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ABSTRACT
Near real-time collaboration using Web browsers is becom-
ing rapidly more and more popular for many applications
such as text editing, coding, sketching and others. These ap-
plications require reliable algorithms to ensure consistency
among the participating Web clients. Operational Trans-
formation (OT) and more recently Commutative Replicated
Data Types (CRDT) have become widely adopted solutions
for this kind of problem. However, most existing approaches
are non-trivial and require trade-offs between expressiveness,
suitable infrastructure, performance and simplicity. The
ever growing number of potential use cases, the new possi-
bilities of cutting-edge messaging protocols that shaped the
near real-time Web, and the use of N-way communication
between clients (e.g. WebRTC), create a need for peer-to-
peer algorithms that perform well and are not restricted
to only a few supported data types. In this paper, we
present YATA, an approach for peer-to-peer shared editing
applications that ensures convergence, preserves user inten-
tions, allows offline editing and can be utilized for arbitrary
data types in the Web browser. Using Yjs, its open-source
JavaScript library implementation, we have evaluated the
performance and multiple usage of YATA in Web and mobile
browsers, both on test and real-world data. The promising
evaluation results as well as the uptake by many commercial
vendors and open-source projects indicate a wide applicabil-
ity of YATA.
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1. INTRODUCTION
Near real-time (NRT) collaboration techniques have been

intensively studied by the CSCW community during the past
three decades [6, 30, 26, 29]. Mostly directed towards shared
editing, highly relevant works include OT [6] algorithms and
systems for enabling concurrent editing on the Web. These
approaches leverage optimistic and reliable concurrency con-
trol mechanisms that lead to widely adopted OT-based sys-
tems such as Google Docs. A major advantage is that these
systems do not require any locking mechanisms to ensure
consistency of the shared data [10]. In a NRT setting, the
user agents apply edits immediately to their local copy, while
concurrently sending notifications of those changes via com-
munication protocols to the remote user agents. All copies
have to eventually have the same content, regardless of the
order of the received operations or problems that might oc-
cur during the message propagation, such as temporary con-
nection loss.

Recent advances on the Web allowed the development
of fast and reliable communication protocols, such as We-
bRTC, Websockets, XMPP over Websockets, Server-Sent
Events, which were also quickly adopted by Web commu-
nities, industry and academia. Besides enabling the mes-
sage propagation technology stack required for shared edit-
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ing systems, such protocols can leverage the use of peer-to-
peer (P2P) shared editing algorithms and offer a fast and
reliable communication infrastructure for their implementa-
tions. Thus, P2P approaches became a viable alternative
to the more traditional client-server approaches [3]. This is
due to the fact that each collaborator receives the updates in
a N-way communication and applies them locally, without
the need to wait for acknowledgment data, orders or trans-
formed operations from a central server. In consequence,
existing NRT collaboration algorithms need to adapt to new
performance requirements, which is not a trivial task, espe-
cially in the case of massive collaboration, with a scaling
number of users and changes [20].

With few exceptions, available OT algorithms are designed
for client-server architectures. Algorithms that do support
N-way P2P message propagation still rely on propagating a
state vector (e.g., COT [29]) with each message. Moreover,
algorithms that need preprocessing on the server side cannot
be used in such P2P settings. In the past decade, CRDT
algorithms [20, 2, 21, 23] emerged in the distributed sys-
tems specialization area and were also used in collaborative
editing [1]. These have a small document update size and
do not rely on vector clocks (e.g., the WooT approach [20]),
and can therefore suit the new communication protocols and
practices on the Web. A short comparison of the different
algorithms is given in Section 2.

Regardless of being P2P or a client-server approach, the
available NRT collaboration tools (e.g. OT-based) mostly
support linear data or other specific ones (e.g. tree-like [11])
for ensuring the above described properties. Applications
based on complex models must therefore map the under-
lying data to the data structure that is supported by the
used collaboration framework. However, this process is time
consuming, application-specific, and often hard to achieve.
Moreover, there are few open-source implementations that
work directly in Web browsers, can be used P2P and of-
fer a developer-friendly, easy and intuitive way for rapidly
enabling NRT collaboration on custom data types.

To overcome these shortages of existing algorithms, we
present a new approach called YATA (Yet Another Trans-
formation Approach) for enabling NRT collaboration on ex-
tendable data types and Yjs, its open-source implementa-
tion. We have developed an efficient algorithm that ensures
the convergence and intention preservation for collaboration
on shared data types. By design YATA inherently leads
to fewer conflicts, exposes a favorable run time complexity,
supports offline editing (i.e. given a peer that is joining the
collaboration session with unsynchronized changes) and col-
laboration on various data types. The algorithm uses an
internal linked list representation, similar to the CDRT ap-
proaches WooT [20] and WooTH [1]. However, as it has been
proven that keeping deleted operations leads to a loss of per-
formance, YATA solves this disadvantage by introducing a
garbage collector for avoiding a drastic increase of unneces-
sary operations.

For exploiting YATA in Web applications, the algorithm
was implemented as an open-source framework called Yjs1

[19], which can be used with multiple communication proto-
cols, including P2P, federated or client-server. By means of
Yjs, which is already garnering interest from the open-source
community, we have observed YATA’s performance and con-

1http://y-js.org

sider it to be very promising for leveraging lightweight appli-
cations, where collaboration logic can be easily engineered
on the client side. Finally, besides the usage in real-world
open-source products, Yjs has been thoroughly evaluated in
a simulated distributed environment for performance, test-
ing the conflict resolution and its scalability, with very good
results.

