No description, website, or topics provided.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
models
utils
LICENSE
README.md
eval.py
main.py

README.md

When will you do what? - Anticipating Temporal Occurrences of Activities

This repository provides a TensorFlow implementation of the paper When will you do what? - Anticipating Temporal Occurrences of Activities.

Qualitative Results:

Click on the image.

IMAGE ALT TEXT

Training:

  • download the data from https://uni-bonn.sciebo.de/s/r1T0PU8W3DE6QIO.
  • extract it so that you have the data folder in the same directory as main.py.
  • To train the model on split1 of Breakfast dataset run python main.py --model=MODEL --action=train --vid_list_file=./data/train.split1.bundle where MODEL is cnn or rnn.
  • To change the default saving directory or the model parameters, check the list of options by running python main.py -h.

Prediction:

  • Run python main.py --model=MODEL --action=predict --vid_list_file=./data/test.split1.bundle for evaluating the the model on split1 of Breakfast.
  • To predict from ground truth observation set --input_type option to gt.
  • To check the list of options run python main.py -h.

Evaluation:

Run python eval.py --obs_perc=OBS-PERC --recog_dir=RESULTS-DIR. Where RESULTS-DIR contains the output predictions for a specific observation and prediction percentage, and OBS-PERC is the corresponding observation percentage. For example python eval.py --obs_perc=.3 --recog_dir=./save_dir/results/rnn/obs0.3-pred0.5 will evaluate the output corresponding to 0.3 observation and 0.5 prediction.

Remarks:

If you use the code, please cite

Y. Abu Farha, A. Richard, J. Gall:
When will you do what? - Anticipating Temporal Occurrences of Activities
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018