
PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings

Nicholas Rhinehart1 Rowan McAllister2 Kris Kitani1 Sergey Levine2
1Carnegie Mellon University
{nrhineha,kkitani}@cs.cmu.edu

2University of California, Berkeley
{rmcallister,svlevine}@berkeley.edu

Abstract

For autonomous vehicles (AVs) to behave appropriately
on roads populated by human-driven vehicles, they must
be able to reason about the uncertain intentions and de-
cisions of other drivers from rich perceptual information.
Towards these capabilities, we present a probabilistic fore-
casting model of future interactions of multiple agents. We
perform both standard forecasting and conditional forecast-
ing with respect to the AV’s goals. Conditional forecasting
reasons about how all agents will likely respond to specific
decisions of a controlled agent. We train our model on real
and simulated data to forecast vehicle trajectories given
past positions and LIDAR. Our evaluation shows that our
model is substantially more accurate in multi-agent driving
scenarios compared to existing state-of-the-art. Beyond its
general ability to perform conditional forecasting queries,
we show that our model’s predictions of all agents improve
when conditioned on knowledge of the AV’s intentions, fur-
ther illustrating its capability to model agent interactions.

1. Introduction
Autonomous driving requires reasoning about the fu-

ture behaviors of agents in a variety of situations: at stop
signs, roundabouts, crosswalks, when parking, when merg-
ing etc. In multi-agent settings, each agent’s behavior af-
fects the behavior of others. Motivated by people’s ability
to reason in these settings, we present a method to fore-
cast multi-agent interactions from perceptual data, such as
images and LIDAR. Beyond forecasting the behavior of all
agents, we want our model to conditionally forecast how
other agents are likely to respond to different decisions
each agent could make. When planning a robot to a goal,
we want to forecast what other agents would likely do in
response. This reasoning is essential for agents to make
good decisions in multi-agent environments: they must rea-
son how their future decisions could affect the multi-agent
system around them. Examples of forecasting and condi-
tioning forecasts on robot goals are shown in Fig. 1 and
Fig. 2. Videos of the outputs of our approach are available
at https://sites.google.com/view/precog.

Left Front Right

Figure 1: Forecasting on nuScenes [4]. The input to our model is
a high-dimensional LIDAR observation, which informs a distribu-
tion over all agents’ future trajectories.

Forecasting

Conditional Forecast: Set Car 1 Goal=Ahead

Conditional Forecast: Set Car 1 Goal=Stop

Goal=Ahead

Goal=Stop

Car 1

Car 1

Car 1

Car 2

Car 3

Car 3

Car 3

Figure 2: Conditioning the model on different Car 1 goals pro-
duces different predictions: here it forecasts Car 3 to move if Car
1 yields space, or stay stopped if Car 1 stays stopped.

1

ar
X

iv
:1

90
5.

01
29

6v
2

 [
cs

.C
V

]
 7

 M
ay

 2
01

9

https://sites.google.com/view/precog

To achieve accurate conditional forecasting, we propose
a factorized flow-based generative model that forecasts the
joint state of all agents. Our model reasons probabilis-
tically about plausible future interactions between agents
given rich observations of their environment. It uses la-
tent variables to capture the uncertainty in other agents’
intentions. Our key idea is the use of factorized latent
variables to model decoupled agent intentions even though
agent dynamics are coupled. Factorization across agents
and time enable us to query the effects of changing an arbi-
trary agent’s decision at an arbitrary time step.

Our contributions follow:

1. State-of-the-art multi-agent forecasting: We de-
velop a multi-agent forecasting model called Estimat-
ing Social-forecast Probabilities (ESP) that uses exact
likelihood inference (unlike VAEs or GANs) to outper-
form three state-of-the-art forecasting methods in real
(nuScenes [4]) and simulated (CARLA [8]) datasets.

2. Goal-conditioned multi-agent forecasting: We
present the first generative multi-agent forecasting
method to condition on agent intent, called PREdicting
Conditioned on Goals (PRECOG). After modelling
agent interactions, conditioning on one agent’s goal al-
ters the predictions of other agents.

3. Multi-agent imitative planning objective: We de-
rive a data-driven objective for motion planning in
multi-agent environments. It balances the likelihood of
reaching a goal with the probability that expert demon-
strators would execute the same plan. We use this ob-
jective for offline planning to known goals, which im-
proves forecasting performance.

2. Related Work
Multi-agent modeling and forecasting is a challenging

problem for control applications such as autonomous driv-
ing. Safe control requires faithful models of reality to an-
ticipate dangerous situations before they occur. Multi-agent
forecasting and planning is particularly difficult, since all
agents react to (and affect) each other concurrently. Model-
ing co-dependency between agents is especially critical in
tightly-coupled scenarios such as intersections.
Game-theoretic planning: Traditionally, multi-agent plan-
ning and game theory approaches explicitly model multiple
agents’ policies or internal states, usually by generalizing
Markov decision process (MDP) to multiple decisions mak-
ers [5, 33]. These frameworks facilitate reasoning about
collaboration strategies, but suffer from “state space explo-
sion” intractability except when interactions are known to
be sparse [24] or hierarchically decomposable [11].
Multi-agent Forecasting: Data-driven approaches have
been applied to forecast complex interactions between mul-
tiple pedestrians [1, 3, 10, 14, 21], vehicles [6, 19, 26], and

athletes [9, 18, 20, 32, 34, 35]. These methods attempt to
generalize from previously observed interactions to predict
multi-agent behavior in new situations. Forecasting is re-
lated to Imitation Learning [25], which learns a model to
mimic demonstrated behavior. In contrast to some Imita-
tion Learning methods, e.g. behavior cloning [28], behav-
ior forecasting models are not executed in the environment
of the observed agent – they are instead predictive models
of the agent. In this sense, forecasting can be considered
non-interactive Imitation Learning without execution.

Forecasting methods that make Markovian assumptions
typically treat the joint state over individual agents as a sin-
gle “state” of the Markov process [34]. By forecasting the
joint multi-agent state, such methods inherently model in-
teractions at each time step. While these data-driven meth-
ods forecast multi-agent scenarios as observers, in situa-
tions where one or more of the agents is controlled, con-
ditional forecasting is necessary to predict how the controls
will affect the multi-agent system.

Forecasting for control and planning: Generative mod-
els for multi-agent forecasting and control have been pro-
posed. In terms of multi-agent forecasting, our work is re-
lated to [31] which uses a conditional VAE [17] encoding
of the joint states of multiple agents together with recurrent
cells to predict future human actions. However, our work
differs in three crucial ways. First, we model continual
co-influence between agents, versus “robot-only” influence,
where an agent’s responses to the human are not modeled.
Second, our method uses contextual visual information use-
ful for generalization to many new scenes. Third, we model
interactions between more than two vehicles jointly. While
[15] assumes conditional independencies for computational
reasons, we do not, as they impose minimal overhead.

We consider scenarios in which the model may control
one of the agents (a “robot”). In terms of planned con-
trol, our method generalizes imitative models [30]. In [30],
single-agent forecasting models are used for deterministic
single-agent planning. Our work instead considers multi-
agent forecasting, and therefore must plan over a distribu-
tion of possible paths: from our robot’s perspective, the fu-
ture actions of other human drivers are uncertain. By mod-
eling co-influence, our robot’s trajectory are conditional on
the (uncertain) future human trajectories, and therefore fu-
ture robots states are necessarily uncertain. Thus, our work
proposes a nontrivial extension for imitative models: we
consider future path planning uncertainty induced by the
uncertain actions of other agents in a multi-agent setting.
While [30] could implicitly model other agents through its
visual conditioning, we show explicit modeling of other
agents yields better forecasting results, in addition to giv-
ing us the tools to predict responses to agent’s plans.

2

3. Deep Multi-Agent Forecasting

Now we describe our likelihood-based model for contex-
tual multi-agent forecasting. We describe how we can con-
dition our forecasts on decisions made by a subset of the
agents. We describe how we can plan decisions according
to an agent’s intentions using our likelihood function as part
of a planning objective. We use these planned decisions to
perform intention-conditioned forecasting.