The rest of this paper is organized as follows. First, in
Section 2 we give a short introduction to consistency main-
tenance algorithms, their development within the CSCW
community and describe their most relevant features. Sec-
tion 3 describes the YATA approach, offers a formal proof
that it converges regardless of the number of peers involved
in collaboration and presents a time and space complexity
analysis. Furthermore, we offer the details for extending
the approach to other data types in Section 4. Section 5
shortly describes the Yjs framework. The consistency tests
performed for our approach and the usage of the framework
in real applications are presented in Section 6. Finally, Sec-
tion 7 summarizes the main contributions and provides an
outlook for this work.

2. RELATED WORK
Previous studies present various techniques for solving

conflicts in collaborative editing settings. Coined during
late 1980s, concurrency control [6, 27] includes locking (pes-
simistic, mutually exclusive mechanism), transactions, sin-
gle active participation (token-based participation), depen-
dency detection (timestamps for conflict detection), differen-
tial synchronization (client-server asynchronous approach)
[7] and three-way merge (classic versioning systems).

The most prominent mechanisms for optimistic concur-
rency control are OT [6, 26, 27, 28] and CRDT [20, 21, 31,
23]. OT algorithms distinguish between a control algorithm
and a transformation function [28]. The former determine
the concurrent operations to be transformed against other
operations according to concurrency/context relations. The
latter determine how to transform a pair of operations ac-
cording to their type, position and other parameters. The
responsibilities of these two components are defined by a set
of transformation properties and conditions. An overview of
OT control algorithms, their verification and available state
of the art systems are given in [28, 32, 17, 13]. In contrast,
CRDT algorithms offer optimistic concurrency control by
defining commutative operations that do not conflict with
each other [24]. In the following, we provide a brief selec-
tion of relevant OT and CRDT algorithms.

The Google OT approach for Google Wave/Google Docs
[32] is based on the Jupiter approach [18]. In both cases the
server has to preprocess operations before one is executed
and propagated to all clients. There is no direct communi-
cation between clients. Similarly, the client also preprocesses
received operations before it executes them. Since the client
has its own history buffer, it can use the same preprocessing
algorithm as the server. Generalized OT (GOT) [27], GOT
Optimized (GOTO) [26] and AnyUndo [25] are algorithms
that do not depend on a server that preprocesses operations.
The AnyUndo OT algorithm extends GOTO with undo ca-
pabilities, while reusing its transformation algorithm. The
space complexity of this algorithm is nearly as good as the
Jupiter approach, but its time complexity can be quadratic.
Moreover, it has been shown that the GOTO and AnyUndo
approaches work if there are transformation functions that
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fulfill CP1 [22] and CP2 properties [22]. Sun et al. [28] de-
scribe these transformation properties—correctness criteria
used in OT literature, needed to achieve convergence (CP1,
CP2). Violations of these properties result in inconsistent
replicas of a shared document. Similar to GOTO/AnyUndo,
the Context-based OT (COT) [30] algorithm does not need
server-side preprocessing. Furthermore, the algorithm en-
ables direct communication between the clients. The idea
behind COT is to save every received operation “as is” in a
document state and preprocess it afterwards given the op-
eration context. COT has a simplified design, as only one
transformation function must be defined. The downside of
this approach is that a state vector must be transmitted
with every operation, where the size of the state vector is
proportional to the number of users in a collaborative ses-
sion. The Time Interval Based Operational Transformation
(TIBOT) approach sends operations to all other clients in
an N-way communication model. However, each client is
only allowed to send the operations at a certain time inter-
val [16]. This significantly reduces complexity, for the price
that updates may take longer to be processed. Similarly,
the successor approach TIBOT2 maintains a distributed to-
tal ordering schema on the execution sequence of operations,
allowing N-way communication between clients. Moreover,
it avoids both CP1 and CP2 [32] via a more efficient remote
processing approach.

All in all, OT approaches still have several drawbacks,
such as scaling problems in peer-to-peer and cloud networks
with dynamic (join/leave) user behavior [1] and a high com-
plexity in solving convergence. This is a reason why most
OT implementations [13] are restricted to linear data struc-
tures or specific ones, such as tree-like [9, 4, 11, 12]. More-
over, the complexity was a reason for slowing down the
spread of collaborative applications on the Web, which flour-
ished with the uprise of Google and cloud-based systems.

On the other side, CRDT systems are designed for peer-
to-peer environments and to perform and achieve consis-
tency for a big number of users. They can be state-based
or operation-based [24]. Without OT (WooT) [20] is an ap-
proach built for consistency preservation in P2P systems.
It uses a monotonic linearization function to ensure conver-
gence as a solution to topological sort. According to [20],
WooT supports linear structures, lists, block of texts and or-
dered trees. It generates partial orders for operations, which
are represented as elements and assigned a unique identifier.
Moreover, it makes use of an unique identifier for each col-
laborating site and one for each operation, a value for the
effect of an operation and the identifiers of previous and
next operations for each given “character value” of an in-
sert operation. WooT uses tombstones (i.e. no elements are
deleted, they are only marked for deletion), which means
that operations are not deleted. Each site maintains be-
sides the identifier a logical clock, a sequence for character
values and a structure for pending operations. Similar to
YATA, WooT was designed to work in a P2P architecture
and it is independent from the order of reception of oper-
ations. WooTO and WooTH [1] improve the WooT algo-
rithm in terms of performance [1], via a linked list and a
hash table for optimizing retrieval, update and insertion of
operations. They were inspired by the replicated growing
array (RGA) approach [23, 1], which introduced update op-
erations in addition to the classic insertions and deletions.
Lagoot [31] provides a totally-ordered set of elements and

was developed for linear data, extended with an undo mech-
anism based on a PN-Counter [31, 24]. It does not require
tombstones, which makes the algorithm more efficient com-
pared to similar mechanisms such as WooT.

