
Documentation

Table of contents
Introduction

Developers and institutions

SPH formulation

CPU and GPU implementation

DualSPHysics open source code

Compiling DualSPHysics

Format Files

Preprocessing

Processing

Postprocessing

FAQ

Smoothed Particle Hydrodynamics is a Lagrangian meshless method that has been used in an expanding range
of applications within the field of Computation Fluid Dynamics (CFD) [Gómez-Gesteira et al., 2010] where
particles represent the flow, interact with structures, and exhibit large deformation with moving boundaries. The
SPH model is approaching a mature stage for CFD with continuing improvements and modifications such that the
accuracy, stability and reliability of the model are reaching an acceptable level for practical engineering
applications.

The DualSPHysics code originates from SPHysics, which is an open-source SPH model developed by
researchers at the Johns Hopkins University (US), the University of Vigo (Spain), the University of Manchester
(UK) and the University of Rome, La Sapienza. The software is available to free download at www.sphysics.org.
A complete guide of the FORTRAN code is found in [Gómez-Gesteira et al., 2012a; 2012b].

The SPHysics FORTRAN code was validated for different problems of wave breaking [Dalrymple and Rogers,
2006], dam-break behaviour [Crespo et al., 2008], interaction with coastal structures [Gómez-Gesteira and
Dalrymple, 2004] or with a moving breakwater [Rogers et al., 2010].

Although SPHysics allows problems to be simulated using high resolution and a wide range of formulations, the
main problem for its application to real engineering problems is the excessively long computational runtimes,
meaning that SPHysics is rarely applied to large domains. Hardware acceleration and parallel computing are
required to make SPHysics more useful and versatile for engineering application.

Originating from the computer games industry, Graphics Processing Units (GPUs) have now established
themselves as a cheap alternative to High Performance Computing (HPC) for scientific computing and numerical
modelling. GPUs are designed to manage huge amounts of data and their computing power has developed in
recent years much faster than conventional central processing units (CPUs). Compute Unified Device
Architecture (CUDA) is a parallel programming framework and language for GPU computing using some
extensions to the C/C++ language. Researchers and engineers of different fields are achieving high speedups
implementing their codes with the CUDA language. Thus, the parallel power computing of GPUs can be also
applied for SPH methods where the same loops for each particle during the simulation can be parallelised.

The FORTRAN SPHysics code is robust and reliable but is not properly optimised for huge simulations.
DualSPHysics is implemented in C++ and CUDA language to carry out simulations on either the CPU or GPU
respectively. The new CPU code presents some advantages, such as more optimised use of the memory. The
object-oriented programming paradigm provides a code that is easy to understand, maintain and modify with a
sophisticated control of errors available. Furthermore, better optimisations are implemented, for example
particles are reordered to give faster access to memory, and the best approach to create the neighbour list is
implemented [Domínguez et al., 2011]. The CUDA language manages the parallel execution of threads on the
GPUs. The best approaches were considered to be implemented as an extension of the C++ code, so the most
appropriate optimizations to parallelise particle interaction on GPU were implemented [Domínguez et al., 2013a;
2013b]. The first rigorous validations were presented in [Crespo et al., 2011]. The version 3.0 of the code is fully
documented in [Crespo et al., 2015].

Version 4 of the code has been developed to include the latest developments including coupling with the Discrete
Element Method (DEM) and multi-phase developments as detailed in Section 3.

In the following sections we will describe the SPH formulation available in DualSPHysics, the implementation and

Introduction

http://www.sphysics.org

optimization techniques, how to compile and run the different codes of the DualSPHysics package and future
developments.

Different countries and institutions collaborate in the development of DualSPHysics. The project is mainly led by
the Environmental Physics Laboratory (EPHYSLAB) from Universidade de Vigo (Spain) and the School of
Mechanical, Aerospace and Civil Engineering (MACE) from The University of Manchester (UK).

The following list includes the researchers that have collaborated in the current version of the code or are working
in functionalities to be updated in future releases.

Dr José M. Domínguez

Dr Alejandro J.C. Crespo

Dr Anxo Barreiro

Professor Moncho Gómez Gesteira

Orlando G. Feal

Dr Benedict D. Rogers

Dr Georgios Fourtakas

Dr Athanasios Mokos

Dr Stephen Longshaw

Dr Ricardo Canelas

Dr Renato Vacondio

Dr Corrado Altomare

Imperial College London, UK. Mashy D Green

Developers and institutions

Developers:
Universidade de Vigo, Spain

EPHYTECH SL, Spain

The University of Manchester, UK

Science & Technology Facilities Council, UK

Instituto Superior Tecnico, Lisbon, Portugal

Università degli studi di Parma, Italy

Universiteit Gent - Flanders Hydraulics Research, Belgium

Contributors:

Universidad Politécnica de Madrid, Spain. Jose Luis Cercós Pita.

Universidad de Guanajuato, Mexico. Carlos Enrique Alvarado Rodríguez.

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless method. The technique discretises a
continuum using a set of material points or particles. When used for the simulation of fluid dynamics, the
discretised Navier-Stokes equations are locally integrated at the location of each of these particles, according to
the physical properties of surrounding particles. The set of neighbouring particles is determined by a distance
based function, either circular (two-dimensional) or spherical (three-dimensional), with an associated
characteristic length or smoothing length often denoted as h. At each timestep new physical quantities are
calculated for each particle, and they then move according to the updated values.

