
Intro

Functions are useful, but they're not always intuitive. Today we're going to learn about a
different way of programming, where instead of functions we will deal primarily with objects.
This school of thought is meant to make programming more intuitive, by letting you define
tangible things — like rocks, or dogs, or trees, or even databases. Let's get right to it.

Classes & Inheritance

Recall how we need to use the keyword def in order to define a new function. There's also a
keyword that you use to define a new type of object: it's class. As convention, we capitalize
the names of classes and write them in CamelCase instead of using underscores. Within a class,
we can define variables that describe the members of that class.

class Dog:

 scientific_name = 'doggo'

Above, we have a class that describes what it means to be a Dog. It's a start, at least. But
what if, for example, we need to know the fur color of a dog? This is the first solution that
comes to mind:

class Dog:

 scientific_name = 'doggo'
 fur_color = 'gold'

But this is a problem. Not every dog has gold fur, so we shouldn't specify that in the Dog class.
In order to get more specific, we can use a handy dandy thing called class inheritance. This is
the idea that one class can build on top of another one. For example, here's some code where
we define a new Retriever class that inherits from Dog. scientific_name is defined for
every Dog, including every Retriever since every Retriever is a Dog. But fur_color is
defined only for a Retriever.

class Dog:

 scientific_name = 'doggo'

class Retriever(Dog):

 fur_color = 'gold'

Let's see how to do classes in environment diagrams.  

Notice the parentheses. This
tells us Retriever inherits
from Dog, or in other words, it
builds on top of the Dog class.

Classes in Environment Diagrams

Here's the code from the previous page again, for ease of reference.

class Dog:

 scientific_name = 'doggo'

class Retriever(Dog):

 fur_color = 'gold'

What happens when we look up scientific_name inside Retriever? It's not defined, but
Retriever inherits from Dog and we can find scientific_name in Dog, so we're fine. This
might remind you of how a function can look up variables in its parent frame, and that's exactly
what's going on here! Retriever is basically a frame whose parent frame is Dog, and that's
how we'll represent it.

The variable Dog gets bound to a class called Dog, and the variable Retriever gets bound to
a class called Retriever. Each class can have its own variables, rather like the frames we've
seen used for function calls in the past. Each class has a parent frame, too. For Retriever,
that parent frame is Dog; for Dog, that parent frame is Object. You don't have to know much
about the Object class, but you can think of it sort of like the global frame for objects instead
of functions. If a class doesn't inherit from anything, it really inherits from Object.

Like any other variable, we can also define classes within functions.

def f():
 class Sushi:
 sushi = 10
f()

Check that this makes sense so far, before moving on.  

global Dog

'doggo'

class Dog [p=Object]

scientific_name

Retriever

'gold'

class Retriever [p=Dog]

fur_color

Notice the parentheses. This
tells us Retriever inherits
from Dog, or in other words, it
builds on top of the Dog class.

global f function f [p=global]

f1: f
[p=global]

Sushi

10

class Sushi [p=Object]

sushi

Instances

You can think of a class like a template. The Dog class describes every Dog, and the
Retriever class describes every Retriever. But what if we want to get even more specific
than describing every Dog, or every Retriever? What if we want to talk about one very
specific dog, like Sammy? This is where instances come in. Look at the code below. By
"calling" a class like you would call a function, we can make a specific instance of that class. For
example, in the code below ollie is a Dog and sammy is a Retriever.

ollie = Dog()
sammy = Retriever()

When we draw them in an environment diagram, we label each individual Dog or Retriever
as an instance, rather than a class.

Notice, ollie and sammy both start out with no variables defined inside their respective
frames. The difference between them is just that ollie's parent frame is Dog, whereas
sammy's parent frame is Retriever. That means we could look up fur_color or
scientific_name in sammy, but we can't look up fur_color in ollie because that
variable isn't defined in any of his parent frames. This is exactly the same as variable lookup in
function frames, like you've seen before.