3. THE YATA APPROACH
The YATA approach is created to provide a scalable solu-

tion for P2P optimistic concurrency control on the Web. The
main goals are to allow the P2P collaborative editing of Web
pages (DOM elements), graphs, lists, objects and arbitrary
types in the Web browser, using cutting-edge protocols for
message propagation. Therefore, the algorithm proposes a
basic structure using a linked list, which can be extended to
achieve collaboration on new shareable data types. YATA’s
linked list internal representation and a collection of prede-
fined rules limit the number of possible conflicts and ensure
intention preservation and convergence. The core idea is
enforcing a total order on the shared data types. YATA
also supports offline editing, being meant to cope with re-
quirements coming from both Web and mobile clients, such
as small operation updates for low bandwidth, on and off
connections, random message order at receive time, etc.

YATA currently supports collaboration on linear data,
trees, associative arrays and graphs. Using those types, it is
possible to create more complex data types.

In the following we formalize our approach and exem-
plify YATA’S behavior on text (linear data). After giving
the assumptions, definitions and describing how convergence
is achieved, we extend the linear representation to more
data types and explain how those are further realized us-
ing YATA.

3.1 Requirements
Unique identifiers. Each user is represented by an unique

identifier (userid). Additionally, each user gets an operation
counter which gets incremented every time a user creates
an operation. Upon its creation, the operation thus gets as-
signed a unique identifier which is composed of the userid
and the current operation counter.

Operations. YATA represents linear data (e.g. text) as
a doubly linked list. We define only two types of changes
on this representation: insert and delete. As it is shown in
Figure 1, every element in the linked list is represented by
an insert operation (also named insertion). When an inser-
tion is deleted, it is just marked as such and not removed
from the list (i.e. tombstone approach). Therefore, delete
operations do not have an effect on our insert algorithm. In
Section 3.5 we define a garbage collection mechanism that,
in combination with our insert algorithm 3.4, can remove
deleted insertions.

Y A T A !

T
?

o1 o2 o3 o4 o5

left (
=orig

in)
right

onew

Figure 1: Integration example on text (linear) type.



We denote an insert operation as ok(idk, origink, leftk,
rightk, isDeletedk, contentk), where idk is ok’s unique iden-
tifier, contentk is the content (e.g. a character), isDeletedk
is a flag that marks an insertion as deleted, and origink,
leftk, rightk are references to other already existing inser-
tions. We represent linear data as a doubly linked list S
of insertions. Therefore, leftk, and rightk reference to the
previous node, respectively next node in the list. origink de-
notes the direct predecessor at creation time (i.e., the node
after which it was originally integrated to).

We define < as the natural predecessor relation on S.

o1 < o2 ⇔ o1 is a predecessor of o2 (1)

o1 ≤ o2 ⇔ o1 < o2 ∨ o1 ≡ o2 (2)

Example. When a user creates a new insertion at a lo-
cal site, this is integrated between two insertions oi, and
oj . The newly created insertion is therefore defined as:
onew(idk, oi, oi, oj , false, contentnew). Note that leftnew,
and rightnew are defined when an insertion has been ap-
plied to the list and may change when new insertions are
integrated into S, but originnew, defined at insertion cre-
ation time is never modified. After the user integrates a
new insertion at his local site he sends it (via broadcast), as
is, to all users.

A special case occurs when an insertion is performed at the
beginning or at the end of S, because there is no insertion to
refer to as left∗, respectively right∗. This can be fixed by
using special delimiters, which denote the beginning and
the end of S, respectively. Therefore, we assume without
loss of generality that an insertion always defines origink,
leftk, and rightk.

3.2 YATA
The example in Figure 1 shows how a received operation

onew is integrated in S. Here, the red connections refer-
ence the intention of the insertion, which is defined through
leftnew and rightnew - i.e. insert the letter between these
two letters. When the insertion is integrated, YATA as-
sures that it will be placed somewhere between these letters.
Convergence is therefore ensured, unless one or more re-
mote operations were already inserted between leftnew and
rightnew, which then leads to a conflict that needs to be
solved.

Definition: Intention Preservation.
The intention of an insertion oi is preserved if and only

if the insertion is integrated somewhere between lefti and
righti. This notion of intention preservation conforms to
the natural perception for the intention of text insertions
and it is similar to other definitions found in the literature.
In [2], the intention preservation is defined when each char-
acter inserted by a user between two other characters in a
document keeps its relative position between its neighbors
during the editing process.

The concurrent insertion problem.
In the example in Figure 1, the intention of the insertion

of “T” is that should be inserted between the characters “Y”
and the “A” - e.g., at creation time, “T” sees only “YA”.
However, a letter sequence “AT” has been already inserted
between these two letters. In the example, o2, and o3 conflict
with onew.

Definition: Conflicting insertions.
Keeping the above notations, assuming

S = leftnew · c1 · c2 · .. · cn · rightnew, then we say that onew

conflicts with c1..cn.
In the following we define a function <c that specifies a

position for onew in the set of conflicting insertions (c1..cn).
As such onew is integrated between ci, and ci+1 when ci <c

onew <c ci+1. Furthermore, we show that every site con-
verges when integrating with <c (i.e., we prove that <c is a
strict total order function).

In the following we will frequently refer to the graphical
representation of insertions as it is shown in Figure 1. The
insertion onew has three references/connections. On the left
hand site of onew there is a originnew connection, and a
leftnew connection to o1. On the right hand site of onew

there is a rightnew connection to o4. While leftnew, and
rightnew define the usual predecessor/successor relation in
a linked list. The originnew connection will never change
and is employed to find the strict total order function <c.

We compose the following three rules in order to find a
strict total order <c on conflicting operations.

Rule 1 We forbid crossing of origin connections (red lines
in the graphical representation) between conflicting inser-
tions. This rule is easily explained using the graphical rep-
resentation of insertions in the linked list. As we stated
before, every insertion has an origin connection to an in-
sertion to the left (to a predecessor). Only when two op-
erations are concurrently inserted after the same insertion,
they will have the same origin.