3.1. Notation

First, we define our notation and terminology for dif-
ferent types of predictive models applicable to autonomous
driving. We treat our multi-agent system as a continuous-
space, discrete-time, partially-observed Markov process,
composed of A agents (vehicles) that interact over T time
steps. We model all agent positions at time t as St ∈ RA×D,
where D=2. Sat represents agent a’s (x, y) coordinates on
the ground plane. We assume there is one “robot agent”
(e.g. the autonomous vehicle that our model can control)
andA−1 “human agents” (e.g. human drivers that our model
cannot control). For convenience, we define Srt

.
= S1

t ∈ RD
to index the robot state, and Sht

.
= S2:A

t ∈ R(A−1)×D to in-
dex the human states. We distinguish variables in bold from
functions (not bold). Random variables are capitalized. We
define t= 0 to be the current time. Finally, a lack of time
subscript denotes all future time steps, and a lack of agent
superscript denotes all agents, e.g. S

.
= S1:A

1:T ∈ RT×A×D.
Each agent has access to environment perception φ .

=
{s−τ :0,χ}, where τ is the number of past multi-agent po-
sitions we condition on and χ is a high-dimensional ob-
servation of the scene. χ might represent LIDAR or cam-
era images, and is the robot’s observation of the world. In
our setting, LIDAR is provided as χ = R200×200×2, with
χij representing a 2-bin histogram of points above and at
ground level in 0.5m2 cells. Although our environment per-
ception is centered on the robot, each agent is modeled to
have access to χ.

3.2. Estimating Social-forecast Probability (ESP)

We propose a data-driven likelihood-based generative
model of multi-agent interaction to probabilistically predict
T -step dynamics of a multi-agent system: S ∼ q(S|φ;D),
where D is training data of observed multi-agent state tra-
jectories. Our model is generative, and learns to map latent
variables Z via an invertible function f to generate multi-
agent state trajectories conditioned on φ. f ’s invertibility in-
duces q(S|φ), a pushforward distribution [23], also known
as an invertible generative model [7, 12, 13, 16, 29]. Invert-
ible generative models can efficiently and exactly compute
probabilities of samples. Here, it means we can compute the
probability of joint multi-agent trajectories, which is critical
to our goal of planning with the model. Hence, we name the

model Estimating Social-forecast Probabilities (ESP). S is
sampled from q as follows:

S = f(Z;φ), S ∈ RT×A×D, (1)

Z ∼ N (0, I), Z ∈ RT×A×D. (2)

Our latent variables Z
.
= Z1:A

1:T factorize across agents and
time, which allows us to decide agent a’s reaction at time t
by setting Zat ← zat , discussed later. Our model is related
to the R2P2 single-agent generative model [29], which con-
structs a deep likelihood-based generative model for single-
agent vehicle forecasting. For multi-step prediction, we
generalize R2P2’s recursive one-step single-agent predic-
tion for the multi-agent setting, and assume a one-step time
delay for agents to react to each other:

Sat = µaθ(S1:t−1, φ) + σaθ (S1:t−1, φ) · Zat ∈ RD, (3)

where µaθ(·) and σaθ (·) are neural network functions (with
trainable weights θ) outputting a one-step mean prediction
µat ∈ RD and standard-deviation matrix σat ∈ RD×D of
agent a, defining the system’s transition function q:

q(St|S1:t−1, φ) =

A∏
a=1

N (Sat ;µat ,Σ
a
t), (4)

where Σa
t = σat σ

a>
t . Note that (3) predicts the ath agent’s

state Sat given the previous multi-agent states S1:t−1. We
can see that given S1:t−1, the one-step prediction in (3) is
unimodal Gaussian. However, multi-step predictions are
generally multimodal given the recursive nonlinear condi-
tioning of neural network outputs µat and σat on previous
predictions. The final joint of this model can be written as

q(S|φ) =

T∏
t=1

q(St|S1:t−1, φ). (5)

3.3. Model Implementation

To implement our model q(S|φ), we design neural net-
works that output µat and σat . Similar to [29], we expand
the function µaθ to represent a “Verlet” step, which gives a
constant-velocity mean prediction when network output ma

t

is 0:

Sat = 2Sat−1−Sat−2+

ma
t︷ ︸︸ ︷

ma
θ(S1:t−1,φ)︸ ︷︷ ︸

µa
t

+σaθ (S1:t−1,φ)︸ ︷︷ ︸
σa

t

·Zat . (6)

A high-level diagram of our implementation shown in
Fig. 3c. Recall the context φ .

= {s−τ :0,χ}, containing
the past positions of all agents, s−τ :0, and a feature map
χ, implemented as LIDAR is mounted on the first agent.

3

Zr
1 Zr

2

sr0 Sr
1 Sr

2

sh0 Sh
1 Sh

2

Zh
1 Zh

2

(a) ESP forecasting

zr1 zr2

sr0 sr1 Sr
2

sh0 Sh
1 Sh

2

Zh
1 Zh

2

(b) PRECOG planning (c) ESP model implementation

Figure 3: Our factorized latent variable model of forecasting and planning. In Fig. 3a our model uses latent variable Za
t+1 to represent

variation in agent a’s plausible scene-conditioned reactions to all agents St, causing uncertainty in every agents’ future states S because they
interact. Variation exists because of unknown driver goals and different driving styles observed in the training data. Beyond forecasting,
our model admits planning robot decisions by deciding Zr =zr (Fig. 3b). Shaded nodes represent observed or determined variables, and
square nodes represent robot decisions (Barber’s notation [2]). Note Z factorizes across agents, isolating the robot’s reaction variable zr .
Human goals and reactions remain uncertain (Zh is unobserved) and are not controllable (the robot cannot decide Zh), and yet the robot’s
decisions zr will still influence human drivers Sh

2:T (and vice-versa). Fig. 3c shows our implementation, with details in Appendix C.

We encode s−τ :0 with a GRU. A CNN processes χ to Γ at
the same spatial resolution as χ. Features for each agent’s
predicted position Sat are computed by interpolating into
Γ as Γ(Sat). Positional “social features” for agent a are
computed: Sat −Sbt ∀ b ∈ A\{a}, as well as visual “so-
cial features” γat = Γ(s1t) ⊕ · · · ⊕ Γ(sAt). Then, the social
features, past encoding, and CNN features are passed into a
per-agent GRU, which produces ma

t and σat in (6). We train
our model with recordings of expert multi-agent interaction
S∗ ∼ p(S∗|φ) by maximizing likelihood with respect to our
model parameters θ. We used shared parameters to produce
Γ and the past encoding, and independent parameters in the
MLPs and GRUs after observing a performance boost by
doing so. Further details are provided in the supplement.

3.4. PREdiction Conditioned On Goals (PRECOG)

A distinguishing feature of our generative model for
multi-step, multi-agent prediction is its latent variables Z

.
=

Z1:A
1:T that factorizes over agents and time. Factorization

makes it possible to use the model for highly flexible condi-
tional forecasts. Conditional forecasts enable the controlled
(robot) agent to predict how other agents would likely re-
spond to different robot decisions at different moments in
time. Since robots are not merely passive observers, but
one of potentially many agents, the ability to anticipate how
they affect others is critical to their ability to plan useful,
safe, and effective actions, critical to their utility within a
planning and control framework [22].

Human drivers can appear to take highly stochastic ac-
tions in part because we cannot observe their intentions. In
our model, the source of this uncertainty comes from the la-
tent variables Z∼N (0, I). In practical scenarios, the robot

knows its own intentions, can choose its own actions, and
can plan a course of action to achieve a desired goal. Re-
call from (3) that one-step agent predictions are condition-
ally independent from each other give the previous multi-
agent states. Therefore, certainty in the latent state Zat cor-
responds to certainty of the ath agent’s reaction to the multi-
agent system at time t. Different values of Zat correspond to
different ways of reacting to the same information. Decid-
ing values of Zat corresponds to controlling the agent a. We
can therefore implement control of the robot via assigning
values to its latent variables Zr ← zr. In contrast, human
reactions Zht cannot be decided by the robot, and so remain
uncertain from the robot’s perspective and can only be influ-
enced by their conditioning on the robot’s previous states in
S1:t−1, as seen Fig. 3b. Therefore, to generate conditional-
forecasts, we simply decide zr, sample Zh, concatentate
Z = zr ⊕ Zh, and warp S = f(Z, φ).

This factorization of latent variables easily facilitates
conditional forecasting. To forecast S with closed-loop con-
trol of the robot, we can fix zr while sampling the human
agents’ reactions from their distribution p(Zh) = N (0, I),
which are warped via (1).

