use nanore::*;
let re = RegExRoot::<_, ()>::new(
atom(|_, e| *e % 2 != 0) * atom(|_, e| *e % 2 == 0) + rep(atom(|_, e| *e > 0))
);
let mut m = Matcher::new(&re);
assert!(m.is_match());
m.feed(&1);
assert!(m.is_match());
m.feed(&2);
assert!(m.is_match());
m.feed(&3);
assert!(m.is_match());
m.feed(&0);
assert!(!m.is_match());
Constructs: *
(concatenation), +
(alternation), rep()
, opt()
, eps()
,
atom()
, any()
, val()
, weight()
, mark()
.
#[derive(Clone, Copy, PartialEq, Eq)]
enum Marker { Foo, Bar }
let re = RegExRoot::new(
rep(mark(Marker::Foo) * val('a') + mark(Marker::Bar) * val('b'))
);
let mut m = Matcher::new(&re);
m.feed(&'a');
m.feed(&'b');
m.feed(&'a');
m.feed(&'b');
assert!(m.is_match());
assert!(m.path() == [(0, Marker::Foo), (1, Marker::Bar), (2, Marker::Foo), (3, Marker::Bar)]);
let re = RegExRoot::new(
rep(mark(Marker::Foo) * val('a')) * rep(weight(-1) * mark(Marker::Bar) * val('a'))
);
let mut m = Matcher::new(&re);
m.feed(&'a');
m.feed(&'a');
m.feed(&'a');
m.feed(&'a');
assert!(m.is_match());
assert!(m.path() == [(0, Marker::Bar), (1, Marker::Bar), (2, Marker::Bar), (3, Marker::Bar)]);
#[derive(Clone, Copy, PartialEq, Eq)]
enum Marker { Bgn, End }
let xs = [1, 1, 2, 3, 5, 3, 2, 3, 5, 8, 13, 21, 34];
// ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^
let re = RegExRoot::new(
rep(weight(1) * any()) * mark(Marker::Bgn) *
any() * any() * rep(atom(|i, x| *x == xs[i - 2] + xs[i - 1])) *
mark(Marker::End) * rep(weight(1) * any())
);
let mut m = Matcher::new(&re);
m.feed_iter(&xs);
assert!(m.path() == [(6, Marker::Bgn), (13, Marker::End)]);
- Weighted RegExp Matching
-
nanore uses (the subset of) the method in this paper. Note that the idea is simple and elegant, but it has some non-trivial parts due to ε-transitions in implicitly generated ε-NFA (see
empty
,final
andshift
). nanore handles normal transitions and ε-transitions separately, which seems a bit different from this paper (seeshift()
andpropagate()
in nanore). - 関数型的正規表現マッチ
-
The excellent article about the paper above, in Japanese.