Y A T A ! Y A T A !

Figure 2: No line crossing.

Figure 2 illustrates the two cases that are allowed when
line crossing is forbidden. Either, one operation is between
the other operation and its origin, or the origin of the one
operation is a successor of the other operation. Therefore,
the following formula must hold for conflicting insertions
o1 and o2:

o1 <rule1 o2 ⇔ o1 < origin2 ∨ origin2 ≤ origin1 (3)

Rule 2 Specifies transitivity on <c. Let o1 <c o2. Then
following rule ensures, that there is no o that is greater
than o2, but smaller than o1, with respect to <c

o1 <rule2 o2 ⇔ ∀o : o2 <c o→ o1 ≤ o⇔ @o : o2 <c o < o1

(4)

Rule 3 When two conflicting insertions have the same ori-
gin, the insertion with the smaller creator id is to the left.
We borrow this rule from the OT approach. But in OT this
rule is applied when the position parameters are equal.

o1 <rule3 o2 ⇔ origin1 ≡ origin2 → creator1 < creator2

(5)

We get retrieve the total order function <c by enforcing all
three rules:

o1 <c o2 ⇐⇒ o1 <rule1 o2 ∧ o1 <rule2 o2 ∧ o1 <rule3 o2

⇔ o1 < origin2 ∨ origin2 ≤ origin1

∧ @o : o2 <c o < o1

∧ origin1 ≡ origin2 → creator1 < creator2

o1 ≤c o2 ⇔ o1 <c o2 ∨ o1 ≡ o2 (6)



3.3 Correctness
<c only depends on the origin∗ connection, and we spec-

ified above, that origin∗ never changes. We can conclude
that whenever two sites compare conflicting insertions, they
will find the same order for insertions. Furthermore, this
implies that all sites will eventually converge. Finally, we
prove that <c is a strict total order function, i.e. ≤c is a
total order on conflicting operations. Therefore, we have to
show that for all conflicting insertions o1, o2, and o3 the
ordering function ≤c is antisymmetric, transitive, and total.

o1 ≤c o2 ∧ o2 ≤c o1 ⇒ o1 ≡ o2 (antisymmetry) (7)

o1 ≤c o2 ∧ o2 ≤c o3 ⇒ o1 ≤c o3 (transitivity) (8)

o1 ≤c o2 ∨ o2 ≤c o1 (totality) (9)

Proof antisymmetry. Let o1, and o2 be insertions, with
o1 ≤c o2 ∧ o2 ≤c o1.

Case 1: (origin1 ≡ origin2):

o1 ≤c o2 ∧ o2 ≤c o1

6⇒ (o1 <c o2 ∧ o2 <c o1) ∨ o1 ≡ o2

Rule 3⇒ (creator1 < creator2 ∧ creator2 < creator1) ∨ o1 ≡ o2

⇔ o1 ≡ o2

The reasoning here is that the user id has a total ordering.
Case 2: (origin1 < origin2):

o1 ≤c o2 ∧ o2 ≤c o1

⇔ (o1 ≤ o2 ∧ o2 ≤ o1) ∧ (o1 ≤c o2 ∧ o2 ≤c o1)

⇔ (o1 ≤ o2 ∧ o2 ≤ o1) ∧ (o1 ≡ o2 ∨ (o1 <c o2 ∧ o2 <c o1))

Rule 1⇒ o1 ≤ o2 ∧ o2 ≤ o1

∧ o1 ≡ o2 ∨ ((o1 < origin2 ∨ origin2 ≤ origin1︸ ︷︷ ︸
false

)

∧(o2 < origin1 ∨ origin1 ≤ origin2︸ ︷︷ ︸
true

))

⇒ o1 ≤ o2 ∧ o2 ≤ o1 ∧ (o1 ≡ o2 ∨ o1 < origin2)

⇒ (o1 ≤ o2 ∧ o2 ≤ o1 < origin2) ∨ o1 ≡ o2

origin2
!
<o2⇒ o1 ≡ o2

Case 3: (origin2 < origin1): Similar to Case 2.

Proof transitivity. Let o1, o2, and o3 be insertions,
with o1 ≤c o2 ∧ o2 ≤c o3, o3 conflicts with o1, and w.l.o.g.
o1 6= o2 6= o3.

o1 <c o2 ∧ o2 <c o3

Rule 2⇒ (∀o : o2 <c o→ o1 ≤ o) ∧ (o2 <c o3)

⇒ (o2 <c o3 → o1 ≤ o3) ∧ (o2 <c o3)

⇒ o1 < o3

⇔ o1 <c o3

Proof totality. Let o1, o2 be insertions, with o1 6= o2.
Totality is fulfilled if the following statement holds:

o1 <c o2 ∨ o2 <c o1 ⇐ true

if and only if

¬(o1 <c o2 ∨ o2 <c o1) ⇒ false

When we apply the ordering relation (6) we get the for-
mula in Figure 3 and show for each case that totality is
fulfilled.

Case 1 (origin1 ≡ origin2 and creator1 < creator2):

First steps are depicted in Figure 3

⇒ ∃o2 < o < o1

⇒ o2 < o1

Rule 3⇒ false

Case 2 (origin1 ≡ origin2 and creator2 > creator1):
Similar to case 1.

Case 3 (origin1 < origin2):

Figure 3

⇒ (¬(o1 < origin2) ∨ (∃o : o2 < o < o1))

∧(∃o : o1 < o < o2)

⇔ (¬(o1 < origin2) ∧ (∃o : o1 < o < o2))

∨(∃o : o2 < o < o1 ∧ ∃o : o1 < o < o2)

⇒ (¬(o1 < origin2) ∧ (∃o : o1 < o < o2))

∨(o2 < o1 ∧ o1 < o2)

antisymmetry⇒ ¬(o1 < origin2) ∧ (∃o : o1 < o < o2)

⇒ origin2 ≤ o1 ∧ o1 < o2

assumption⇒ origin1 < origin2 ≤ o1 ∧ o1 < o2

⇒ origin1 < origin2 ≤ o1 < o2

o1 and o2 conflict⇔ origin1 < origin2 < o1 < o2

Rule 1⇒ false

Case 4 (origin2 < origin1): Similar to Case 3.

