Scientific Computing in Finance

This course covers scientific computing methods and techniques, and their applications in Finance. The course is designed to have a strong focus in quantitative Finance practices, topics are often presented with real world examples and common industry practices.

Text book:

- 1. D. Bindel and J. Goodman: Principles of Scientific Computing, 2009.
- 2. Netlib repository: www.netlib.org

References:

- 1. P. Glasserman: Monte Carlo method in Financial Engineering
- 2. L. Anderson and V. Piterbarg: Interest Rate Modeling, Volume I and II 2010.

Course Syllabus:

- 1. Introduction: (1 week: Yadong)
 - a. overview of the class
 - b. introduction to computer architecture, memory hierarchy and performance
 - c. a quick overview of good software practices
 - d. source of errors, IEEE standard of floating point numbers
 - e. error propagation and condition number
- 2. Linear Algebra (2 weeks, Yadong)
 - a. review of linear algebra
 - b. solving linear system: Gaussian elimination, LU factorization
 - c. correlation and covariance matrix, Cholesky decomposition
 - d. mean/variance portfolio optimization
 - e. QR decomposition and Householder transformation
 - f. eigen values and eigen vectors
 - g. least square
 - h. PCA/SVD analysis and its applications in Finance
 - i. Conditioning, condition number for linear systems
- 3. Interpolation, curve building and root search (1 week, Yadong)
 - a. Overview of 1-D root search methods: Bisection, Secant, and Brent
 - b. Types of curves and curve building in Finance
 - c. Piecewise linear/constant interpolation
 - d. Cubic spline, Tension spline
 - e. Bootstrapping and iterative algorithm
 - f. Perturbation and locality
- 4. derivatives and hedging (1 week, Yadong)
 - a. Order of accuracy in finite difference
 - b. Derivative and deltas: Jacobian matrix for delta transformation
 - c. Hedging with bespoke instruments

- d. Hedge optimization
- e. Numerical integration and its accuracy
- 5. Optimization (2 weeks, Hongwei)
 - a. Introduction---A brief survey of optimization problems
 - I. Unconstrained, Constrained
 - II. Linear programming, Quadratic programming
 - III. Integer programming, Mixed Integer programming
 - IV. Nonlinear programming, Convex programming
 - V. Dynamic programming, Stochastic Programming
 - b. Simplex Method --- Asset/Liability Cash Flow Matching
 - c. Nonlinear programming
 - I. Optimality conditions, Lagrange multipliers, KKT.
 - II. Volatility Estimation with GARCH
 - III. Dynamic programming --- Option Pricing, Structured ABS Securities
 - d. Optional: Stochastic programming
- 6. Monte Carlo simulation (2 weeks, Yadong)
 - a. Pseudo random number generators
 - b. MC error, sample statistics, curse of dimensionality
 - c. Discretization of SDEs
 - d. Least square Monte Carlo and American options
 - e. Variance reduction techniques
 - f. Quasi random sequence
- 7. Maximum entropy and allocation (1 week, Yadong)
 - a. Information entropy
 - b. Maximum entropy and the dual problem
 - c. Risk capital allocation methods: Shapley, Aumann-Shapley, Euler and C-Shapley
- 8. ODE/PDE (2 weeks, Hongwei)
 - a. ODEs, Runge Kutta method (e.g. the ODE from affine term structure models)
 - b. Parabolic PDE in finance from valuation problems
 - c. Tree method, Finite difference method
 - d. Stability, Convergence
 - e. Explicit/Implicit Method, Crank Nicolson
 - f. Optional: multi-factor PDE, operator split and ADI method
- 9. Project presentation (1 week, everyone)