The conservation laws of continuum fluid dynamics are transformed from their partial differential form to a form
suitable for particle based simulation using integral equations based on an interpolation function, which gives an
estimate of values at a specific point.

Typically this interpolation or weighting function is referred to as the kernel function (W) and can take different
forms, with the most common being cubic or quintic. In all cases however, it is designed to represent a function
F(r) defined in r' by the integral approximation

 (1)

The smoothing kernel must fulfil several properties [Monaghan, 1992; Liu, 2003], such as positivity inside a
defined zone of interaction, compact support, normalization and monotonically decreasing value with distance
and differentiability. For a more complete description of SPH, the reader is referred to [Monaghan, 2005; Violeau,
2013].

The function F in Eq. (1) can be approximated in a non-continuous, discrete form based on the set of particles. In
this case the function is interpolated at a particle (a) where a summation is performed over all the particles that
fall within its region of compact support, as defined by the smoothing length h

 (2)

where the subscript denotes an individual particle, is the volume of a neighbouring particle (b). If
, with m and ρ being the mass and the density of particle b respectively then Eq. (2) becomes

 (3)

The performance of an SPH model depends heavily on the choice of the smoothing kernel. Kernels are
expressed as a function of the non-dimensional distance between particles (q), given by , where r is
the distance between any two given particles a and b and the parameter h (the smoothing length) controls the
size of the area around particle a in which neighbouring particles are considered. Within DualSPHysics, the user
is able to choose from one of the following kernel definitions:

SPH formulation
SPH formulation

The Smoothing Kernel

1. Cubic Spline

 (4)

where αD is equal to 10/7πh2 in 2-D and 1/πh3 in 3-D.

The tensile correction method, proposed by [Monaghan, 2000], is only actively used in the cases of a kernel
whose first derivative goes to zero with the particle distance q.

1. Quintic

 (5)

where αD is equal to 7/4πh2 in 2-D and 21/16πh3 in 3-D.

In the text that follows, only kernels with an influence domain of 2h (q≤2) are considered

The momentum conservation equation in a continuum is

 (6)

where Γ refers to dissipative terms and g is gravitational acceleration. DualSPHysics offers different options for
including the effects of dissipation.

The artificial viscosity scheme, proposed by [Monaghan, 1992], is a common method within fluid simulation using
SPH due primarily to its simplicity. In SPH notation, Eq. 6 can be written as

 (7)

where Pk and ρk are the pressure and density that correspond to particle k (as evaluated at a or b). The viscosity
term is given by

Momentum Equation

Artificial Viscosity

 (8)

where ab and with rk and vk being the particle position and velocity

respectively. is the mean speed of sound,

 and α is a coefficient that needs to be tuned in order to introduce the proper dissipation. The

value of α=0.01 has proven to give the best results in the validation of wave flumes to study wave propagation
and wave loadings exerted onto coastal structures [Altomare et al., 2015a; 2015c].

Laminar viscous stresses in the momentum equation can be expressed as [Lo and Shao, 2002]

 (9)

where υo is kinematic viscosity (typically 10-6 m2s for water). In SPH discrete notation this can be expressed as

 (10)

The concept of the Sub-Particle Scale (SPS) was first described by [Gotoh et al., 2001] to represent the effects of
turbulence in their Moving Particle Semi-implicit (MPS) model. The momentum conservation equation is defined
as

 (11)

where the laminar term is treated as per Eq. 9 and represents the SPS stress tensor. Favre-averaging is
needed to account for compressibility in weakly compressible SPH [Dalrymple and Rogers, 2006] where eddy
viscosity assumption is used to model the SPS stress tensor with Einstein notation for the shear stress

component in coordinate directions i and where is

the sub-particle stress tensor, the turbulent eddy viscosity, k the SPS turbulence kinetic

energy, Cs the Smagorinsky constant (0.12), CI=0.0066, the particle to particle spacing and
 where is an element of the SPS strain tensor. [Dalrymple and Rogers, 2006]

introduced SPS into weakly compressible SPH using Favre averaging, Eq.11 can be re-written as

Laminar viscosity and Sub-Particle Scale (SPS) Turbulence

 (12)

Throughout the duration of a weakly-compressible SPH simulation (as presented herein) the mass of each
particle remains constant and only their associated density fluctuates. These density changes are computed by
solving the conservation of mass, or continuity equation, in SPH form:

 (13)

Following the work of [Monaghan, 1994], the fluid in the SPH formalism defined in DualSPHysics is treated as
weakly compressible and an equation of state is used to determine fluid pressure based on particle density. The
compressibility is adjusted so that the speed of sound can be artificially lowered; this means that the size of time
step taken at any one moment (which is determined according to a Courant condition, based on the currently
calculated speed of sound for all particles) can be maintained at a reasonable value. Such adjustment however,
restricts the sound speed to be at least ten times faster than the maximum fluid velocity, keeping density
variations to within less than 1%, and therefore not introducing major deviations from an incompressible
approach. Following [Monaghan et al., 1999] and [Batchelor, 1974], the relationship between pressure and
density follows the expression

 (14)

where where is the reference density and

 which is the speed of sound at the reference density.