¬(o1 <c o2) ∧ ¬(o2 <c o1)

⇔ ¬((o1 < origin2 ∨ origin2 ≤ origin1) ∧ (@o : o2 <c o < o1) ∧ (origin1 ≡ origin2 → creator1 < creator2))

∧ ¬((o2 < origin1 ∨ origin1 ≤ origin2) ∧ (@o : o1 <c o < o2) ∧ (origin2 ≡ origin1 → creator2 < creator1))

⇔ (¬(o1 < origin2) ∧ ¬(origin2 ≤ origin1)) ∨ (∃o2 <c o < o1) ∨ (origin1 ≡ origin2 ∧ ¬(creator1 < creator2))

∧ (¬(o2 < origin1) ∧ ¬(origin1 ≤ origin2)) ∨ (∃o1 <c o < o2) ∨ (origin2 ≡ origin1 ∧ ¬(creator2 < creator1))

⇔ (¬(o1 < origin2) ∧ ¬(origin2 ≤ origin1)) ∨ (∃o2 < o < o1) ∨ (origin1 ≡ origin2 ∧ ¬(creator1 < creator2))

∧ (¬(o2 < origin1) ∧ ¬(origin1 ≤ origin2)) ∨ (∃o1 < o < o2) ∨ (origin2 ≡ origin1 ∧ ¬(creator2 < creator1))

Figure 3: Derivation of totality on (6).



3.4 Insert Algorithm
Previously, we proved that there exists a total order rela-

tion on conflicting insertions. In this section we show how
we can compute the new position for an insertion, when we
already have an ordered list of insertions.

Listing 3.4 shows how the conflicting insertion can be
solved algorithmically. The algorithm exploits property (3)
(no line crossing) as a breaking condition. Therefore, we
stop computing when origin connections definitely will cross.

The worst case time complexity of the algorithm is O(|C|2)
where |C| is the number of conflicting operations. In the case
that the breaking condition is reached in the first iteration,
no positions are compared. This is why the best case time
complexity is O(1). A complexity analysis is presented in
Section 3.7.

// I n s e r t ’ i ’ in a l i s t o f
// c o n f l i c t i n g o p e r a t i o n s ’ ops ’ .
insert ( i , ops ){

i . p o s i t i o n = ops [ 0 ] . p o s i t i o n
for o in ops do

// Rule 2 :
// Search f o r the l a s t opera t ion
// t h a t i s to the l e f t o f i .
i f ( o < i . o r i g i n

OR i . o r i g i n <= o . o r i g i n )
AND ( o . o r i g i n != i . o r i g i n

OR o . c r e a t o r < i . c r e a t o r ) do
// r u l e 1 and 3 :
// I f t h i s formula i s f u l f i l l e d ,
// i i s a s u c c e s s o r o f o .
i . p o s i t i o n = o . p o s i t i o n + 1

else do
i f i . o r i g i n > o . o r i g i n do

// Breaking condi t ion ,
// Rule 1 i s no l o n g e r s a t i s f i e d
// s i n c e o t h e r w i s e o r i g i n
// connect ions would c r o s s .
break

}

3.5 Garbage Collection
In the literature, garbage collection has been also pro-

posed in [21] where “cold” areas of a document are identi-
fied or in Logoot [31], which uses a graveyard for removed
operations. Conceptually, an insertion marked for deletion
can be garbage collected when all sites received the remove
operation and have in their internal representation the op-
eration that is to be garbage collected. However, it is hard
to determine if all collaborators know simultaneously that
a content was deleted. Ideally, using classic methods such
as state vectors, a mechanism where YATA ensures that all
sites have applied a removal can be a candidate solution. As
a downside, such a mechanism would require more network
resources and leads to a decrease in performance, especially
in P2P settings. An optimal solution to this issue is still
being considered.

In the current approach, the problem is simplified by as-
suming that all users retrieved a certain remove operation
after a fixed time period t which can be set according to the
expected protocol and network characteristics (e.g., 30 s).

In practice, YATA uses two buffers for garbage collection,
to ensure that list elements are not directly removed. As
such, once ok can be garbage collected, it will be moved into
the first buffer. If nothing changes, after t seconds it will
be copied into the second array and from here will be re-
moved by the garbage collector (i.e., can be safely removed
from the list and the buffer). From our practical experi-
ences and the use in production, such a delay is sufficient
to ensure that content will be removed safely, without any
losses that may lead to inconsistencies. This is in line with
experiments performed for assessing the NRT criteria and
measuring the time in which operations are being applied.
These experiments (cf. Figure 9, Section 6) show that the
average time for receiving and applying a remove operation
using text (with a length under 103 characters) at a remote
site is approx. 12 ms. Under the same conditions, receiving
and applying a single remove operation with a length of 105

characters at a remote site is done within an average time
of 39.3 ms (SD 2.45 ms), from a pool of ten measurements.

As a consequence of YATA’s rules, in some cases it is not
possible to remove insert operations. The reason is that for
an operation that is inserted between two undeleted insert-
type operations, this could lead to a deleted predecessor or
successor (cf. Figure 4).
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Word

D D

Y

?

Figure 4: Insertion between deleted characters.

In order to ensure consistency, YATA demands that a
new insertion is always inserted between the most left non-
deleted character and its direct successor. Only then, the
garbage collector can remove all operations that are to the
right of the first deleted insertion.