But this is not very useful yet. We should be able to describe each instance in more detail. How
can we specify sammy's age, or mood? For this, we need dot notation. Dot notation gives us
the ability to talk about variables within classes or instances. 

global Dog

'doggo'

class Dog [p=Object]

scientific_name

Retriever

'gold'

class Retriever [p=Dog]

fur_color

ollie instance Dog [p=Dog]

sammy instance Retriever [p=Retriever]

sammy.age = 7

frame variable

Put this on your cheat
sheet. It is important, and
we will use it repeatedly
throughout the chapter.

In dot notation, the name before the dot specifies what frame we should be looking at. The
name after the dot specifies the variable we're talking about within that frame.

ollie = Dog()
sammy = Retriever()
sammy.age = 2
Retriever.mood = 'happy'
sammy.mood = 'sleepy'

When we write Retriever.mood, that specifies the variable mood within the frame
Retriever. When we write sammy.mood, that specifies the variable mood within the frame
sammy. So, when we say sammy.mood = 'happy', we get the variable mood in the frame
sammy, bound to the string 'happy'.

The variables in the sammy frame are called instance attributes. The variables in the
Retriever frame are called class attributes. I put a low priority on terminology, so don't worry
about memorizing this, but you may hear these words thrown around here and there.

Quick Aside on Assignment and Lookup

This is no different from what you've been doing all semester long, but it's worth re-iterating
now. Imagine you have two frames open, like in the diagram below.

x = 5
def f():
 x = 7
f()

Notice that when we assign "x = 7" in frame f1, we don't change the variable x in f1's
parent frame. Rather, we make a new variable within f1, also called x. We have seen this
throughout the semester. Variable assignment only happens in the current frame, not any of the
parent frames.

The same idea extends to object oriented programming. Assigning sammy.mood doesn't
affect Retriever.mood. Instead we just make a new variable called mood in the frame sammy. 

global Dog

'doggo'

class Dog [p=Object]

scientific_name

ollie instance Dog [p=Dog]

Retriever class Retriever [p=Dog]

'gold'fur_color

'happy'mood

sammy instance Retriever [p=Retriever]

2age

'sleepy'mood

global f function f [p=global]

x 5

f1: f
[p=global]

x 7

Functions in Classes

Now we have seen that classes and instances can have variables inside them. Well, variables
can be bound to functions too, can't they? This is exciting. It means we can have classes and
instances, with functions inside them. Here's an example:

def bark(x):
 print('woof!', x)

sammy.play = bark

Notice the parent of bark
is global, since it was
defined in the global frame.

Ok, but let's go a little further. What happens if we put a function inside a class definition?

class Dog:

 scientific_name = 'doggo'
 def sleep():
 print('zzz')

class Retriever(Dog):

 fur_color = 'gold'
 def bark(x):
 print('woof!', x)

sammy = Retriever()
sammy.age = 2  

global Dog class Dog [p=Object]

'doggo'scientific_name

sammy instance Retriever [p=Retriever]

2age

sleep function sleep [p=global]

Retriever class Retriever [p=Dog]

'gold'fur_color

bark function bark [p=global]

global Dog

'doggo'

class Dog [p=Object]

scientific_name

Retriever

'gold'

class Retriever [p=Dog]

fur_color

bark function bark [p=global]

sammy instance Retriever [p=Retriever]

play

Look at the environment diagram above. bark gets defined inside the Retriever class, so
we keep it inside the Retriever frame. But notice its parent is global, not Retriever! This
is because the parent of a function has to be a function frame, and the parent of an object
has to be an object frame! What does that mean, exactly?

The kind of frames we have seen so far in this course have all been function frames. These
include global, and any frames that get opened when you call a function. We usually name
them things like f1, f2, f3, and so on. On the other hand, object frames are the ones that
correspond to a class or an instance. In the diagram above, Dog, Retriever, and sammy are
all bound to object frames.