Within DualSPHysics it is also possible to apply a delta-SPH formulation, that introduces a diffusive term to
reduce density fluctuations. The state equation describes a very stiff density field, and together with the natural
disordering of the Lagrangian particles, high-frequency low amplitude oscillations are found to populate the
density scalar field [Molteni and Colagrossi, 2009]. DualSPHysics uses a diffusive term in the continuity equation,

Continuity Equation

Equation of State

DeltaSPH

now written as

 (15)

This represents the original delta-SPH formulation by [Molteni and Colagrossi, 2009], with the free parameter δΦ
that needs to be attributed a suitable value. This modification can be explained as the addition of the Laplacian of
the density field to the continuity equation. [Antuono et al., 2012] has presented a careful analysis of the influence
of this term in the system, by decomposing the Laplacian operator, observing the converge of the operators and
performing linear stability analysis to inspect the influence of the diffusive coefficient. This equation represents
exactly a diffusive term in the domain bulk. The behaviour changes close to open boundaries such as free-
surface. Due to truncation of the kernel (there are no particles being sampled outside of an open boundary), the
first-order contributions are not null [Antuono et al., 2010], resulting in a net force applied to the particles. This
effect is not considered relevant for nonhydrostatic situations, where this force is many orders of magnitude
inferior to any other force involved. Corrections to this effect were proposed by [Antuono et al., 2010], but involve
the solution of a renormalization problem for the density gradient, with considerable computational cost. A delta-
SPH (δΦ) coefficient of 0.1 is recommended for most applications.

Anisotropic particle spacing is an important stability issue in SPH as, especially in violent flows, particles cannot
maintain a uniform distribution. The result is the introduction of noise in the velocity and pressure field, as well as
the creation of voids within the water flow for certain cases.

To counter the anisotropic particle spacing, [Xu et al., 2009] proposed a particle shifting algorithm to prevent the
instabilities. The algorithm was first created for incompressible SPH, but can be extended to the weakly
compressible SPH model used in DualSPHysics [Vacondio et al., 2013]. With the shifting algorithm, the particles
are moved (“shifted”) towards areas with fewer particles (lower particle concentration) allowing the domain to
maintain a uniform particle distribution and eliminating any voids that may occur due to the noise.

An improvement on the initial shifting algorithm was proposed by [Lind et al., 2012] who used Fick’s first law of
diffusion to control the shifting magnitude and direction. Fick’s first law connects the diffusion flux to the
concentration gradient:

 (16)

where J is the flux, C the particle concentration, and DF the Fickian diffusion coefficient.

Assuming that the flux, i.e. the number of particles passing through a unit surface in unit time, is proportional to
the velocity of the particles, a particle shifting velocity and subsequently a particle shifting distance can be found.
Using the particle concentration, the particle shifting distance δrs is given by:

 (17)

where D is a new diffusion coefficient that controls the shifting magnitude and absorbs the constants of
proportionality. The gradient of the particle concentration can be found through an SPH gradient operator:

Shifting algorithm

 (18)

The proportionality coefficient D is computed through a form proposed by [Skillen et al., 2013]. It is set to be large
enough to provide effective particle shifting, while not introducing significant errors or instabilities. This is
achieved by performing a Von Neumann stability analysis of the advection-diffusion equation:

 (19)

where Δtmax is the maximum local time step that is permitted by the CFL condition for a given local velocity and
particle spacing. The CFL condition states that:

 (20)

Combining Eq. 19 and 20 we can derive an equation to find the shifting coefficient D:

 (21)

where A is a dimensionless constant that is independent of the problem setup and discretization and dt is the
current time step. Values in the range of [1,6] are proposed with 2 used as default.

The shifting algorithm is heavily dependent on a full kernel support. However, particles at and adjacent to the free
surface cannot obtain the full kernel support, which will introduce errors in the free-surface prediction, potentially
causing non-physical instabilities. Applying Fick’s law directly would result in the rapid diffusion of fluid particles
from the fluid bulk, due to the large concentration gradients at the free surface.

To counter this effect, [Lind et al., 2012] proposed a free-surface correction that limits diffusion to the surface
normal but allow shifting on the tangent to the free surface. Therefore, this correction is only used near the free
surface, identified by the value of the particle divergence, which is computed through the following equation, first
proposed by [Lee et al., 2008]:

 (22)

This idea is applied to the DualSPHysics code by multiplying the shifting distance of Equation (17) with a free-
surface correction coefficient AFSC.

 (23)

where AFST is the free-surface threshold and AFSM is the maximum value of the particle divergence. The latter
depends on the domain dimensions:

while the free surface threshold is selected for DualSPHysics as:

To identify the position of the particle relative to the free surface, the difference of the particle divergence to AFST
is used. Therefore, the full shifting equation (Eq. 17) with the free surface correction is:

 (24)

More information about the shifting implementation can be found in [Mokos, 2013].

DualSPHysics includes a choice of numerical integration schemes, if the momentum (a v), density (aρ) and
position (ar) equations are first written in the form

 (25a)

 (25b)

 (25c)

These equations are integrated in time using a computationally simple Verlet based scheme or a more
numerically stable but computationally intensive two-stage Symplectic method.