Furthermore, due to its design, the garbage collector in
YATA may break late join mechanisms. This is because
when a user is offline for a period longer than t seconds,
it will still hold references to deleted operations, while on-
line users who already performed certain removals do not.
Therefore, YATA does not support garbage collection for a
site while it is offline.

3.6 Ofline Editing Support
YATA supports offline editing using the internal data rep-

resentation which is maintained at each client. Once clients
are online, YATA performs a check for diverged states of the
shared data and synchronizes it.

Every site holds a state vector. It saves the next expected
operation id per user. As an example, consider user1 with
userid 1 is in a session with user2 with userid 2. Both users
created two operations. As we explained above, the opera-
tion id is defined as a tuple of userid and operationcounter.
Therefore, the state vector is expressed as:
[(1, 2), (2, 2)] (assuming we start counting with 0).

For synchronization, the state vector is not sent with each
operation, but it is sent only once to all clients. A user that



receives a state vector compares it with the local state vec-
tor and sends all remaining operations to the synchronizing
client. In order to make operations integrable on the remote
instances, operations are sent in the order and the form in
which they were created. Our YATA’s implementation can
transform integrated operations to their original form.

3.7 Complexity Analysis
The complexity of YATA depends on the retrieval effi-

ciency of insertions. As such, the retrieval of a specific oper-
ation can be efficiently implemented using a balanced tree,
which exposes time complexities of O(log(H)) for insertion
and retrieval. Here, H denotes the number of all applied
operations in the balanced tree implementation. The best
case time complexity for applying an operation is O(log(H))
- i.e. there are no conflicting operations. The worst case
time complexity is O(log(H)+C2) and only depends on the
amount of conflicting operations (C). A comparison with
other CRDTs performance, adapted from [1] is depicted in
Table 1. In this comparison, H the total number of opera-
tions that affect a shared document.

CRDT
LOCAL REMOTE

INS DEL INS DEL

WooT O(H3) O(H) O(H3) O(H)

WooTO O(H2) O(H) O(H2) O(H)

Logoot O(H) O(1)
O(H ·
log(H))

O(H ·
log(H))

RGA O(H) O(H) O(H) O(log(H))

YATA O(log(H)) O(log(H)) O(H2) O(log(H))

Table 1: Worst case time-complexity analysis,
adapted from [1].

Discussion As it can be observed, compared to classical
CRDT tombstone approaches (such as WooT or WooTO),
YATA has a better time complexity. As expected, non-
tombstone approaches (such as Logoot of RGA) output a
better time complexity for some operation types. Regard-
less of the complexity, YATA offers an approach for client-
side conflict resolution, which is not common among existing
CRDTs. It proposes a simple data type that can be used to
compose more complex ones (cf. Section 4). In Section 6,
we show that YATA’s implementation fulfills NRT scenarios
and give an overview on its usage performance.

A downside of the YATA approach is that when each char-
acter is represented as an operation, the space complexity is
O(|D|), where |D| is the size of the shared document. In OT
for example, it is possible to have an empty history buffer,
when garbage collection is enabled.

However, YATA outputs the following advantages over OT
approaches:

• Time-complexity: YATA reduces time to synchronize,
when late join is supported.

• The size of propagated messages is small: there are
no state vectors that need to be propagated with each
operation. OT approaches for handling tree-like data

require the user to send a path-vector with each oper-
ation. This usually has the length of the depth of the
changed element, which is not necessary in YATA.

• It is possible to define many data types.

4. EXTENDABLE TYPES
This section describes some of the basic operation types

and the general data structures which YATA supports. Build-
ing on top of the data structures, one can implement certain
abstract data types and thus enable collaboration on com-
mon data formats such as JSON and XML. The supported
types currently include linear data types (e.g., arrays, linked
lists, sorted arrays, bitmaps), trees, graphs and associative
arrays.

4.1 List Manager Operation
A List Manager (cf. Figure 5) is an abstract operation

type that manages insert operations. It basically handles
two delimiters that denote the beginning and the end of the
list, as exemplified in the algorithm’s description. Hence,
new insertions are placed somewhere between these delim-
iters according to YATA’s rules.

Y A T A !
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Figure 5: Illustration of the List operation type.

The List Manager operation also handles how to address
the elements in the associative list and how to transform it
to a certain data type (e.g. String). It represents linear data
structures such as lists and arrays, but it can also be used
in order to represent tree-like data structures. In this case,
the trees are achieved by allowing the content of insertions
to contain in their turn List Managers.

4.2 Replace Manager Operation
YATA supports only insert and delete operations. How-

ever, when dealing with more complex types, update opera-
tions are also required in order to ease the development. As
such, YATA supports updates of existing content by offer-
ing a dedicated type which enables content replacement. A
Replace Manager (cf. Figure6 handles the replace function-
ality. As a basic example, consider the case where two users
(with user ids 1 and 2) concurrently replace the number 0
in a text with their respective user id. In order to keep con-
sistency, each site should reflect the replace operation and
reach the same content, i.e. either 1 or 2 will replace the
old number 0. YATA solves this problem by transforming
it into an already solved problem, using data types which
ensure consistency.

Replace Manager

D D

content

Figure 6: Illustration of the Replace Manager oper-
ation type.



The Replace Manager inherits its functionality from the
List Manager. Using this data representation, the first in-
sertion (which must not be a Delimiter) of a Replace Man-
ager denotes the actual content. In consequence, in order to
replace this content once a user performs a new insertion,
the new content will be added as the first insertion of the
Replace Manager. In Figure 6 the red line references the
current content of the Replace Manager. Since YATA en-
sures that all sites will have the same content in the end,
all sites eventually reference the same insertion as the con-
tent of the Replace Manager. Moreover, in order to free up
memory all other insertions can be implicitly deleted.