3.5. Multi-Agent Planning

We discussed how forecasting can condition on some
value of zr, but not yet how to find desirable values of zr,
e.g. values that would safely direct the robot towards its goal
location. We perform multi-agent planning by optimizing
an objective L w.r.t. the control variables zr, which allows
us to produce the “best” forecasts under L.

While many valid objectives can be adopted, we take in-
spiration from imitative models (IM), which estimate the

4

likeliest state trajectory an expert driver “would have taken”
to reach a goal location, based on prior expert demonstra-
tions [30]. IM modeled single-agent environments where
robot trajectories are planned without consideration of other
agents. Multi-agent planning is different, because future
robot states are uncertain (states Srt>1 in Fig. 3b), even
when conditioned on control variables zr, because of the
uncertainty in surrounding human drivers Zh.

We generalize IM to multi-agent environments, and plan
w.r.t. the uncertainty of human drivers close by. First, we
chose a “goal likelihood” function that represents the likeli-
hood that a robot reaches its goal G given state trajectory S.
For instance, the likelihood could be a waypoint w∈RD the
robot should approach: p(G|S, φ) = N (w; SrT , εI). Sec-
ond, we combine the goal likelihood with a “prior proba-
bility” model of safe multi-agent state trajectories q(S|φ),
learned from expert demonstrations. Note that unlike many
other generative multi-agent models, we can compute the
probability of generating S from q(S|φ) exactly, which is
critical to our planning approach. This results in a “pos-
terior” p(S|G, φ). Finally, we seek the value of zr that
maximizes the posterior probability. This corresponds to
the robot planning a goal-seeking path that is within the
learned distribution of demonstrated multi-agent behavior.
Since this posterior is random due to unobserved Zh, we
marginalize it out:

logEZh [p(S|G, φ)] ≥ EZh [log p(S|G, φ)] (7)
= EZh [log q(S|φ) · p(G|S, φ)]− log p(G|φ) (8)

L(zr,G)
.
= EZh [log q(S|φ) · p(G|S, φ)] (9)
= EZh [logq(f(Z)|φ)︸ ︷︷ ︸

multi-agent prior

+ log p(G|f(Z), φ)︸ ︷︷ ︸
goal likelihood

], (10)

where (7) follows by Jensen’s inequality, which we use to
avoid the numerical issue of a single sampled Zh dominat-
ing the batch. (8) follows from Bayes’ rule and uses our
learned model q as the prior. In (9), we drop p(G|φ) be-
cause it is constant w.r.t. zr. Recall Z = zr ⊕ Zh is the
concatenation of robot and human control variables. The
robot can plan using our ESP model by optimizing (10):

zr∗ = argmax
zr

L(zr,G). (11)

Alternative loss functions might be used instead, e.g.
maximizing the posterior probability of the robot trajecto-
ries only. However, such an objective may place human
agents in unusual, precarious driving situations, outside the
prior distribution of “usual driving interaction” previously
demonstrated where your model might make inaccurate pre-
dictions. By optimizing (10), the robot avoids actions that
would put either it or the other agents in unexpected situa-
tions.

4. Experiments

We first compare our forecasting model against existing
state-of-the-art multi-agent forecasting methods, including
SocialGAN [14], DESIRE [19]. We also include a base-
line model: R2P2-MA (adapted from R2P2 [29] to instead
handle multiple agent inputs), which does not model how
agents will react to each others’ future decisions. Second,
we investigate the novel problem of conditional forecasting.
To quantify forecasting performance, we study scenarios
where we have samples of the robot’s true intention and the
human reactions to it. Knowledge of these intentions should
enable our model to better predict what the robot and each
agent could do. Third, we ablate the high-dimensional con-
textual input χ from our model to determine its relevance
to forecasting. Finally, we evaluate our model’s test-time
sensitivity to the robot’s localization noise, and observation
noise of other agents’ states, and how much this sensitivity
is mitigated with train-time noise injection.

4.1. Datasets

CARLA dataset: We generated a realistic dataset for
multi-agent trajectory forecasting and planning with the
CARLA simulator [8]. We ran the autopilot in Town01
for over 900 episodes of 100 seconds each in the pres-
ence of 100 other vehicles, and recorded the trajectory
of every vehicle and the autopilot’s LIDAR observation.
We randomized episodes to either train, validation, or test
sets. We created sets of 60,701 train, 7586 validation,
and 7567 test scenes, each with 2 seconds of past and 4
seconds of future position information at 5Hz. See Ap-
pendix E for details and https://sites.google.
com/view/precog for datasets.

nuScenes dataset: We used the recently-released full
nuScenes dataset [4], a real-world dataset for multi-agent
trajectory forecasting, in which 850 episodes of 20 seconds
of driving were recorded and labelled at 2Hz with the posi-
tions of all agents, and synced with many sensors, includ-
ing LIDAR. We processed each of the examples to train,
val, and test splits. Each example has 2 seconds of past
and 4 seconds of future position information interpolated to
5Hz and accompanied by a LIDAR map composited from
10 previous scans at 10Hz. We also experimented with con-
catenating χ, which normally contains just featurized LI-
DAR, with a binary mask of road presence that nuScenes
provides, indicated as “+Road” in our evaluation.

Didactic Benchmark: We also constructed a tightly-
controlled scenario to illustrate a fundamental difference
between the R2P2-MA and ESP models. The scene rep-
resents an intersection where a robot driver and a human
driver cooperate to avoid crashing.

5

https://sites.google.com/view/precog
https://sites.google.com/view/precog

Table 1: CARLA and nuScenes multi-agent forecasting evaluation. All CARLA-trained models use Town01 Train only, and are tested
on Town02 Test. No training data is collected from Town02, and thus Town02 Test evaluates generalizability to new towns. Mean
scores (and their standard errors) of sample quality m̂ (13), and log likelihood ê (12), are shown. The “–” symbol indicates if an approach
cannot compute likelihoods. The R2P2-MA model generalizes the single-agent forecasting approach of [29]. Variants of our ESP method
(highlighted gray) mostly outperform prior work in the multi-agent CARLA and nuScenes settings. For additional Town01 Test and
single agent evaluations see Appendix F.

Approach Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê

CARLA Town02 Test 2 agents 3 agents 4 agents 5 agents

DESIRE [19] 1.943± 0.033 – 1.587± 0.020 – 2.234± 0.023 – 2.422± 0.017 –
SocialGAN [14] 0.977± 0.016 – 0.812± 0.013 – 1.098± 0.014 – 1.141± 0.015 –
R2P2-MA [29] 0.540± 0.009 0.625± 0.002 0.387± 0.008 0.645± 0.002 0.690± 0.009 0.621± 0.002 0.770± 0.008 0.618 ± 0.002
Ours: ESP, no LIDAR 0.724± 0.013 0.688± 0.003 0.719± 0.011 0.640± 0.002 0.919± 0.011 0.650± 0.002 1.102± 0.011 0.652± 0.002
Ours: ESP 0.311 ± 0.008 0.615 ± 0.002 0.385 ± 0.007 0.585 ± 0.002 0.509 ± 0.007 0.599 ± 0.002 0.675 ± 0.007 0.630± 0.001

nuScenes Test 2 agents 3 agents 4 agents 5 agents

DESIRE [19] 3.473± 0.102 – 4.421± 0.130 – 5.957± 0.162 – 6.575± 0.198 –
SocialGAN [14] 2.119± 0.087 – 3.033± 0.110 – 3.484± 0.129 – 3.871± 0.148 –
R2P2-MA [29] 1.336± 0.062 0.951± 0.007 2.055± 0.093 0.989± 0.008 2.695± 0.100 1.020± 0.011 3.311± 0.166 1.050 ± 0.012
Ours: ESP, no LIDAR 1.496± 0.069 0.920 ± 0.008 2.240± 0.084 0.955 ± 0.008 3.201± 0.113 1.033± 0.012 3.442± 0.139 1.107± 0.018
Ours: ESP 1.325± 0.065 0.933± 0.008 1.705± 0.089 1.018± 0.011 2.547± 0.095 1.053± 0.015 3.266± 0.155 1.082± 0.013
Ours: ESP+Road 1.081 ± 0.053 0.929± 0.008 1.505 ± 0.070 1.016± 0.011 2.360 ± 0.093 1.013 ± 0.012 2.892 ± 0.162 1.114± 0.024

Left Front Right Left Front Right

Figure 4: Examples of multi-agent forecasting with our learned ESP model. In each scene, 12 joint samples are shown, and LIDAR colors
are discretized to near-ground and above-ground. Left: (CARLA) the model predicts Car 1 could either turn left or right, while the other
agents’ future maintain multimodality in their speeds. Center-left: The model predicts Car 2 will likely wait (it is blocked by Cars 3 and
5), and that Cars 3 and 5 sometimes move forward together, and sometimes stay stationary. Center-right: Car 2 is predicted to overtake
Car 1, which itself is forecasted to continue to wait for pedestrians and Car 2. Right: Car 4 is predicted to wait for the other cars to clear
the intersection, and Car 5 is predicted to either start turning or continue straight.

