New Memory Management Structure

[It 1is assumed the reader 1s familiar with OakMap data

structure. This document speaks only about memory management. ]

Hereby please find the class diagram of the new memory management structure for
Oak. It shows the default memory allocation schema and allows user to provide its own
memory allocator. In case user-defined memory allocator is used, the off-heaping of
the underlying ByteBuffers is up to the provided allocator.

Default Oak memory management schema is

1. Thread safe

2. Allows allocation of any amount of memory for multiple Oak instances (up to
OS/HW boundaries)

3. Currently works only with ByteBuffers

4. Keeps a memory size bound per OakMap, meaning if more than predefined
amount of memory (memory capacity) is requested per single OakMap instance
the exception will be thrown.



class MemoryBlocksPool
singleton

Pre-allocates Blocks and
gives them to
DakNativeMemory-
Allocator upon request.

Methods: getinstance()
getBlock() returnBlock()

o T _____________________________

class Block

A ByteBuffer from a given (high) capacity,
pre-allocated and reused by the Pool.
Block can allocate a new ByteBuffer (part
of it), but cannot deallocate it. Only entire
Block can be returned to the Pool and
then reset and reused.

Methods: reset() allocate(size)

public interface
OakMemoryAllocator

Pluggable implementation,
Oak has its default
implementation

Methods: ByteBuffer
allocate(size) void

One per Oak instance (OakMap data members)

free(ByteBuffer) void close()
I

class OakNativeMemoryAllocator implements OakMemoryAllocator

Uses and reuses the Block’s memory (allocates small-sized ByteBuffers). If needed and possible, manages

multiple Blocks (from Pool). Keeps the size bound of this OakMap and throws an out of memory exception if
more memory is requested. Keeps the freeList for previously allocated ByteBuffers now available for reuse.
The allocation request either reuses the freslList or allocates new from the Block. Upon close() returns all the
Blocks to the Pool

Methods:

ByteBuffer allocate(size) free(ByteBuffer) close()
'y 1 E
1

class OakMemoryManager

The only gate for all memory requests of a single OakMap instance, keeps OakMemoryAllocator as a private
data field. Manages the garbage collection and thus releaseList, once it is safe to free some ByteBuffer (not
accessed by any thread) returns it to the OakMemoryAllocator (free()).

Methods: stopOp()

startOp() ByteBuffer allocate(size) release(ByteBuffer) close()

How to create OakBuilder with user-defined MemoryAllocator or with default
OakMemoryAllocator. As a reminder the way to create an OakMap instance is to
create an OakBuilder and to use its build() method later. Here is the code example:

OakMapBuilder<K, V> builder = new OakMapBuilder()
.SetKeySerializer(new OakKeySerializerlmplementation(...))
.setValueSerializer(new OakValueSerializerImplementation(...))

.setMinKey(...)

.SetKeysComparator(new OakKeyComparatorimplementation(...))
.setMemoryCapacity(...);



OakMap<K, V> oak = builder.build();

In the above example an user-defined MemoryAllocator wasn’t used, thus any OakMap
build by this builder will be created with the Oak’s native OakMemoryAllocator. In order
to create a builder with user-defined MemoryAllocator see the code example below:

OakMapBuilder<K, V> builder = new OakMapBuilder()
.SetKeySerializer(new OakKeySerializerlmplementation(...))
.setValueSerializer(new OakValueSerializerImplementation(...))
.setMinKey(...)

.setKeysComparator(new OakKeyComparatorimplementation(...))
.setMemoryCapacity(...)
.setMemoryAllocator(new SpecialMemoryAllocator(...));

OakMap<K, V> oak = builder.build();