4.3 Map Manager Operation
A map is also known as a dictionary, or an associative

array. It is an abstract data type that maps keys to values.
Figure 7 depicts YATA’s representation of a Map Man-

ager operation. In order to support concurrent actions on
a shared map, we assign each key to a Replace Manager.
Therefore, the values addressed by keys will converge upon
concurrent changes performed by multiple users i.e., users
collaboratively edit the content addressed by a specific key.
We can use any map data structure to map keys to Replace
Managers. The values can contain primitive data types or
YATA own types. This construct is suitable for easily en-
abling collaboration on name/value pairs (e.g., objects, dic-
tionaries, etc.). The current value of a key is replaced and
retrieved by accessing the respective Replace Manager.

Map Manager
id = x

Replace 

Manager

addressed by key1

addressed by key2

addressed by key3

Replace 

Manager

Replace 

Manager

Figure 7: Illustration of the Map Manager operation
type.

4.4 Representation of Specific Data Formats
Using YATA, by combining the simple types explained

above, data formats such as JSON or XML can be realized
as shared data types.

The JSON data format is built on collections of name/-
value pairs and ordered lists of values. Hence, with YATA
JSON can be easily created by using a Map Manager, in
combination with other data types which can be used for
the attributes, such as further Map Manager operations or
List operations (for attributes implementing strings or ar-
rays).

Map Manager

attribute1

attribute2

attribute3

XML-Type

Word

D D

Figure 8: Illustration of XML as an operation type.

YATA can also enable NRT collaboration on XML (cf.

Figure 8). An XML DOM Element2 has XML attributes
and an ordered list of children (XML elements or XML text).
Therefore, we compose an XML-Type in YATA as a Map
Manager (which handles the XML attributes) and a List
Manager (which handles the children). However, since the
List Manager and the Map Manager support to insert any
value, we have to put some restrictions to the structure of
the XML-Type:

• The Map Manager, which handles the XML attributes,
must only map from a non-empty string to a non-
empty string

• The List Manager, which handles the children, must
only contain other XML types, or strings which repre-
sent XML text elements

5. YJS: THE P2P SHARED EDITING FRAME-
WORK

As already introduced, Yjs [19] is the open-source imple-
mentation of the YATA approach. In contrast to similar
OT, CRDT and shared editing implementations that sup-
port only a very limited number of document structures or
represent them differently, the Yjs framework encourages
developers to build custom data types. A custom type can
use existing implemented types (as previously explained) in
order to give meaning to the actions on the data and to fire
custom events. At the time of writing this paper, Yjs has
implemented support for list, associative arrays, XML,text,
and rich text types. Yjs works on modern Web browsers, in-
cluding mobile (on Android devices) and offers a quick and
easy way to embed collaboration in Web applications.

In order to maintain modularity and to be able to employ
Yjs in various Web engineering settings, the communica-
tion protocols and the shared data type formats support are
implemented as dedicated interchangeable modules. This
greatly simplifies the process of integrating the framework
into an existing project, since such projects typically use di-
verse communication protocols (e.g., WebRTC, Web Sock-
ets, XMPP), and collaborate on various data types and data
formats (e.g., XML, JSON, graphs). The support for the dif-
ferent communication protocols is implemented in connec-
tor modules. The collection of connector modules and type
modules are available as open-source JavaScript libraries on
GitHub3. Currently, connectors are implemented for We-
bRTC, Web Sockets and XMPP.

6. EVALUATION

6.1 Performance
Apart from the correctness reasoning explained above, we

have evaluated the approach and the Yjs library in terms
of responsiveness - how quickly an operation is integrated
into each user’s local structure and scalability - what is the
impact of the number of users in this setting [19].

In order to evaluate the speed and correctness of YATA we
performed multiple automatic tests simulating many users
working exhaustively on a single shared document. The sim-
ulation introduced certain constraints: generation of ran-
dom operations, different arrival orders of operations at dif-
ferent sites and network delay with operations which were
2http://www.w3.org/TR/REC-xml/
3https://github.com/y-js

http://www.w3.org/TR/REC-xml/
https://github.com/y-js


not ready to be applied because they were dependent on
other pending operations. As our implementation is meant
for client-side applications and runs on the Web, we could
not use existing benchmarking tools described in the litera-
ture [1]. Moreover, using collaboration logs from online text
editing systems such as Wikipedia would have lead to very
few conflicts on the shared document. Instead, we chose
an alternative approach with the goal to measure the fulfill-
ment of the NRT scenario in distributed settings. We first
used the testing environment with a test connector to mea-
sure the scaling capability with the number of operations by
measuring how many concurrent operations YATA can ap-
ply locally. Second, we measured the time performance for
applying insert and delete operations between two Yjs in-
stances, including the network delay using the Web Sockets
connector. Similar to [1], we consider that the framework
performs in NRT if the response time for the insert operation
is in average under 50ms.

The testing environment can be configured with respect
to number of users and number of actions that are created.
Furthermore, it is possible to configure the test environment
in such a way that the collaboration is restricted to a specific
data type (e.g. text only or text and JSON with primitive
data types). The users are collaborating concurrently with
each other, whereby each simulated user can perform one
of the following actions: wait for a time period, retrieve an
operation from a random collaborator, go offline (all oper-
ations that are currently sent to the users get lost. After
going offline, the user is allowed to create more operations,
simulating late join), go online (user reconnects to all users,
retrieves all missing operations, and sends all offline gener-
ated operations). For text, a user can perform insert and
delete actions. For JSON, the user can perform randomly
the following actions: find a random child, create a new
property, replace an existing property or delete a property.

When a configured amount of actions are executed, the
simulated users stop generating additional actions and wait
for all incoming operations to be executed. When the data
types of every simulated instance converge, we consider that
the test framework succeeds.