4.2. Metrics

Log-likelihood: As our models can perform exact likeli-
hood inference (unlike GANs or VAEs), we can precisely
evaluate how likely held-out samples are under each model.
Test log-likelihood is given by the forward cross-entropy
H(p, q) = −ES∗∼p(S∗|φ) log q(S∗|φ), which is unbounded
for general p and q. However, by perturbing samples from
p(S∗|φ) with noise drawn from a known distribution η (e.g.
a Gaussian) to produce a perturbed distribution p′, we can
enforce a lower bound [29]. The lower bound is given by
H(p′, q) ≥ H(p′) ≥ H(η). We use η = N (0, 0.01 · I),
whose H(η) is known analytically. For our final likelihood
statistic we use:

ê
.
=
[
H(p′, q)−H(η)

]
/(TAD) ≥ 0, (12)

which has nats/dim. units. We call ê “extra nats” because
it represents the (normalized) extra nats above the lower

bound of 0. Normalization enables comparison across mod-
els of different dimensionalities.

Sample quality: For sample metrics, we must take care
not to penalize the distribution when it generates plausi-
ble samples different than the expert trajectory. We extend
the “minMSD” metric [19, 26, 29] to measure quality of
joint trajectory samples. The “minMSD” metric samples a
model and computes the error of the best sample in terms of
MSD. In contrast to the commonly-used average displace-
ment error (ADE) and final displacement error (FDE) met-
rics that computes the mean Euclidean error from a batch of
samples to a single ground-truth sample [1, 6, 10, 14, 27],
minMSD has the desirable property of not penalizing plau-
sible samples that correspond to decisions the agents could
have made, but did not. This prevents erroneously penal-
izing models that make diverse behavior predictions. We

6

hope other methods that make predictions on multimodal
data will also measure the quality of joint samples with min-
MSD, given by:

m̂K
.
= ES∗ min

k∈{1..K}
||S∗ − S(k)||2/(TA),

S(k) iid∼ q(S|φ),

(13)

which has square meter units, and S∗ ∼ p(S∗|φ). We de-
note the per-agent error of the best joint trajectory with

m̂a
K
.
= ES∗∼p(S∗|φ)||S∗a − Sa,(k

†)||2/T ,
k†

.
= argmin
k∈{1..K}

||S∗ − S(k)||2. (14)

4.3. Baselines

DESIRE [19] proposed a conditional VAE model that ob-
serves past trajectories and visual context. We followed the
implementation as described. Whereas DESIRE is trained
with a single-agent evidence lower bound (ELBO), our
model jointly models multiple agents with an exact like-
lihood. As DESIRE does not compute multi-agent likeli-
hoods, we cannot compute its ê.
SocialGAN [14] proposed a conditional GAN multi-agent
forecasting model that observes the past trajectories of all
modeled agents, but not χ. We used the authors’ public
implementation. In contrast to SocialGAN, we model joint
trajectories and can compute likelihoods (and therefore ê).
R2P2 [29] proposed a likelihood-based conditional genera-
tive forecasting model for single-agents. We extend R2P2
to the multi-agent setting and use it as our R2P2-MA model;
R2P2 does not jointly model agents. We otherwise followed
the implementation as described. We trained it and our
model with the forward-cross entropy loss. We can com-
pute R2P2’s likelihood, and therefore ê, by assuming inde-
pendence across agents: q(S|φ) =

∏A
a=1 q

a(Sa|φ).

4.4. Multi-Agent Forecasting Experiments

We build 8 datasets from CARLA and nuScenes data,
corresponding to modeling different numbers of agents
(2..5). Agents are sorted by their distances to the autopi-
lot, at t= 0. When 1 agent is included, only the autopilot
is modeled. When A agents are included, the autopilot and
the A−1 closest vehicles are modeled.

For each method, we report its best test-set score at the
best val-set score. In R2P2 and our method, the val-set score
is ê. In DESIRE and SocialGAN, the val-set score is m̂, as
they cannot compute ê. Tab. 1 shows the multi-agent fore-
casting results. Across all 10 settings, our model achieves
the best m̂ scores, and achieves the best ê score in 8/10
settings. We also ablated our model’s access to χ (“ESP,
no LIDAR”), which puts it on equal footing with Social-
GAN, in terms of model inputs. Visual context provides a
uniform improvement in every case.

Qualitative examples of our forecasts are shown in
Fig. 4. We observe three important types of multimodal-
ity: 1) multimodality in speed along a common specific
direction, 2) the model properly predicts diverse plausible
paths at intersections, and 3) when the agents are stopped,
the model predicts sometimes the agents will stay still, and
sometimes they will accelerate forward. The model also
captures qualitative social behaviors, such as predicting that
one car will wait for another before accelerating. See Ap-
pendix G for additional visualizations.

4.5. PRECOG Experiments

Now we perform our second set of evaluations. We in-
vestigate if our planning approach enables us to sample
more plausible joint futures of all agents. Unlike the pre-
vious unconditional forecasting scenario, when the robot is
using the ESP model for planning, it knows its own goal.
We can simulate planning offline by assuming the goal was
the state that the robot actually reached at t= T , and then
planning a path from the current time step to this goal posi-
tion. We can then evaluate the quality of the agent’s path
and the stochastic paths of other agents under this plan.
While this does not test our model in a full control scenario,
it does allow us to evaluate whether conditioning on the goal
provides more accurate and higher-confidence predictions.
We use our model’s multi-agent prior (5) in the stochastic
latent multi-agent planning objective (10), and define the
goal-likelihood p(G|S, φ) = N (SrT ; S∗rT , 0.1·I), i.e. a nor-
mal distribution at the controlled agent’s last true future po-
sition, S∗rT . As discussed, this knowledge might be available
in control scenarios where we are confident we can achieve
this positional goal. Other goal-likelihoods could be applied
to relax this assumption, but this setup allows us to eas-
ily measure the quality of the resulting joint samples. We
use gradient-descent on (10) to approximate zr∗ (see sup-
plement for details). The resulting latent plan yields highly
likely joint trajectories under the uncertainty of other agents
and approximately maximizes the goal-likelihood. Note
that since we planned in latent space, the resulting robot
trajectory is not fully determined – it can evolve differently
depending on the stochasticity of the other agents. We next
illustrate a scenario where joint modeling is critical to accu-
rate forecasting and planning. Then, we conduct planning
experiments on the CARLA and nuScenes datasets.

4.5.1 Didactic Example

In the didactic example, a robot (blue) and a human (or-
ange) both navigate in an intersection, the human has a la-
tent intention: with 0.5 probability they will turn left, and
otherwise they will drive straight. The human always trav-
els straight for 4 time steps, and then reveals its latent in-
tention by either going straight or left. The robot attempts

7

Table 2: Forecasting evaluation of our model on CARLA Town01 Test and nuScenes Test data. Planning the robot to a goal position
(PRECOG) enables better predictions for all agents. Means and their standard errors are reported.