This algorithm, which is based on the common Verlet method [Verlet, 1967] is split into two parts and benefits
from providing a low computational overhead compared to some other integration techniques, primarily as it does
not require multiple (i.e. predictor and corrector) calculations for each step. The predictor step calculates the
variables according to

(26)

Time stepping

Verlet Scheme

where the superscript n denotes the time step, and are calculated using Eq. 7 (or. 12) and Eq. 13 (or

Eq. 14) respectively. However, once every Ns time steps (where is suggested), variables are

calculated according to

 (27)

This second part is designed to stop divergence of integrated values through time as the equations are no longer
coupled. In cases where the Verlet scheme is used but it is found that numerical stability is an issue, it may be
sensible to increase the frequency at which the second part of this scheme is applied, however if it should be
necessary to increase this frequency beyond Ns = 10 then this could indicate that the scheme is not able to
capture the dynamics of the case in hand suitably and the Symplectic scheme should be used instead.

Symplectic integration algorithms are time reversible in the absence of friction or viscous effects [Leimkuhler,
1996]. They can also preserve geometric features, such as the energy time-reversal symmetry present in the
equations of motion, leading to improved resolution of long term solution behaviour. The scheme used here is an
explicit second-order Symplectic scheme with an accuracy in time of O(Δt2) and involves a predictor and
corrector stage.

During the predictor stage the values of acceleration and density are estimated at the middle of the time step
according to

 (28)

During the corrector stage is used to calculate the corrected velocity, and therefore position, of

the particles at the end of the time step according to

 (29)

and finally the corrected value of density is calculated using the updated values of

 and [Monaghan, 2005].

With explicit time integration schemes the timestep is dependent on the Courant- Friedrichs-Lewy (CFL)
condition, the forcing terms and the viscous diffusion term. A variable time step Δt is calculated according to
[Monaghan et al., 1999] using

Symplectic Scheme

Variable Time Step

 (30)

where Δtf is based on the force per unit mass (|fa|), and Δtcv combines the Courant and the viscous time step
controls.

In DualSPHysics, the boundary is described by a set of particles that are considered as a separate set to the fluid
particles. The software currently provides functionality for solid impermeable and periodic open boundaries.
Methods to allow boundary particles to be moved according to fixed forcing functions are also present.

Dynamic Boundary Condition

The Dynamic Boundary Condition (DBC) is the default method provided by DualSPHysics [Crespo et al., 2007].
This method sees boundary particles that satisfy the same equations as fluid particles, however they do not move
according to the forces exerted on them. Instead, they remain either fixed in position or move according to an
imposed/assigned motion function (i.e. moving objects such as gates, wave-makers or floating objects).

When a fluid particle approaches a boundary and the distance between its particles and the fluid particle
becomes smaller than twice the smoothing length (h), the density of the affected boundary particles increases,
resulting in a pressure increase. In turn this results in a repulsive force being exerted on the fluid particle due to
the pressure term in the momentum equation.

Stability of this method relies on the length of time step taken being suitably short in order to handle the highest
present velocity of any fluid particles currently interacting with boundary particles and is therefore an important
point when considering how the variable time step is calculated.

Different boundary conditions have been tested in DualSPHysics in the work of [Domínguez et al., 2015]:
Dynamic Boundary Condition (DBC), Local Uniform STencil (LUST) and Boundary Integral (INTEGRAL).
Validations with dam-break flows and sloshing tanks highlighted the advantages and drawbacks of each method.

Periodic Open Boundary Condition

DualSPHysics provides support for open boundaries in the form of a periodic boundary condition. This is
achieved by allowing particles that are near an open lateral boundary to interact with the fluid particles near the
complimentary open lateral boundary on the other side of the domain.

In effect, the compact support kernel of a particle is clipped by the nearest open boundary and the remainder of
its clipped support applied at the complimentary open boundary [Gómez-Gesteira et al., 2012a].

Pre-imposed Boundary Motion

Boundary Conditions

Within DualSPHysics it is possible to define a pre-imposed movement for a set of boundary particles. Various
predefined movement functions are available as well as the ability to assign a time-dependant input file
containing kinematic detail. These boundary particles behave as a DBC described in Section 3.8.1, however
rather than being fixed, they move independently of the forces currently acting upon them. This provides the
ability to define complex simulation scenarios (i.e. a wave-making paddle) as the boundaries influence the fluid
particles appropriately as they move.

Fluid-driven Objects

It is also possible to derive the movement of an object by considering its interaction with fluid particles and using
these forces to drive its motion. This can be achieved by summing the force contributions for an entire body. By
assuming that the body is rigid, the net force on each boundary particle is computed according to the sum of the
contributions of all surrounding fluid particles according to the designated kernel function and smoothing length.
Each boundary particle k therefore experiences a force per unit mass given by

 (31)

where fka is the force per unit mass exerted by the fluid particle a on the boundary particle k, which is given by

 (32)

For the motion of the moving body, the basic equations of rigid body dynamics can then be used

 (33a)

 (33b)

where M is the mass of the object, I the moment of inertia, V the velocity, Ω the rotational velocity and R0 the
centre of mass. Equations 33a and 33b are integrated in time in order to predict the values of V and Ω for the
beginning of the next time step. Each boundary particle within the body then has a velocity given by

 (34)

Finally, the boundary particles within the rigid body are moved by integrating Eq. 34 in time. The works of
[Monaghan et al., 2003] and [Monaghan, 2005] show that this technique conserves both linear and angular
momentum. [Bouscasse et al., 2013] presented successful validations of nonlinear water wave interaction with
floating bodies in SPH comparing with experimental data from [Hadzić et al., 2005] that includes deformations in
the free-surface due to the presence of floating boxes and the movement of those objects during the experiment
(heave, surge and roll displacements). Several validations using DualSPHysics are performed in [Canelas et al.,
2015] that analyse the buoyancy-driven motion with solid objects larger than the smallest flow scales and with
various densities. They compared SPH numerical results with analytical solutions, with other numerical methods
[Fekken, 2004] and with experimental measurements.