The sentence in bold says that the parent of a function has to be a function frame. For instance,
the parent of bark is global. Note, the parent of bark is not allowed to be Retriever
because bark is a function, and Retriever is an object frame not a function frame. Similarly,
the parent of an object has to be an object frame. So, the parent of sammy is the object frame
Retriever, and the parent of Retriever is the object frame Dog.

class Dog:
 scientific_name = 'doggo'
def f():
 Dog.sleep = lambda: print('zzz')
def g():
 class Retriever(Dog):
 fur_color = 'gold'
 def bark(x):
 print('woof!', x)
 sammy = Retriever()
f()
g()

f2: g
[p=global]

sammy instance Retriever [p=Retriever]

Retriever class Retriever [p=Dog]

'gold'fur_color

bark function bark [p=f2]

Nonereturn

f1: f
[p=global] Nonereturn

global Dog class Dog [p=Object]

'doggo'scientific_name

f function f [p=global]

sleep function lambda [p=f1]

g function g [p=global]

global isn't always the parent of a function
inside a class. In this example, the parent of
Dog.sleep is f1 because it is bound to a
lambda function created in f1. The parent of
Retriever.bark is f2 because Retriever
was made in the frame f2, and since bark is
defined within Retriever, that means bark
was made in f2 as well.

There's a lot of information on the previous page, so make sure you understand it before
moving on. Read it multiple times if that helps. The important part is just this:

Also, you might hear a function inside a class referred to as a method. Terminology isn't very
important but you can learn it if you want to.

Practice: Variable Lookup in Classes

Take a look at the code below.

x = 0
class Foo:
 x = 100
 def f(y):
 return x + y
z = Foo.f(5)

The goal is to figure out what z is. Let's get started by drawing the global frame.

Next we call the function f within the frame Foo. Using dot notation, which we learned a few
pages ago, we express this as Foo.f. We pass in the value 5 for its parameter y.

The return value of Foo.f is x+y, so let's look up those variables from our current frame. x is
not defined within Foo.f, so we look at the parent frame, which is global. There, we see x is
bound to 0. Then we look up y, and see it's bound to 5. We return 0+5, which is 5. 

The parent of a function has to be a function frame,
and the parent of an object has to be an object frame.

global 0x

Foo class Foo [p=Object]

100x

f function f [p=global]

z

global 0x

Foo class Foo [p=Object]

100x

f function f [p=global]

z

f1: Foo.f
[p=global]

5y

The final environment diagram is below. In the end z is bound to 5, not 105. This is because
the parent of Foo.f is global, so we used the version of x we found in global instead of the
version we would find in Foo.

Let's do another example. Try doing this one on your own, before reading the answer.

class Bar:
 def g(y):
 return g(y)
def g(y):
 return 0
z = Bar.g(100)

As always, let's start by drawing the global frame.

Next we call the function g within the frame Bar. Using dot notation, we express this as Bar.g.
We pass in the value 100 for its parameter y.

Bar.g just returns a call to g. When we look up g from frame f1, we don't see it so we have to
search the parent frame, which is global. We use the version of g that we find there. 

global Bar class Bar [p=Object]

g function g [p=global]

z

g function g [p=global]

f1: Bar.g
[p=global]

100y

global Bar class Bar [p=Object]

g function g [p=global]

z

g function g [p=global]

global 0x

Foo class Foo [p=Object]

100x

f function f [p=global]

z 5

f1: Foo.f
[p=global]

5y

5return

Since we're calling the version of g inside global, and not the version inside Bar, we will
open f2 for g instead of Bar.g. If you look at the version of g inside global, you'll see it just
returns 0.

In the end, z gets bound to 0. We don't get a RecursionError when Bar.g calls g, because
these are two different functions! Check both of these examples make sense before continuing.

Built-in Functions

There are some functions that are so commonly useful, the creators of Python wrote them for
us. We've seen a few so far: str, len, and even < are a few examples.

>>> str(4)
'4'
>>> len('alien overlords')
15
>>> 1 < 2
True

It's nice that we can use these built-in functions on primitives like integers and strings. But can
we use them for objects too? Let's try it.

