
New Memory Management Structure

[It is assumed the reader is familiar with OakMap data

structure. This document speaks only about memory management.]

Hereby please find the class diagram of the new memory management structure for
Oak. It shows the default memory allocation schema and allows user to provide its own
memory allocator. In case user-defined memory allocator is used, the off-heaping of
the underlying ByteBuffers is up to the provided allocator.

Default Oak memory management schema is

1. Thread safe
2. Allows allocation of any amount of memory for multiple Oak instances (up to

OS/HW boundaries)
3. Currently works only with ByteBuffers
4. Keeps a memory size bound per OakMap, meaning if more than predefined

amount of memory (memory capacity) is requested per single OakMap instance
the exception will be thrown.

How to create OakBuilder with user-defined MemoryAllocator or with default
OakMemoryAllocator. As a reminder the way to create an OakMap instance is to
create an OakBuilder and to use its build() method later. Here is the code example:

OakMapBuilder<K,V> builder = new OakMapBuilder()
 .setKeySerializer(new OakKeySerializerImplementation(...))
 .setValueSerializer(new OakValueSerializerImplementation(...))
 .setMinKey(...)
 .setKeysComparator(new OakKeyComparatorImplementation(...))
 .setMemoryCapacity(...);

OakMap<K,V> oak = builder.build();

In the above example an user-defined MemoryAllocator wasn’t used, thus any OakMap
build by this builder will be created with the Oak’s native OakMemoryAllocator. In order
to create a builder with user-defined MemoryAllocator see the code example below:

OakMapBuilder<K,V> builder = new OakMapBuilder()
 .setKeySerializer(new OakKeySerializerImplementation(...))
 .setValueSerializer(new OakValueSerializerImplementation(...))
 .setMinKey(...)
 .setKeysComparator(new OakKeyComparatorImplementation(...))
 .setMemoryCapacity(...)

 .setMemoryAllocator(new SpecialMemoryAllocator(...));

OakMap<K,V> oak = builder.build();