We used our test framework with the creation and exe-
cution of 10000 actions on Text and JSON with a specified
number of users, ranging from one to ten. The test ran on
one CPU only (Intel i7 - 3.40 GHz). All mentioned con-
straints were considered. We ran the test 15 times in order
to get good average times. The time to create 10000 random
actions and apply them to all collaborators was measured
and divided by the number of users times the number of
created actions: operation per millisecond = time

10000×|users|
The time for transforming operations did not thwart the
performance noticeably. For a setting with 7 and 8 users,
the test framework registered 250 operations executed in one
ms, whereas for 9 and 10 users the average time was approx.
230 operations per ms. This did not even change when we
restricted the test framework to work on text only, where
even more conflicts should happen.

The time performance was measured using two Yjs in-
stances using one Chrome browser on a laptop (Intel i7 -
2.8 GHz) with a wireless Eduroam connection. Using Web
Sockets connector, we measured the time difference (in ms)
between applying an insert or delete operation on the first
instance and applying the same operation on the second in-
stance.

Figure 9: NRT performance for applying one remote
operation with different content sizes

This shows the delay between creating an operation on a
site and seeing the effects of that change at the second site,
including the delay created from the message propagation
across the communication channel (i.e., Web Sockets).

The experiment (cf. Figure 9) was performed with a single
insert or delete operation using a text editor. Each operation
was executed ten times in order to obtain a reliable estima-
tion. We also increased the content of each operation (in
characters), ranging from 1 to 103 characters. The results
for the insert operations are represented in gray and for the
delete operations in blue. As it can be observed, the average
time for all operations is smaller than 25 ms. We also used
the same environment to write a text of 1000 characters.
Here, we obtained an average execution time for an opera-
tion of 12 ms, which is consistent with the results presented
in the figure for inserting and deleting one character.

Overall, the test results fulfill our expectations for the
framework’s performance in NRT settings.

6.2 Applications
Overall, the Yjs library with its various connectors and

types was well received by the open-source developer com-
munity. The library’s Website and repository analytics show
that the Website gathered over one year more than 11600
page views from over 4500 users and the library over 800
downloads.

Yjs was used to enable shared editing with the popular
Quill rich text editor, which is very similar to Google Docs.
The richtext component is already used by two companies
in production, for NRT shared text editing on the Web,
embedded in WebRTC video meeting tools.

As shown in Figure 10, Yjs is currently used for synchro-
nizing 3D objects movement across multiple users in the
Web browser4.

Here, the Map Manager is used in order to synchronize
the position properties of a Javascript 3D object. This is
possible by observing changes in the x3dom 3D object rep-
resentation and ensuring that the object’s coordinate values
are converging across all sites. The synchronization per-
formance and accuracy is currently being evaluated with
students of the Faculty of Medicine from RWTH Aachen
University, in an Exploratory Teaching Spaces project that
aims to support formal and informal learning through NRT
collaboration.

Furthermore, Yjs was used to create a tool for achieving

4http://eiche.informatik.rwth-aachen.de/3dnrt

http://eiche.informatik.rwth-aachen.de/3dnrt


Figure 10: Illustration of the 3D objects synchro-
nization with Yjs.

liquid Web applications [8], by providing a seamless user
experience in using different Polymer Web components dis-
tributed across various devices. The evaluation of a Yjs-
based collaborative drawing tool on Web videos [14] (per-
formed using the WebRTC connector) showed that during
concurrent drawings the framework proved to be reliable
while keeping the NRT behavior, for all participating peers.
Several other examples for manipulating text, HTML5 ele-
ments, JSON objects and additional usages in various projects
are provided on the Yjs Website.

Moreover, Yjs is currently being integrated into SyncMeta
[5] (cf. Figure 11), a framework for enabling NRT collabo-
rative (meta) modeling on the Web.

Figure 11: Illustration of graph editing with Yjs.

SyncMeta is using an OT solution for enabling shared edit-
ing on text and ensuring that the created nodes and edges
are converging during the modeling process at all sites. How-
ever, this solution uses timestamps for ensuring the consis-
tency in a P2P manner, which does not scale well with an
increasing number of users. However, by synchronizing the
underlying JSON model representation using YATA, Yjs is
a perfect candidate for achieving scalable optimistic NRT
collaborative modeling. The Yjs implementation benefits
from the advantages of YATA over OT algorithms. Thus,

it guarantees a faster synchronization of the graph elements
and their respective properties with an increasing number
of users and operation content size in P2P settings. More-
over, Yjs SyncMeta reduces the network traffic through the
smaller size of messages, while keeping the reliability and
hence the convergence of the shared models across collabo-
rators.

7. CONCLUSION AND FUTURE WORK
In this work, we have described YATA, a new scalable

P2P approach for maintaining consistency of shared arbi-
trary data types, designed for NRT settings on the Web. We
proved that it ensures convergence and that it has several
advantages compared to other existing algorithms for shared
editing. The contributions of YATA rely on its flexibility for
various shared data types, as well as in its performance re-
garding the necessary number of exchanged updates between
collaboration sites, time to convergence and its support for
offline editing (enabled by YATA’s late join mechanism). Its’
open-source implementation, Yjs, supports multiple NRT
communication protocols and can be easily used into exist-
ing and new applications for facilitating NRT collaboration
and shared editing.

In the future, we plan to change the available garbage
collection mechanism in order to support operation removal
while working offline. Moreover, we want to improve the Yjs
framework implementation with new supported data types
and persistence mechanisms for increasing the performance.
Concerning persistence we are exploring efficient methods
for the storage of shared data in the P2P network that can
be included into the framework.

As the main motivation for developing YATA and Yjs was
to enable easy NRT collaboration for online communities,
we plan to use Yjs for the collaborative engineering of Web
applications and synchronizing the application content and
state across multiple devices [15].
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