>>> sammy = Retriever()
>>> beaux = Retriever()
>>> sammy.age = 2
>>> beaux.age = 1
>>> sammy < beaux
TypeError: '<' not supported between instances of Retriever

Yikes. But lucky for us, there's a way to implement these built-in operators for classes that we
write. We do it using special functions that have two underscores on either side of their name.
For example, in order to be able to use the < operator with instances of the Retriever class,
we need to write a function called __lt__ (which stands for "less than") inside Retriever. 

f2: g
[p=global]

100y

0return

f1: Bar.g
[p=global]

100y

0return

global Bar class Bar [p=Object]

g function g [p=global]

g function g [p=global]

z 0

More specifically, when we write something like dog1 < dog2, Python will automatically
convert it to Retriever.__lt__(dog1, dog2). Don't worry about memorizing any specifics
here, but make sure you understand the example below.

>>> class Retriever:
... def __lt__(dog1, dog2):
... return dog1.age < dog2.age
>>> sammy = Retriever()
>>> beaux = Retriever()
>>> sammy.age = 2
>>> beaux.age = 1
>>> sammy < beaux
False

But < isn't he only built-in operator we can use in classes that we write. In order to for us to use
the function str, for example, we can also define the function __str__ inside Retriever.
Then, when we call the built-in function str on an instance of Retriever, Python will
automatically convert it to a call on Retriever.__str__. Below, str(sammy) automatically
gets turned into Retriever.__str__(sammy).

>>> class Retriever:
... def __str__(dog):
... return 'happy puppy'
>>> sammy = Retriever()
>>> str(sammy)
'happy puppy'

In fact, for every Python built-in there's a corresponding function that you can define inside a
class that you write. If you want to support len, then define __len__; if you want to support
bool then define __bool__; the list goes on and on.

>>> class Retriever:
... def __len__(dog):
... return dog.head - dog.tail
>>> sammy = Retriever()
>>> sammy.head = 10
>>> sammy.tail = -5
>>> len(sammy)
15

Again, you don't have to know all these by heart or anything like that. Just know that if you
want to use a built-in operator on an instance of a class you write, then there's a corresponding
function that you need to define within that class. If you want a full list of the Python built-ins
and what function corresponds to each of them, then you can google search "list of all Python
magic methods". Only keep reading, once you understand this. 

A Few Important Built-ins to Know

Now that we have seen how to handle built-in functions with classes, there are a few common
ones that you should probably keep in the back of your mind.

1. __eq__
This function corresponds to the == operator. For example, sammy == beaux automatically
gets converted into Retriever.__eq__(sammy, beaux).

>>> class Retriever:
... def __eq__(dog1, dog2):
... return dog1.age = dog2.size
>>> sammy = Retriever() 
>>> beaux = Retriever()
>>> sammy.age = 2
>>> beaux.size = 2
>>> sammy == beaux
True

__eq__ is a little special, because it is implemented in every class by default. If you don't
redefine it on your own, then it will behave the same as the built-in function is, which is like
==, but instead of comparing values it compares whether two arrows point to the same thing.

>>> x == y
True
>>> x is y
False

>>> sammy is ollie
False
>>> beaux is ollie
True

x 1 2 3

y 1 2 3

sammy instance Retriever [p=Retriever]

2age

'sleepy'mood

ollie instance Dog [p=Dog]

beaux

In this example, x and y point to lists that have
the same values, but really x and y are pointing
to different lists, even if those lists are very similar.

In this example, sammy and ollie point
to two totally separate instances, so
sammy is not ollie. However, ollie
and beaux both point to the same exact
instance so ollie is beaux.

2. __str__
Like we saw before, we can define __str__ in order to use the built-in function str. In fact,
this also changes the way our class gets printed! This is because print(x) basically displays
the result of str(x), just without the quote marks shown on the sides.

>>> class Retriever:
... def __str__(dog):
... return 'stormageddon, dark lord of all'
>>> sammy = Retriever()
>>> str(sammy)
'stormageddon, dark lord of all'
>>> print(sammy)
stormageddon, dark lord of all

If you try to use str or print on an instance of a class that doesn't have a __str__ function,
then Python will use the __repr__ function instead.