Data Approach Test m̂K=12 Test m̂a=1
K=12 Test m̂a=2

K=12 Test m̂a=3
K=12 Test m̂a=4

K=12 Test m̂a=5
K=12

CARLA 2
ESP 0.337± 0.013 0.196± 0.009 0.478± 0.024 – – –
PRECOG 0.241± 0.012 0.055± 0.003 0.426± 0.024 – – –

CARLA 3
ESP 0.426± 0.013 0.204± 0.009 0.556± 0.027 0.519± 0.021 – –
PRECOG 0.355± 0.012 0.052± 0.003 0.519± 0.025 0.493± 0.020 – –

CARLA 4
ESP 0.537± 0.011 0.236± 0.009 0.615± 0.021 0.656± 0.023 0.643± 0.023 –
PRECOG 0.478± 0.011 0.054± 0.003 0.583± 0.021 0.637± 0.022 0.638± 0.023 –

CARLA 5
ESP 0.718± 0.012 0.340± 0.011 0.759± 0.024 0.809± 0.025 0.851± 0.023 0.828± 0.024
PRECOG 0.640± 0.011 0.066± 0.003 0.741± 0.024 0.790± 0.024 0.804± 0.022 0.801± 0.024

nuScenes 2
ESP 1.094± 0.053 0.955± 0.057 1.233± 0.078 – – –
PRECOG 0.514 ± 0.037 0.158 ± 0.016 0.871 ± 0.070 – – –

nuScenes 3
ESP 1.511± 0.077 1.128± 0.061 1.543± 0.118 1.862± 0.147 – –
PRECOG 1.016 ± 0.062 0.121 ± 0.005 1.320 ± 0.105 1.606 ± 0.122 – –

nuScenes 4
ESP 2.200± 0.090 1.604± 0.099 1.940± 0.123 2.405± 0.149 2.851± 0.213 –
PRECOG 1.755 ± 0.083 0.133 ± 0.006 1.804 ± 0.126 2.319 ± 0.141 2.764 ± 0.231 –

nuScenes 5
ESP 2.921± 0.175 1.861± 0.109 2.369± 0.188 2.812± 0.188 3.201± 0.254 4.363± 0.652
PRECOG 2.508 ± 0.152 0.149 ± 0.021 2.324 ± 0.187 2.654 ± 0.190 3.157 ± 0.273 4.254 ± 0.586

(a) CARLA, ESP (b) CARLA, PRECOG (c) nuScenes, ESP (d) nuScenes, PRECOG

Figure 5: Examples of planned multi-agent forecasting (PRECOG) with our learned model in CARLA and nuScenes. By using our
planning approach and conditioning the robot on its true final position, our predictions of the other agents change, our predictions for the
robot become more accurate, and sometimes our predictions of the other agent become more accurate.

R2P2-MA R2P2-MA ESP ESP

Model Test m̂K=12 Test ê Forecasting crashes Planning crashes

R2P2-MA 0.331 0.085 50.8% 49.5%
ESP 0.000 0.031 1.17% 0.00%

Figure 6: Evaluation of our models on our “Social Cross” envi-
ronment. Left plots: The R2P2-MA model cannot model agent
interaction, and generates joint behaviors not present in the data.
Right plots: The ESP model allows agents to influence each other,
and does not generate undesirable joint behaviors. Bottom: Model
performances.

to drive straight, but will acquiesce to the human if the hu-
man turns in front of the robot. We trained our models and
evaluate them in Fig. 6. Each trajectory has length T = 20.
While both models closely match the training distribution
in terms of likelihood, their sample qualities are signifi-
cantly different. The R2P2-MA model generates samples
that crash 50% of the time, because it does not condition
future positions for the robot on future positions of the hu-
man, and vice-versa. In the ESP model, the robot is able to
react to the human’s decision during the generation process
by choosing to turn when the human turns.

4.5.2 CARLA and nuScenes PRECOG

We use the trained ESP models to run PRECOG on the test-
sets in CARLA and nuScenes. Here, we use both m̂K and
m̂a
K to quantify joint sample quality in terms of all agents

8

and each agent individually. In Tab. 2 and Fig. 5, we re-
port results of our planning experiments. We observe that
our planning approach significantly improves the quality of
the joint trajectories. As expected, the forecasting perfor-
mance improves the most for the planned agent (m̂1

K). No-
tably, the forecasting performance of the other agents im-
proves across all datasets and all agents. We see the non-
planned-agent improvements are usually greatest for Car 2
(m̂2

K). This result conforms to our intuitions: Car 2 is the
closest agent to the planned agent, and thus, it the agent
that Car 1 influences the most. Qualitative examples of this
planning are shown in Fig. 5. We observe trends similar to
the CARLA planning experiments – the forecasting perfor-
mance improves the most for the planned agent, with the
forecasting performance of the unplanned agent improving
in response to the latent plans. See Appendix G for addi-
tional visualizations.

4.6. Robustness to Agent Localization Errors

In real-world data, there may be error in the localiza-
tion of the other agents (s−τ :0). We can simulate this er-
ror in our test-set by perturbing sa−τ :0 with a random vector
va∼N (0,εID×D). We also train a model by injecting noise
generated similarly. In Fig. 7 we compare nuScenes A2 ESP
models trained without (Mε=0.0) and with (Mε=0.1) noise
injection. We observe thatMε=0.0 is much more sensitive to
test-time noise thanMε=0.1 at all perturbation scales, which
shows noise injection is an effective strategy to mitigate the
effects of localization error. We also note Mε=0.1 improves
performance even when the test-data is not perturbed.

Figure 7: Evaluating the effects of noisy localization.

5. Conclusions

We present a multi-agent forecasting method, ESP, that
outperforms state-of-the-art multi-agent forecasting meth-
ods on real (nuScenes) and simulated (CARLA) driving
data. We also developed a novel ability, PRECOG, to con-
dition forecasts on agent intentions. We showed condi-
tional forecasts improve joint-agent and per-agent predic-
tions, compared to unconditional forecasts used in prior
work. Conditional forecasting can be used for planning,

which we demonstrated with a novel multi-agent imitative
planning objective. Future directions include conditional
forecasting w.r.t. multiple agent intentions, useful for multi-
AV coordination via communicated intent.

Acknowledgements
We thank Kate Rakelly, Angelos Filos, Allie Del Giorno

and Anca Dragan for their helpful feedback. This work was
sponsored in part by IARPA (D17PC00340), ARL DCIST
CRA W911NF-17-2-0181, DARPA via the Assured Auton-
omy Program, and the Office of Naval Research, with addi-
tional support from NVIDIA.

References
[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet,

L. Fei-Fei, and S. Savarese. Social LSTM: Human
trajectory prediction in crowded spaces. In Computer
Vision and Pattern Recognition (CVPR), June 2016. 2,
6

[2] D. Barber. Bayesian reasoning and machine learning.
Cambridge University Press, 2012. 4

[3] F. Bartoli, G. Lisanti, L. Ballan, and A. Del Bimbo.
Context-aware trajectory prediction. arXiv preprint
arXiv:1705.02503, 2017. 2

[4] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E.
Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom. nuscenes: A multimodal dataset for au-
tonomous driving. arXiv preprint arXiv:1903.11027,
2019. 1, 2, 5

[5] C. Claus and C. Boutilier. The dynamics of rein-
forcement learning in cooperative multiagent systems.
AAAI/IAAI, 1998:746–752, 1998. 2

[6] N. Deo and M. M. Trivedi. Multi-modal trajectory pre-
diction of surrounding vehicles with maneuver based
LSTMs. arXiv preprint arXiv:1805.05499, 2018. 2, 6

[7] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Den-
sity estimation using Real NVP. arXiv preprint
arXiv:1605.08803, 2016. 3, 11

[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun. CARLA: An open urban driving simulator.
In Conference on Robot Learning (CoRL), pages 1–
16, 2017. 2, 5, 12, 13

[9] P. Felsen, P. Lucey, and S. Ganguly. Where will they
go? Predicting fine-grained adversarial multi-agent
motion using conditional variational autoencoders. In
Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 732–747, 2018. 2

[10] T. Fernando, S. Denman, S. Sridharan, and C. Fookes.
Soft + hardwired attention: An LSTM framework for
human trajectory prediction and abnormal event de-
tection. Neural networks, 108:466–478, 2018. 2, 6

9

[11] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh,
S. S. Sastry, and A. D. Dragan. Hierarchical game-
theoretic planning for autonomous vehicles. arXiv
preprint arXiv:1810.05766, 2018. 2

[12] W. Grathwohl, R. T. Chen, J. Betterncourt,
I. Sutskever, and D. Duvenaud. FFJORD: Free-
form continuous dynamics for scalable reversible
generative models. arXiv preprint arXiv:1810.01367,
2018. 3, 11

[13] J. Guan, Y. Yuan, K. M. Kitani, and N. Rhine-
hart. Generative hybrid representations for activity
forecasting with no-regret learning. arXiv preprint
arXiv:1904.06250, 2019. 3

