New Memory Management Structure

Hereby please find the class diagram of the new memory management
structure for Oak. It shows the default memory allocation schema and
allows user to provide its own memory allocator. In the last case the
off-heaping of the underlying ByteBuffers is up to the provided allocator.

Default Oak memory management schema is
1. thread safe,

2. allows allocation of any amount of memory for multiple Oak instances

(up to OS boundaries)

class MemoryBlocksPool class Block public interface
singleton MemoryAllocator

A ByteBuffer from a given (high) capacity,
Pre-allocates Blocks and pre-allocated and reused by the Poal. User can supply othar
gives them to ! M Black can allocate a new ByteBuffer (slice implemeantation, Oak has
CakMemoryAllocator upon of it), but it is impossible to deallocate this its default
reguest. slice. Only entire Block can be returned to

the Pool and then reset and reused. Methods:
Methods: getinstance() ByteBuffer allocate(size)
getBlock() returnBlock() Methods: reset() allocate(size) free|ByteBuffer)

— ——— — A

| One per Oak instance (OakMap data members) |

class OakMemaoryAllocator implements MemoryAllocator

Uses and reuses the Block's memory (slices: small ByteBuffers). If needed and possible, manages multiple

freelist. Upon close() (Oak flushed to disk) returns all the Blocks to the Poal

Methods: ByteBuffer allocate(size) free(ByteBuffer) close()

Blocks (all from Poal). Keeps the size bound of this Oak and throws out of memaory exceplion is mare memory
is reguested. Keeps the freeList and allocates memory via new slice from the Block or reuses old slice from the

¥
1

class OakMemoryManager
The only gate for all memory requests of a single Oak, keeps OakMemoryAllocator as a private data field.
any thread) retumns it to the Allocator

Methods: attachThread() detachThread() ByteBuffer allocate(size) release(ByteBuffer)

Manages the garbage collection and thus releaseList, once it is safe to free some ByteBuffer (not accessed by

close() .