Wave generation is included in this version of DualSPHysics, for long-crested waves only. In this way, the
numerical model can be used to simulate a physical wave flume. Both regular and random waves can be
generated. The following sections refer only to the piston-type wavemaker.

First order wave generation

The Biesel transfer functions express the relation between wave amplitude and wavemaker displacement [Biesel
and Suquet, 1951], under the assumption of irrotational and incompressible fluid and constant pressure at the
free surface. The transfer function links the displacement of the piston-type wavemaker to the water surface
elevation, under the hypothesis of monochromatic sinusoidal waves in one dimension in the x-direction:

 (35)

where H is the wave height, d the water depth, x is distance and δ is the initial phase. The quantity ω=2π/T is the
angular frequency and k=2π/L is the wave number with T equal to the wave period and L the wave length. The
initial phase δ is given by a random number between 0 and 2π.

Eq. 35 expresses the surface elevation at infinity that Biesel defined as the far-field solution. The Biesel function
can be derived for the far-field solution and for a pistontype wavemaker as:

 (36)

where S0 is the piston stroke. Once the piston stroke is defined, the time series of the piston movement is given
by:

 (37)

Second order wave generation

The implementation of a second order wavemaker theory will prevent the generation of spurious secondary
waves. The second order wave generation theory implemented in DualSPHysics is based on [Madsen, 1971]
who developed a simple second-order wavemaker theory to generate long second order Stokes waves that
would not change shape as they propagated. The theory proposed by [Madsen, 1971] is straightforward,
controllable, computationally inexpensive with efficient results, and is accurate for waves of first and second
order.

The piston stroke S0 can be redefined from Eq. 36 as S0=H/m1 where:

 (38)

Following [Madsen, 1971], to generate a wave of second order, an extra term must be added to Eq. 37. This

Wave Generation

term, for piston-type wavemaker, is equal to:

 (39)

Therefore, the piston displacement, for regular waves, is the summation of Eq. 37 and Eq. 39:

 (40)

Madsen limited the application of this approximate second order wavemaker theory to waves that complied with
the condition given by HL2/d3 < 8π2/3. A specific warning is implemented in DualSPHysics to inform the user
whether or not this condition is fulfilled.

First order wave generation of irregular waves

Monochromatic waves are not representative of sea states that characterise real wave storm conditions. Sea
waves are mostly random or irregular in nature. Irregular wave generation is performed in DualSPHysics based
on [Liu and Frigaard, 2001]. Starting from an assigned wave spectra, the Biesel transfer function (Eq. 36) is
applied to each component in which the spectrum is discretised. The procedure for the generation of irregular
waves is summarised as follows:

1. Defining the wave spectrum through its characteristic parameters (peak frequency, spectrum shape, etc.).

2. Dividing the spectrum into N parts (N>50) in the interval (fstart, fstop), where generally the values assumed
by the spectrum (Sη) at the extremes of this interval are smaller than the value assumed for the peak
frequency, fp: Sη(fstart)≤0.01·Sη(fp) and Sη(fstop) ≤ 0.01 · Sη(fp).

3. The frequency band width is so-defined as Δf=(fstop-fstart)/N. The irregular wave is decomposed into N
linear waves.

4. Determining the angular frequency ωi, amplitude ai and initial phase δi (random number between 0 and 2π)
of each i-th linear wave. The angular frequency ωi and amplitude ai can therefore be expressed as follows:

 (41)

 (42)

1. Converting the time series of surface elevation into the time series of piston movement with the help of
Biesel transfer function:

 (43)

1. Composing all the i-th components derived from the previous equation into the time series of the piston
displacement as:

 (44)

In DualSPHysics two standard wave spectra have been implemented and used to generate irregular waves:
JONSWAP and Pierson-Moskowitz spectra. The characteristic parameters of each spectrum can be assigned by
the user together with the value of N (number of parts in which the spectrum is divided).

The user can choose among four different ways to define the angular frequency. It can be determined assuming
an equidistant discretization of the wave spectrum (fi=fstart+iΔf-Δf/2), or chosen as unevenly distributed between
(i-0.5)Δf and (i+0.5)Δf. An unevenly distributed band width should be preferred: in fact, depending on N, an
equidistant splitting can lead to the repetition of the same wave group in the time series that can be easily
avoided using an unevenly distributed band width. The last two ways to determine the angular frequency of each
component and its band width consist of the application of a stretched or cosine stretched function. The use of a
stretched or cosine stretched function has been proven to lead the most accurate results in terms of wave height
distribution and groupiness, even when the number of spectrum components N, is relatively low. If there is a
certain wave group that is repeating, finally the full range of wave heights and wave periods is not reproduced
and statistically the wave train is not representing a real sea state of random waves.