[14] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and
A. Alahi. Social GAN: Socially acceptable trajectories
with generative adversarial networks. In Computer Vi-
sion and Pattern Recognition (CVPR), 2018. 2, 5, 6,
7, 14

[15] B. Ivanovic, E. Schmerling, K. Leung, and M. Pavone.
Generative modeling of multimodal multi-human be-
havior. arXiv preprint arXiv:1803.02015, 2018. 2

[16] D. P. Kingma and P. Dhariwal. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neu-
ral Information Processing Systems, pages 10236–
10245, 2018. 3, 11

[17] D. P. Kingma and M. Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.
2

[18] H. M. Le, Y. Yue, P. Carr, and P. Lucey. Coordi-
nated multi-agent imitation learning. In International
Conference on Machine Learning, pages 1995–2003,
2017. 2

[19] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr,
and M. Chandraker. DESIRE: Distant future predic-
tion in dynamic scenes with interacting agents. In
Computer Vision and Pattern Recognition (CVPR),
pages 336–345, 2017. 2, 5, 6, 7, 14

[20] N. Lee and K. M. Kitani. Predicting wide receiver
trajectories in american football. In 2016 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV), pages 1–9. IEEE, 2016. 2

[21] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani.
Forecasting interactive dynamics of pedestrians with
fictitious play. In Computer Vision and Pattern Recog-
nition (CVPR), pages 4636–4644. IEEE, 2017. 2

[22] R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk,
A. Shah, R. Cipolla, and A. V. Weller. Concrete prob-
lems for autonomous vehicle safety: Advantages of
Bayesian deep learning. In International Joint Con-
ferences on Artificial Intelligence (IJCAI), 2017. 4

[23] R. J. McCann et al. Existence and uniqueness of
monotone measure-preserving maps. Duke Mathemat-
ical Journal, 1995. 3

[24] F. S. Melo and M. Veloso. Decentralized MDPs
with sparse interactions. Artificial Intelligence,
175(11):1757–1789, 2011. 2

[25] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell,
P. Abbeel, J. Peters, et al. An algorithmic perspec-
tive on imitation learning. Foundations and Trends R©
in Robotics, 7(1-2):1–179, 2018. 2

[26] S. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W.
Choi. Sequence-to-sequence prediction of vehicle tra-
jectory via LSTM encoder-decoder architecture. arXiv
preprint arXiv:1802.06338, 2018. 2, 6

[27] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool.
You’ll never walk alone: Modeling social behavior
for multi-target tracking. In Computer Vision, 2009
IEEE 12th International Conference on, pages 261–
268. IEEE, 2009. 6

[28] D. A. Pomerleau. Alvinn: An autonomous land ve-
hicle in a neural network. In Advances in neural in-
formation processing systems, pages 305–313, 1989.
2

[29] N. Rhinehart, K. M. Kitani, and P. Vernaza. R2P2: A
reparameterized pushforward policy for diverse, pre-
cise generative path forecasting. In European Confer-
ence on Computer Vision (ECCV), September 2018. 3,
5, 6, 7, 11, 12, 13, 14

[30] N. Rhinehart, R. McAllister, and S. Levine. Deep imi-
tative models for flexible inference, planning, and con-
trol. arXiv preprint arXiv:1810.06544, 2018. 2, 5, 13

[31] E. Schmerling, K. Leung, W. Vollprecht, and
M. Pavone. Multimodal probabilistic model-based
planning for human-robot interaction. In International
Conference on Robotics and Automation (ICRA),
pages 1–9. IEEE, 2018. 2

[32] C. Sun, P. Karlsson, J. Wu, J. B. Tenenbaum, and
K. Murphy. Stochastic prediction of multi-agent in-
teractions from partial observations. arXiv preprint
arXiv:1902.09641, 2019. 2

[33] M. Tan. Multi-agent reinforcement learning: Inde-
pendent vs. cooperative agents. In Proceedings of the
tenth international conference on machine learning,
pages 330–337, 1993. 2

[34] E. Zhan, S. Zheng, Y. Yue, and P. Lucey. Genera-
tive multi-agent behavioral cloning. arXiv preprint
arXiv:1803.07612, 2018. 2

[35] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker,
Y. Zhao, Y. Wang, and Y. N. Wu. Multi-agent ten-
sor fusion for contextual trajectory prediction. arXiv
preprint arXiv:1904.04776, 2019. 2

10

A. Planning and Forecasting Algorithms

To execute planning, we perform gradient ascent to ap-
proximately solve the optimization problem (11). Recall
the latent joint behavior is Z

.
= Z1:A

1:T , the latent human be-
havior is Zh

.
= Z2:A

1:T , and the robot behavior is zr
.
= z11:T .

We approximate the expectation in (10) with a sample ex-
pectation over K samples from p(Zh) = N (0, I), denoted
1:Kzh, where the kth sample is kzh. Each of these samples
for the latent human behavior is combined with the single
latent robot plan, each denoted kz = [zr, kzh]. This batch is
denoted 1:Kz. The approximation of (10) is then given as

L̂(1:Kz,G,φ)=
1

K

K∑
k=1

log(q(f(kz)|φ)p(G|f(kz), φ)), (15)

with L̂ parameterized by (q, f, p), and f ’s dependence on
φ dropped for notational brevity. The 1:Kzh is redrawn be-
fore each gradient ascent step on (15). This procedure is
illustrated in Alg. 1.

Algorithm 1 MULTIIMITATIVEPLAN(q, f, p, φ,K)

1: Define L̂ with q, f, p
2: Initialize zr1:T ∼ N (0, I)
3: while not converged do
4: 1:Kzh

iid∼ N(0, I)
5: zr1:T ← zr1:T +∇zr

1:T
L̂(1:Kz,G, φ)

6: end while
7: return zr1:T

In our implementation, we use K = 12, track the zr1:T
that achieved the best L̂ score, terminate the ascent if the
best zr1:T has not improved in 10 steps, and return the cor-
responding best zr1:T . To initialize zr1:T more robustly, we
sample a full 1:Kz multiple times (15), and use the zr corre-
sponding to the best L̂. We can also run the planning over
multiple initial samples of zr1:T .

Now, we further detail how we can use this planning
to perform goal-conditioned forecasting. As described in
Sec. 4.5, we model intentions in our experiments by defin-
ing our goal-likelihood p(G|S1:T , φ) = N (SrT ; S∗rT , 0.1·I),
i.e. a normal distribution at the controlled agent’s last true
future position, S∗rT . In general, we can pass any final de-
sired robot position, s†rT as the mean of this distribution.
Then, we perform intention-conditioned forecasting on a
specific scene φ to a specific robot goal s†rT , with our trained
multi-agent density q, defined by f . This forecasting is per-
formed by first planning zr according to Alg. 1, then sam-
pling Zh again to generate stochastic joint outcomes, con-
ditioned on the robot’s intentions. This procedure is illus-
trated in Algs. 2 and 3.

Algorithm 2 PRECOG(q, f, p, s†rT , φ,K)

1: zr ← MULTIIMITATIVEPLAN(q, f, p, φ,K)

2: Sample 1:Kzh1:T
iid∼ N(0, I)

3: Forecast 1:Ks1:A1:T ← f(1:Kz1:A1:T , φ)
4: return 1:Ks1:A1:T

Algorithm 3 POSPRECOG(q, f, s†rT , φ,K)

1: Define p(G|S1:T , φ) = N (SrT ; s†rT , 0.1·I)

2: return PRECOG(q, f, p, s†rT , φ,K)

B. Alternate Joint PDF forms

The original joint can be expanded over each agent:

q(S|φ) =

T∏
t=1

q(St|S1:t−1, φ) =

T∏
t=1

A∏
a=1

N (Sat ;µat,Σ
a
t).

Additionally, the change-of-variables rule yields an equiva-
lent density [7, 12, 16, 29]:

q(S|φ) = N (f−1(S;φ); 0, I)

∣∣∣∣det
df

dZ
|Z=f−1(S;φ)

∣∣∣∣−1 ,
We can derive expressions of these terms with the roll-

out equation (6), reproduced here as (16), which implicitly
defines f :

Sat = 2Sat−1−Sat−2+

ma
t︷ ︸︸ ︷

ma
θ(S1:t−1,φ)︸ ︷︷ ︸

µa
t

+σaθ (S1:t−1,φ)︸ ︷︷ ︸
σa

t

·Zat .