3. __repr__
This corresponds to what gets displayed when you evaluate something in the terminal.

For example, when you write this:
>>> sammy
the terminal will display, without quotes, the result of Retriever.__repr__(sammy).

>>> 5
5

>>> class Retriever:
... def __repr__(dog):
... return 'cyberdog'
>>> sammy = Retriever()
>>> sammy
cyberdog

Initializing New Objects with __init__

So far, we have been making new instances by first creating them, and then one-by-one
assigning their variables. For example:

>>> sammy = Retriever() # Create sammy
>>> sammy.age = 2 # Assign sammy an age
>>> sammy.mood = 'sleepy' # Assign sammy a mood

There's a very important function that lets us wrap this all into one step. It's called __init__. 

Here, we evaluate the number 5.
Since repr(5) returns '5', we
display 5 without quotes.

Here, we evaluate sammy, which is
an instance of Retriever. Since
Retriever.__repr__(sammy)
returns 'cyberdog', we display
cyberdog without quotes.

When you make a new instance of a class, Python will automatically call __init__ on the
instance being made. For example, consider this code:

>>> sammy = Retriever()

What really happens is this, if Retriever has an __init__ function:

>>> sammy = Retriever()
>>> Retriever.__init__(sammy)

Usually we use __init__ to assign a bunch of variables, like age and mood, without having to
do it explicitly ourselves. Let's do an example in an environment diagram, to see how
__init__ works in more detail.

class Dog:
 def __init__(dog):
 dog.age = 2
 dog.mood = 'sleepy'
class Retriever:
 fur_color = 'gold'
sammy = Retriever()

First things first, we should set up the global frame.

The next line to execute is sammy = Retriever(). Remember, what really happens is this:

sammy = Retriever()
Retriever.__init__(sammy)

global Dog class Dog [p=Object]

__init__

Retriever class Retriever [p=Dog]

'gold'fur_color

function __init__ [p=global]

global Dog class Dog [p=Object]

__init__

Retriever class Retriever [p=Dog]

'gold'fur_color

sammy instance Retriever [p=Retriever]

function __init__ [p=global]

f1: Dog.__init__
[p=global]

Since __init__ isn't defined in the Retriever frame,
we'll use the version from Retriever's parent frame, Dog.

Retriever.__init__ takes one parameter called dog, and we passed in sammy.

Then, inside frame f1, we see dog.age = 2 and dog.mood = 'sleepy'. Recalling dot
notation from earlier, that means we are assigning two variables age and mood, inside the
frame that dog refers to.

And last of all, since Retriever.__init__ doesn't specify a return value, it will return none.

global Dog class Dog [p=Object]

__init__

Retriever class Retriever [p=Dog]

'gold'fur_color

sammy instance Retriever [p=Retriever]

function __init__ [p=global]

f1: Dog.__init__
[p=global]

dog

global Dog class Dog [p=Object]

__init__

Retriever class Retriever [p=Dog]

'gold'fur_color

sammy instance Retriever [p=Retriever]

function __init__ [p=global]

f1: Dog.__init__
[p=global]

dog

2age

'sleepy'mood

global Dog class Dog [p=Object]

__init__

Retriever class Retriever [p=Dog]

'gold'fur_color

sammy instance Retriever [p=Retriever]

function __init__ [p=global]

f1: Dog.__init__
[p=global]

dog

2age

'sleepy'mood

Nonereturn

In the end, the result is the same as what we had before:

sammy = Retriever() # This is the same.
sammy.age = 2 # This happens in Dog.__init__ now.
sammy.mood = 'sleepy' # This happens in Dog.__init__ now.

But still, this isn't very useful yet. In the example above, every new Dog would have its age set
to 2, and its mood set to 'sleepy'. We can make __init__ more versatile by giving it more
parameters. The first one will still be the new dog that we're initializing, but we can add as
many other parameters as we like after that.

class Retriever:
 def__init__(dog, age, feeling):
 dog.age = age
 dog.mood = feeling
sammy = Retriever(2, 'sleepy')

Make sure you understand everything so far, before reading on.

