;
case NotBlocked:
/* This might happen if the thread was blocked on a black hole
* belonging to a thread that we've just woken up (raiseAsync
* can wake up threads, remember...).
*/
continue;
        case BlockedOnMsgThrowTo:
            // This can happen if the target is masking, blocks on a
            // black hole, and then is found to be unreachable. In
            // this case, we want to let the target wake up and carry
            // on, and do nothing to this thread.
            continue;
default:
barf("resurrectThreads: thread blocked in a strange way: %d",
                 tso->why_blocked);
}
    }
}
Something went wrong with that request. Please try again.