(16)
The full Jacobian is given as:

df

dZ
=

∂S1

∂Z1
0 . . . 0

∂S2

∂Z1

∂S2

∂Z2
. . . 0

...
...

. . . 0
∂ST

∂Z1

∂ST

∂Z2
. . . ∂ST

∂ZT

 ,
where

∂St
∂Zt

=

σ1
t 0 . . . 0

∂S2
t

∂Z1
t

σ2
t . . . 0

...
...

. . . 0
∂SA

t

∂Z1
t

∂SA
t

∂Z2
t

. . . σAt

Due to the block triangular nature of the Jacobian and

11

applying Laplace expansion along the diagonal:

det
df

dZ
=
∏
t

det
∂St
∂Zt

=

T∏
t=1

A∏
a=1

det σat (S1:t−1, φ).

Finally, Z = f−1(S;φ) is given by computing each
Zat = (σat (S1:t−1, φ))

−1
(Sat − µat (S1:t−1, φ)) . Algorith-

mically, the functions f and f−1 are implemented sepa-
rately, each with a double for-loop over agents and time.
We use the following checks to ensure f is a bijection:
||Z−f−1(f(Z, φ), φ)||∞ < ε, ||S−f(f−1(S, φ), φ)||∞ <
ε.

C. Architecture and Training Details
Both past and future trajectories for each agent are repre-

sented in each agent’s own local coordinate frame at t = 0,
with agent’s forward axis pointing along the agent’s yaw
at t = 0. Each agent a observes positions of the other
agents in the coordinate frame of agent a. We use a 9-layer
fully-convolutional network with stride 1 and 32 channels
per layer, and kernel sizes of 3 × 3, to process χ into a
feature grid Γ at the same spatial resolution as χ. The LI-
DAR is mounted on the first agent, thus it is generally more
informative about nearby agents. This enables the predic-
tion to be learned relative to the agent, with global con-
text obtained by feature map interpolation. At each time
step, each agent’s predicted future position sat is bilinearly-
interpolated into Γ: Γ(sat), which ensures dΓ(sat)/dsat exists.
The “SocialMapFeat” component performs this interpola-
tion by converting the positions (in meters) to feature grid
coordinates (in 0.5 meters/cell), and bilinearly-interpolating
each into the feature map Γ. The interpolation is performed
by retrieving the features at the corners of the nearest unit
square to the current continuous position.

We also experimented with an additional featurization
scheme on the nuScenes data. Instead of interpolating only
at sat , we interpolated at nearby positions subsampled from
arcs relative to sat at various radii. By letting sat − sat−1
define the predicted orientation, the arcs were generated by
evenly sampling 7 points along arcs of length 5π/4 at radii
[1, 2, 4, 8, 16, 32] meters, which loosely simulates the fore-
casted agent’s future field-of-view. The midpoint of each
arc lied along the ray from sat−1 through sat . Without this
scheme, the SocialMapFeat is of size 8A. With it, the So-
cialMapFeat is of size 8(A + 7 · 6) (8 is the size of the last
dimension of Γ, 7 is the number of points per arc, and 6 is
the number of arcs). We found this approach to yield supe-
rior performace in nuScenes, and employed it in the R2P2
baseline, as well as all of our methods. The full details of
the architecture are provided in Tab. 3.

Figure 8: Images from the CARLA simulator [8]. Left: frontal
view. Right: overhead view.

Finally, we performed additional featurization in the
nuScenes setting by replacing χ with a signed-distance
transform, similar to [29]. It provides a spatially-smoother
input to the convolutional network, which we found aug-
mented performance. The signed distance transform (SDT)
of χc ∈ RH×W can be computed by first binarizing to χc ∈
{0, 1}H×W and using the Euclidean distance transform
(DT), which is commonly provided (e.g. in scipy). We
compute it by binarizing with threshold τ : SDT(χc, τ) =
DT(χc ≥ τ) − DT(χc < τ), then clipping the result to
[−10, 1], and finally normalizing to [0, 1]. For LIDAR chan-
nels, we use τ = 5. When we use the already-binarized road
prior, binarization is unnecessary.

In Fig. 9, we illustrate various forms of the probabilistic
graphical models corresponding to our main model (ESP),
a baseline model (R2P2-MA), and how the assignment of
latent variables (Z) in these models affects the production
of the states (S).

We trained our model with stochastic gradient descent
using the Adam optimizer with learning rate 1 · 10−4, with
minibatch size 10, until validation-set performance (of ê, as
discussed in the main paper) showed no improvement for a
period of 10 epochs.

D. Baseline Implementations

SocialGAN We used the public implementation available
at https://github.com/agrimgupta92/sgan. We
found the default train.py parameters yielded poor per-
formance in our domain. We achieved significantly better
SocialGAN performance by using the network parameters
in the run traj.sh script. In contrast to SocialGAN, we
model joint trajectories, and can compute likelihoods for
planning (and for ê).
DESIRE We re-implemented DESIRE following the au-
thors’ description in the paper and supplement. In our do-
main, χ is purely LIDAR-based, whereas their model com-
bines image-based semantic segmentation features into the
same coordinate frame. We found most provided param-
eters to work well, except those related to the re-ranking

12

https://github.com/agrimgupta92/sgan

Table 3: Detailed ESP Architecture that implements s1:A1:T = f(z1:A1:T , φ). Typically, T = 20, A = 5, D = 2. In CARLA, H = W = 100.
In nuScenes, H =W = 200.

Component Input [dimensionality] Layer or Operation Output [dimensionality] Details

Static featurization of context: φ = {χ, s1:A−τ :0}. Shared parameters for each agent.

MapFeat χ [H,W, 2] 2D Convolution 1χ [H,W, 32] 3× 3 stride 1, ReLu
MapFeat i−1χ [H,W, 32] 2D Convolution iχ [H,W, 32] 3× 3 stride 1, ReLu, i ∈ [2, . . . , 8]
MapFeat 8χ [H,W, 32] 2D Convolution Γ [H,W, 8] 3× 3 stride 1, ReLu
PastRNN s1:A−τ :0 [τ + 1, AD] RNN α [32] GRU across time dimension

Dynamic generation via double loop: for t ∈ {0, . . . , T − 1}, for a ∈ {1, . . . , A}. Separate parameters for each agent.

SocialFeat s1:At [AD] sat − sbt , b ∈ {1..A} \ a 0ηat [AD −D] Agent displacements
SocialFeatMLP 0ηat [AD −D] Affine (FC) 1ηat [200] Tanh activation
SocialFeatMLP 1ηat [200] Affine (FC) 2ηat [50] Identity activation
SocialMapFeat s1:At [AD] Interpolate γat = Γ(s1t)⊕ · · · ⊕ Γ(sAt) [8A] Differentiable interpolation, concat. (⊕)
JointFeat γat , s

1:A
0 , 2ηa, α γat ⊕ s1:A0 ⊕ 2ηa ⊕ α ρat [8A+AD + 50 + 32] Concatenate (⊕)

FutureRNN ρat [8A+AD + 50 + 32] RNN 1ρat [50] GRU
FutureMLP 1ρat [50] Affine (FC) 2ρat [200] Tanh activation
FutureMLP 2ρat [200] Affine (FC) ma

t [D], ξat [D,D] Identity activation
MatrixExp ξat [D,D] expm(ξat + ξa,transposet) σat [D,D] Differentiable Matrix Exponential [29]
VerletStep st, st−1,m

a
t ,σ

a
t , z

a
t 2st − st−1 +ma

t + σat z
a
t sat+1 [D] (Eq. 6)

Zr
1 Zr

2

sr0 Sr
1 Sr

2

(a) R2P2 forecast [29]

zr1 zr2

sr0 sr1 sr2

(b) DIM planning [30]

Zr
1 Zr

2

sr0 Sr
1 Sr

2

sh0 Sh
1 Sh

2

Zh
1 Zh

2

(c) R2P2-MA forecast

Zr
1 Zr

2

sr0 Sr
1 Sr

2

sh0 Sh
1 Sh

2

Zh
1 Zh

2

(d) ESP forecast

zr1 zr2

sr0 sr1 Sr
2

sh0 Sh
1 Sh

2

Zh
1 Zh

2

(e) PRECOG planning

Figure 9: Graphical model comparison between prior work (Fig. 9a, Fig. 9b); a baseline we used (Fig. 9c); and our proposed methods
(Fig. 9d, Fig. 9e). Shaded nodes represent observed or determined variables, and square nodes represent robot decisions. The intent of
vehicles is realted to their latent variables Z which determines the range of reactions one vehicles will have given the state of other vehicles
S. Future reactions are always unknown in the case of the human drivers (“h” superscript), but can be decided in the case of robot (“r”
superscipt) planning. How vehicles react affects—and induces uncertianty into—the multi-agent system state S.

component. The re-ranking often did not improve the tra-
jectories. The best results were obtained with 1 re-ranking
step. Whereas DESIRE is trained with a single-agent evi-
dence lower bound (ELBO), our model jointly models mul-
tiple agents with an exact likelihood. As DESIRE does not
compute multi-agent likelihoods, we cannot compute its ê,
nor use it for planning in a multi-agent setting.