Calling Functions from Instances and Classes

In fact, functions behave differently depending on whether we call them from a class or an
instance. If an instance calls a parent class' function, then that instance will pass itself in as
the first argument to the function. Otherwise, everything works like normal and you have
to pass in all the arguments manually.

For example, let's consider the code below.

class Alien:
 def __init__(alien):
 x = 5
 Alien.baz = x
 alien.baz = x+1
 def glorp(self, fizz):
 return self or fizz
qux = Alien()
x = Alien.glorp(0, 7)
y = qux.glorp(0)
qux.glorp = lambda s: Alien.glorp
z = qux.glorp(0)
Alien().glorp(8)

sammy gets
passed in
for dog.

2 gets
passed in
for age.

'sleepy' gets
passed in for
feeling.

Write this down
somewhere. It's
important.

As always, the first step is to make the global frame. We'll start by defining the Alien class,
and then making the instance qux, and finally calling Alien.__init__ on qux.

In frame f1, the first thing we do is assign the variable x to 5. Just like with any function call,
this happens within f1 since there's no dot notation telling us to assign x in a different frame.
Then we assign Alien.baz (which will happen in the frame Alien refers to) as well as
alien.baz (which will happen in the frame alien refers to).

Now we see the line x = Alien.glorp(0, 7). Remember the bold part from earlier, the
one you should have written down by now: If an instance calls a parent class' function, then
that instance will pass itself in as the first argument to the function. Otherwise, everything
works like normal and you have to pass in all the arguments manually. Since Alien.glorp
is not an instance calling a parent class' function, Alien does not pass itself in as the first
argument and we treat it like a normal function call.

__init__

global Alien class Alien [p=Object]

function __init__ [p=global]

f1: Alien.__init__
[p=global]

alien

qux instance Alien [p=Alien]

glorp function glorp [p=global]

__init__

global Alien class Alien [p=Object]

function __init__ [p=global]

f1: Alien.__init__
[p=global]

alien

glorp function glorp [p=global]

x 5

qux instance Alien [p=Alien]

baz 6

baz 5

Nonereturn

Next, we see qux.glorp(0). The instance qux is calling Alien.glorp, which is in a parent
class of qux! Referring back to the bold text on the previous page, that means qux will pass
itself in as the first argument to Alien.glorp. The second argument, 0, is provided as usual.

f1: Alien.__init__
[p=global]

alien

x 5

Nonereturn

f2: Alien.glorp
[p=global]

self

7fizz

return

0

7

__init__

global Alien class Alien [p=Object]

function __init__ [p=global]

glorp function glorp [p=global]

qux instance Alien [p=Alien]

baz 6

baz 5

7x

f1: Alien.__init__
[p=global]

alien

x 5

Nonereturn

f2: Alien.glorp
[p=global]

self

7fizz

return

0

7

f3: Alien.glorp
[p=global]

self

0fizz

return

__init__

global Alien class Alien [p=Object]

function __init__ [p=global]

glorp function glorp [p=global]

qux instance Alien [p=Alien]

baz 6

baz 5

7x

y

For convenience, here is the code again.

class Alien:
 def __init__(alien):
 x = 5
 Alien.baz = x
 alien.baz = x+1
 def glorp(self, fizz):
 return self or fizz
qux = Alien()
x = Alien.glorp(False, 7)
y = qux.glorp(0)
qux.glorp = lambda s: Alien.glorp
z = qux.glorp(0)
Alien().glorp(8)

We left off on qux.glorp = lambda s: Alien.glorp.