A phase seed is also used and can be changed in DualSPHysics to obtain different random series of δi.
Changing the phase seed allows generating different irregular wave time series both with the same significant
wave height (Hm0) and peak period (Tp).

The discrete element method (DEM) allows for the computation of rigid particle dynamics, by considering contact
laws to account for interaction forces. The coupled numerical solution, based on SPH and DEM discretisations,
resolves solid-solid and solid-fluid interactions over a broad range of scales.

Forces arise whenever a particle of a solid object interacts with another. In the particular case of a solid-solid
collision, the contact force is decomposed into Fn and Ft, normal and tangential components respectively. Both of
these forces include viscous dissipation effects. This is because two colliding bodies undergo a deformation
which will be somewhere between perfectly inelastic and perfectly elastic, usually quantified by the normal
restitution coefficient

 (45)

The total forces are decomposed into a repulsion force, Fr, arising from the elastic

deformation of the material, and a damping force, Fd, for the viscous dissipation of energy during the
deformation.

Figure 3-1 generally illustrates the proposed viscoelastic DEM mechanism between two interacting particles.

Coupling with Discrete Element Method (DEM)

Figure 3-1. Schematic interaction between particles with viscoelastic DEM mechanism.

The normal force is given by

 (46)

where the stiffness is given by

 (47)

and the damping coefficient is

 (48)

where is the unit vector between the centers of particles i and j.

The restitution coefficient ij e is taken as the average of the two materials coefficients, in what is the only
calibration parameter of the model. It is not a physical parameter, but since the current method does not account
for internal deformations and other energy losses during contact, the user is given a choice to change this
parameter freely in order to control the dissipation of each contact. The reduced radius and reduced elasticity are
given by

 (49)

where Ri is simply the particle radius, Ei is the Young modulus and νp is the Poisson coefficient of material i, as
specified in the Floating_Materials.xml.

This results in another restriction to the time-step, adding

 (50)

to the existing CFL restrictions (Eq. 30), where vn is the normal relative velocity and M* is the reduced mass of
the system where there is a contact.

Regarding tangential contacts, friction is modelled using the same model:

 (51)

where the stiffness and damping constants are derived to be

 (52)

as to insure internal consistency of the time scales between normal and tangential components. This mechanism
models the static and dynamic friction mechanisms by a penalty method. The body does not statically stick at the
point of contact, but is constrained by the spring-damper system. This force must be bounded above by the
Coulomb friction law, modified with a sigmoidal function in order to make it continuous around the origin
regarding the tangential velocity:

 (53)

where μIJ is the friction coefficient at the contact of object I and object J and is simply taken as the average of the
two friction coefficients of the distinct materials, indicated in the Floating_Materials.xml.

More information about DEM implementation can be found in [Canelas, 2015; Canelas et al., 2016].

This guide provides a concise depiction of the multi-phase liquid-sediment model implemented in DualSPHysics
solver. The model is capable of simulating problems involving liquid-sediment phases with the addition of highly
non-linear deformations and free-surface flows which are frequently encountered in applied hydrodynamics. More
specifically, the two-phase liquid-solid model is aimed at flow-induced erosion of fully saturated sediment.
Applications include scouring in industrial tanks, port hydrodynamics, wave breaking in coastal applications and
scour around structures in civil and environmental engineering flows among others.

Description of the physical problem

Multi-phase: Two-phase liquid-sediment implementation in DualSPHysics

A typical saturated sediment scour induced by rapid liquid flow at the interface undergoes a number of different
behavioural regime changes mostly govern by the characteristics of the sediment and liquid phase rheology at
the interface. These sediment regimes are distinguishable as an un-yielded region of sediment, a yielded non-
Newtonian region and a pseudo Newtonian sediment suspension region where the sediment is entrained by the
liquid flow. These physical processes can be described by the Coulomb shear stress τmc, the cohesive yield
strength τc which accounts for the cohesive nature of fine sediment, the viscous shear stress τv which accounts
for the fluid particle viscosity, the turbulent shear stress of the sediment particle τt and the dispersive stress τd
which accounts for the collision of larger fraction granulate. The total shear stress can be expressed as

 (54)

The first two parameters on the right-hand side of the equation define the yield strength of the material and thus
can be used to differentiate the un-yielded or yielded region of the sediment state according to the induced stress
by the liquid phase in the interface. The model implemented in DualSPHysics uses the Drucker-Prager yield
criterion to evaluate yield strength of the sediment phase and the sediment failure surface.

When the material yields the sediment behaves as a non-Newtonian rate dependent Bingham fluid that accounts
for the viscous and turbulent effects of the total shear stress of Eq. 54. Typically, sediment behaves as a shear
thinning material with a low and high shear stress state of a pseudo-Newtonian and plastic viscous regime
respectively. Herein, the Herschel-Buckley-Papanastasiou model is employed as a power law Bingham model.
This combines the yielded and un-yielded region using an exponential stress growth parameter and a power law
Bingham model for the shear thinning or thickening plastic region.

Finally, the characteristics of the low concentration suspended sediment that has been entrained by the liquid are
modelled using a volumetric concentration based viscosity in a pseudo-Newtonian approach by employing the
Vand equation.