R2P2 We re-implemented R2P2 following the authors’ de-
scription in the paper and supplement. We extended R2P2
to the multi-agent setting and use it as our R2P2-MA model;
R2P2 does not jointly model agents. We can compute
R2P2’s likelihood, and therefore ê, by assuming indepen-
dence across agents: q(S|φ) =

∏A
a=1 q

a(Sa|φ). Note that
since this joint likelihood does not model agent’s future ac-
tions to influence each other, R2P2 cannot be used for plan-
ning in a multi-agent setting. Fig. 9 compares the R2P2
baseline to our ESP model.

E. CARLA Dataset Details

To remind the reader, we generated a realistic dataset
for multi-agent trajectory forecasting and planning with
the CARLA simulator [8]. Images from the simulator are
shown Fig. 8. We ran the autopilot in Town01 for over
900 episodes of 100 seconds each in the presence of 100
other vehicles, and recorded the trajectory of every vehi-
cle and the autopilot’s LIDAR observation. We randomized
episodes to either train, validation, or test sets. We created
sets of 60,701 train, 7586 validation, and 7567 test scenes,
each with 2 seconds of past and 4 seconds of future position
information at 5Hz. The dataset also includes 100 episodes
obtained by following the same procedure in Town02. We
used this data to further evaluate our ESP model. We ap-
plied our saved models (the same models used to report re-
sults in the paper) to this data. We generated the CARLA
data using version 0.8.4. We used the default vehicle. We

13

Table 4: CARLA multi-agent forecasting evaluation. All CARLA-trained models use Town01 Train only, and are tested on Town01
Test. Mean scores (and their standard errors) of sample quality m̂ (13), and log likelihood ê (12), are shown. The “–” symbol indicates
if an approach cannot compute likelihoods. The R2P2-MA generalizes the single-agent forecasting approach of [29]. Variants of our ESP
method (highlighted gray) mostly outperform prior work in the multi-agent CARLA setting. For single agent evaluations, see Tab. 5.nt

Approach Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê Test m̂K=12 Test ê
(minMSD) (extra nats) (minMSD) (extra nats) (minMSD) (extra nats) (minMSD) (extra nats)

CARLA Town01 Test 2 agents 3 agents 4 agents 5 agents

DESIRE [19] 1.656± 0.038 – 1.684± 0.031 – 2.425± 0.038 – 2.599± 0.029 –
SocialGAN [14] 0.842± 0.024 – 1.037± 0.030 – 1.386± 0.041 – 1.464± 0.028 –
R2P2-MA [29] 0.430± 0.016 0.669± 0.005 0.594± 0.015 0.645± 0.004 0.753± 0.015 0.649± 0.008 0.843± 0.014 0.630 ± 0.003
Ours: ESP, no LIDAR 0.783± 0.022 0.714± 0.006 0.815± 0.020 0.668± 0.005 1.096± 0.020 0.684± 0.004 1.213± 0.019 0.670± 0.004
Ours: ESP 0.335 ± 0.013 0.634 ± 0.005 0.430 ± 0.013 0.613 ± 0.004 0.659 ± 0.013 0.647 ± 0.004 0.716 ± 0.012 0.643± 0.003

used a LIDAR position of (0.0, 0.0, 2.5), with 32 channels,
a range of 50, 100,000 points per second, a rotation fre-
quency of 10, an upper FOV limit of 10, and a lower FOV
limit of −30. We will release the 100GB of collected data.

Table 5: Performance in CARLA in the single-agent setting. For
single agent forecasting, our model is identical to [29] (denoted by
a ∗).

Approach Test m̂K=12 Test ê
(minMSD) (extra nats)

CARLA Town01 Test 1 agent

DESIRE [19] 1.067± 0.040 –
SocialGAN [14] 0.921± 0.031 –
R2P2-MA [29] ∗ ∗
Ours: ESP, no LIDAR 0.496± 0.024 0.699± 0.006
Ours: ESP 0.136 ± 0.010 0.634 ± 0.006

F. Additional Evaluation
We show additional evaluations on CARLA in Tab. 4.

Table 4 shows the Town01 of the models trained on
Town01 (on separate episodes). Models perform slightly
better on the held-out Town02 data. We suspect this is due
to several factors: the Town02 scene is physically smaller
than Town01, so it is more easily congested when simu-
lated with the same number of vehicles (100). Congestion
leads to more stationary futures, which our model predicts
well. Secondly, the LIDAR representation of roads and
vehicles usually generalizes well. We show single-agent
CARLA forecasting results in Tab. 5.

G. Additional Visualizations
We display additional visualization of our results in Fig-

ures 10, 11, 12, 13, and 14. In Fig. 10, we show additional
forecasting results on the nuScenes dataset. In Fig. 11, we
show additional forecasting results on the CARLA dataset.
In Fig. 12, we show additional planning results on the
CARLA dataset. In Fig. 13, we show additional planning
results on the nuScenes dataset. In Fig. 14, we visual-

ize the planning criterion (L̂) across many different spatio-
temporal goal positions in CARLA, which gives a quali-
tative interpretation of where the model prefers goal. In
Fig. 15, we visualize the same posterior on nuScenes.

14

Left Front Right Left Front Right Left Front Right

Left Front Right Left Front Right Left Front Right

Left Front Right Left Front Right Left Front Right

Left Front Right Left Front Right Left Front Right

Figure 10: Example forecasting results on held-out nuScenes data with our learned ESP model. In each scene, 12 joint samples are shown,
and LIDAR colors are discretized to near-ground and above-ground

Figure 11: Examples of multi-agent forecasting with our learned ESP model. In each scene, 12 joint samples are shown, and LIDAR colors
are discretized to near-ground and above-ground.

(a) Scene 1, forecasted (b) Scene 1, planned

(c) Scene 2, forecasted (d) Scene 2, planned

(e) Scene 3, forecasted (f) Scene 3, planned

(g) Scene 4, forecasted (h) Scene 4, planned

Figure 12: Additional examples of planned multi-agent forecasting (PRECOG) with our learned model in CARLA. By using our planning
approach and conditioning the robot on its true final position, our predictions for the robot become more accurate, and often our predictions
of the other agent become more accurate.

(a) Scene 1, forecasted (b) Scene 1, planned

(c) Scene 2, forecasted (d) Scene 2, planned

(e) Scene 3, forecasted (f) Scene 3, planned

Figure 13: Additional examples of planned multi-agent forecasting (PRECOG) with our learned model in nuScenes. By using our planning
approach and conditioning the robot on its true final position, our predictions for the robot become more accurate, and often our predictions
of the other agent become more accurate.

Figure 14: Plotting the planning criterion, L̂, after planning to various positions (small circular dots in each plot) input to Alg. 3, with
values interpolated between each position, in CARLA. The planning criterion input corresponds to a spatio-temporal goal at T = 20 in the
future (4 seconds). The planning criterion prefers locations within its lane, unless it is uncertain about the possibility of turning. When the
vehicle was stationary in the past, the planning criterion is highest at positions at or close in front of the vehicle.

Figure 15: Plotting the planning criterion, L̂, after planning to various positions (small circular dots in each plot) input to Alg. 3, with
values interpolated between each position, in nuScenes. The planning criterion input corresponds to a spatio-temporal goal at T = 20 in
the future (4 seconds). The planning criterion prefers locations within its lane, unless it is uncertain about the possibility of turning. When
the vehicle was stationary in the past, the planning criterion is highest at positions at or close in front of the vehicle.