This line did something very important. Now, qux.glorp no longer refers to a function in a
parent class of qux! Referring back to the bold text from before, that means qux will no longer
pass itself in as the first argument to qux.glorp. 

f1: Alien.__init__
[p=global]

alien

x 5

Nonereturn

f2: Alien.glorp
[p=global]

self

7fizz

return

0

7

f3: Alien.glorp
[p=global]

self

0fizz

return

__init__

global Alien class Alien [p=Object]

function __init__ [p=global]

glorp function glorp [p=global]

qux instance Alien [p=Alien]

baz 6

baz 5

7x

y

glorp function lambda [p=global]

When we write z = qux.glorp(0), we're now referring to the lambda function inside qux's
instance frame. Since this is not in a parent frame of qux, we will not pass qux in as the first
argument to the function call.

But next, we have the line Alien().glorp(8), a very different thing from Alien.glorp(8)
which would throw an error because it doesn't have the right number of parameters. Rather,
Alien().glorp(8) does two things. First we have the Alien() part, which makes a new
instance of the Alien class. Then, from that new instance, we call the function glorp, which
refers back to the version in the Alien class because the lambda version of glorp is specific
to the instance qux, and qux alone. Again, refer back to the bold text from a few pages ago.
Since the new instance is calling the version of glorp in its parent class, that means it will pass
itself in as the first argument.  

f1: Alien.__init__
[p=global]

alien

x 5

Nonereturn

f2: Alien.glorp
[p=global]

self

7fizz

return

0

7

f3: Alien.glorp
[p=global]

self

0fizz

return

f4: lambda
[p=global]

s

return

0

__init__

global Alien class Alien [p=Object]

function __init__ [p=global]

glorp function glorp [p=global]

qux instance Alien [p=Alien]

baz 6

baz 5

7x

y

glorp function lambda [p=global]

z

This was a pretty involved problem, and it involves a lot of edge cases. Review it and make
certain you know why everything happens as it does. If you can do that, then you're in good
shape. That said, there are a few more slippery details that aren't covered here but they can
wait for later. We'll go over them in the chapter about bound methods. 

f1: Alien.__init__
[p=global]

alien

x 5

Nonereturn

f2: Alien.glorp
[p=global]

self

7fizz

return

0

7

f3: Alien.glorp
[p=global]

self

0fizz

return

f4: lambda
[p=global]

s

return

0

__init__

global Alien class Alien [p=Object]

function __init__ [p=global]

glorp function glorp [p=global]

qux

baz 5

7x

y

instance Alien [p=Alien]

baz 6

glorp function lambda [p=global]

z

f6: Alien.glorp
[p=global]

self

8fizz

return

instance Alien [p=Alien]

baz 6
f5: Alien.__init__

[p=global]
alien

x 5

Nonereturn

Accessing Object Types

With all that out of the way, there's one very last thing to learn about. Sometimes we need to
write programs that handle different types of objects uniquely. For example, Python secretly
uses an Integer class to represent whole numbers and a Float class to represent decimal
numbers. If you wanted to write a snazzy maths function that behaves differently depending on
the type of its input, then you would have to figure out first whether you're dealing with an
Integer or a Float. In Python, we have two handy functions that can help us in these
situations.

1. type
This one tells you what class an object belongs to. In the example below, type(sammy)
literally evaluates to Retriever, so writing beaux = type(sammy)() is the same exact
thing as writing beaux = Retriever().

>>> class Retriever:
... fur_color = 'gold'
>>> sammy = Retriever()
>>> type(sammy) == Retriever
True
>>> beaux = type(sammy)()
>>> beaux.fur_color
'gold'

2. isinstance
This one evaluates to True or False, depending on whether the first argument is an instance
of the second argument. In the example below beaux is an instance of Dog but not an instance
of Retriever, while sammy is an instance of both Dog and Retriever.

>>> class Dog:
... scientific_name = 'doggo'
>>> class Retriever(Dog):
... fur_color = 'gold'
>>> beaux = Dog()
>>> sammy = Retriever()
>>> isinstance(beaux, Dog) 
True
>>> isinstance(beaux, Retriever) 
False
>>> isinstance(sammy, Retriever)
True
>>> isinstance(sammy, Dog)
True

That's all! This was a long chapter, but also an important one. Review the examples when you
can and double check all the concepts make sense. Objects are a powerful programming tool.