Sediment phase

The yield surface prediction is modelled using the Drucker-Prager (DP) model. The DP can be written in a
general form as [Fourtakas and Rogers, 2016]

 (55)

The parameters a and κ can be determined by projecting the Drucker-Prager onto the Mohr-Coulomb yield
criterion in a deviatoric plane

 (56)

where φ is the internal friction and c the cohesion of the material. Finally, yielding will occur when the following
equation is satisfied

 (57)

The multi-phase model uses the Herschel-Bulkley-Papanastasiou (HBP) [Papanastasiou, 1987] rheological
characteristics to model the yielded region. The HBP model reads

 (58)

where m controls the exponential growth of stress, n is the power law index and μ is the apparent dynamic
viscosity (or consistency index for sediment flows). Figure 3-2(a) shows the initial rapid growth of stress by
varying m whereas Figure 3-2(b) shows the effect of the power law index n.

Note that as m → ∞ the HBP model reduces to the original Herschel-Bulkley model and when n=1 the model
reduces to a simple Bingham model. Consequently, when n=1 and m=0 the model reduces to a Newtonian
constitutive equation. Therefore, both phases can be modelled using the same constitutive equation. Most
importantly, since the HBP parameters can be adjusted independently for each phase the current model is not
restricted to Newtonian/Non-Newtonian formulation but can simulate a variety of combinations of flows (i.e.
Newtonian/Newtonian, Non-Newtonian/Non-Newtonian with or without a yield strength, etc.).

Figure 3-2. Initial rapid growth of stress by varying m and effect of the power law index n for the HBP model.

The rheological characteristics of the sediment entrainment by the fluid can be controlled through the volume
fraction of the mixture by using a concentration volume fraction in the form of

 (59)

where the summation is defined within the support of the kernel and jsat refers to the yielded saturated sediment
particles only.

We use a suspension viscosity based on the Vand experimental colloidal suspension equation [Vand, 1948] of
sediment in a fluid by

 (60)

assuming an isotropic material with spherically shaped sediment particles. Eq. 60 is applied only when the
volumetric concentration of the saturated sediment particle within the SPH kernel is lower than 0.3, which is the
upper validity limit of Eq. 60.

More information about this multi-phase implementation can be also found in [Fourtakas, 2014; Fourtakas and
Rogers, 2016].

Detailed information about the CPU and GPU implementation can be found in the papers:

Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A,
García-Feal O. 2015. DualSPHysics: open-source parallel CFD solver on Smoothed Particle Hydrodynamics
(SPH). Computer Physics Communications, 187: 204-216. doi: 10.1016/j.cpc.2014.10.004

Domínguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD. and Gómez-Gesteira M. 2013. New multi-GPU
implementation for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer Physics
Communications, 184: 1848-1860. doi: 10.1016/j.cpc.2013.03.008

Domínguez JM, Crespo AJC and Gómez-Gesteira M. 2013. Optimization strategies for CPU and GPU
implementations of a smoothed particle hydrodynamics method. Computer Physics Communications, 184(3):
617-627. doi:10.1016/j.cpc.2012.10.015

Valdez-Balderas D, Domínguez JM, Rogers BD, Crespo AJC. 2012. Towards accelerating smoothed particle
hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed
Computing. doi:10.1016/j.jpdc.2012.07.010

Crespo AJC, Domínguez JM, Barreiro A, Gómez-Gesteira M and Rogers BD. 2011. GPUs, a new tool of
acceleration in CFD: Efficiency and reliability on Smoothed Particle Hydrodynamics methods. PLoS ONE, 6(6),
e20685. doi:10.1371/journal.pone.0020685

Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu, JC. 2011. Neighbour lists in Smoothed Particle
Hydrodynamics. International Journal For Numerical Methods in Fluids, 67(12): 2026-2042. doi: 10.1002/fld.2481

The DualSPHysics code is the result of an optimised implementation using the best approaches for CPU and
GPU with the accuracy, robustness and reliability shown by the SPHysics code. SPH simulations such as those
in the SPHysics and DualSPHysics codes can be split in three main steps; (i) generation of the neighbour list, (ii)
computation of the forces between particles (solving momentum and continuity equations) and (iii) the update of
the physical quantities at the next time step. Thus, running a simulation means executing these steps in an
iterative manner:

1. Fist step: Neighbour list (Cell-linked list described in [Domínguez et al., 2011]):

2. Domain is divided into square cells of side 2h (or the size of the kernel domain).

3. A list of particles, ordered according to the cell to which they belong, is generated.

4. All the arrays with the physical variables belonging the particles are reordered according the list of particles.

5. Second step: Force computation:

6. Particles of the same cell and adjacent cells are candidates to be neighbours.

7. Each particle interacts with all its neighbouring particles (at a distance < 2h).

8. Third step: System Update:

CPU and GPU implementation
General Information

9. New time step is computed.

10. Physical quantities for the next step are updated starting from the values of physical variables at the present
or previous time steps using the particle interactions.

11. Particle information (velocity and density) are saved on local storage (the hard drive) at defined times.

The GPU implementation is focused on the force computation since following [Domínguez et al., 2011] this is the
most consuming part in terms of runtime. However the most efficient technique consists of minimising the
communications between the CPU and GPU for the data transfers. If neighbour list and system update are also
implemented on the GPU the CPU-GPU memory transfer is needed at the beginning of the simulation while
relevant data will be transferred to the CPU when saving output data is required (usually infrequently). [Crespo et
al., 2011] used an execution of DualSPHysics performed entirely on the GPU to run a numerical experiment
where the results are in close agreement with the experimental results.

The GPU implementation presents some key differences in comparison to the CPU version. The main difference
is the parallel execution of all tasks that can be parallelised such as all loops regarding particles. One GPU
execution thread computes the resulting force of one particle performing all the interactions with its neighbours.
Different to previous versions, in version 4.0 onwards, the symmetry of the particle interaction is not employed on
the CPU, the same as in the GPU implementation. On a GPU it is not efficient due to memory coalescence
issues. Now, the new CPU structure mimics the GPU threads, which ensures continuity of coding and structure
(hence ease of debugging, etc.) – see Section 6.

DualSPHysics is unique where the same application can be run using either the CPU or GPU implementation;
this facilitates the use of the code not only on workstations with an Nvidia GPU but also on machines without a
CUDA-enabled GPU. The CPU version is parallelised using the OpenMP API. The main code has a common
core for both the CPU and GPU implementations with only minor source code differences implemented for the
two devices applying the specific optimizations for CPU and GPU. Thus, debugging or maintenance is easier and
comparisons of results and computational time are more direct.

Figure 4-1. Flow diagram of the CPU (left) and total GPU implementation (right).

The parallel computing power of Graphics Processing Units (GPUs) has led to an important increase in the size
of the simulations but problems of precision can appear when simulating large domains with high resolution
(specially in 2-D simulations). Hence, there are numerous simulations that require a small particle size “dp”
relative to the computational domain [Domínguez et al., 2013c], namely fine resolution or long domains.
DualSPHysics v4.0 now includes an implementation with double precision where necessary. For example, arrays
of position now use double precision and updating state of particles is also implemented with double precision.

In the new version, the CPU implementation aims to achieve a higher performance in the current machines that
contains many cores. Now, the interactions of a given particles with all its neighbours are carried out by the same
execution thread. Symmetry in the force computation is not applied in order to increase the parallelization level of
the algorithms. Previous versions of DualSPHysics were fast on CPUs with 4-8 cores but efficiency decreases
significantly with number of cores. Furthermore, memory consumption increases with more cores. The new CPU
code achieves an efficiency of 86.2% simulating 150,000 particles with 32 cores while the same execution
achieved an efficiency of only 59.7% with previous version 3.0 and without memory increase. The current
OpenMP implementation is not only fast and efficient with many cores, but also offers more advantages for users
that want to modify the code; implementation is now easier since symmetry is removed during force computation
such that the CPU code is more similar to the GPU code which facilitates its comprehension and editing.

The size of the blocks is a key parameter in the execution of CUDA kernels since it can lead to performance
differences of 50%. This variation becomes more significant in the kernels that compute particle interactions
since take more than 90% of the total execution time.

The version 4.0 includes a new automatic estimation of the optimum block size of CUDA kernels (particle
interactions on GPU). This optimum block size depends on: (i) features of the kernel (registers and shared
memory), (ii) compilation parameters and the CUDA version, (iii) hardware to be used and GPU specifications
and (iv) input data to be processed by the kernel (divergence, memory coalescent access). The CUDA
Occupancy Calculator is available from CUDA version 6.5.

Double Precision

OpenMP for multi-core executions.

Optimisation of the size of blocks for execution of CUDA kernels.

This section provides a brief description of the source files of DualSPHysics v4.0. The source code is freely
redistributable under the terms of the GNU General Public License (GPL) as published by the Free Software
Foundation (www.gnu.org/licenses/).

The documentation has been created using the documentation system Doxygen (www.doxygen.org). The user
can open the HTML file index.html (Figure 6-1) located in the directory mentioned above to navigate through the
full documentation.

Declares/implements basic/general functions for the entire application.

Declares/implements the class that defines any binary format of a file.

Declares/implements the class that defines exceptions with the information of the class and method.

Declares/implements the class that manages the output of information in the file Run.out and on screen.

Declares the template for a matrix 4x4 used for geometric transformation of points in space.

Declares/implements the class that calculates the average value of a sequence of values.

Declares/implements the class that defines objects with methods that throw exceptions.

Declares/implements the class that defines objects with methods that throw exceptions for tasks on the GPU.

Declares/implements the class that allows reading files with data of particles in format bi4.

Declares/implements the class that allows reading information of floating objects saved during simulation.

DualSPHysics open source code

Common Files
Functions.h & Functions.cpp

JBinaryData.h & JBinaryData.cpp

JException.h & JException.cpp

JLog2.h & JLog2.cpp

JMatrix4.h

JMeanValues.h & JMeanValues.cpp

JObject.h & JObject.cpp

JObjectGpu.h & JObjectGpu.cpp

JPartDataBi4.h & JPartDataBi4.cpp

JPartFloatBi4.h & JPartFloatBi4.cpp

Declares/implements the class that allows writing information of excluded particles during simulation.

Declares/implements the class that implements the algorithm RadixSort.

Declares/implements the class that facilitates filtering values within a list.

Declares/implements the class that allows reading data in ASCII files.

Declares/implements the class that manages the info of constants from the input XML file.

Declares/implements the class that manages the info of execution parameters from the input XML file.

Declares/implements the class that manages the info of particles from the input XML file.

Declares/implements the class that manages the properties assigned to the particles in the XML file.

Declares the class that defines a class to measure short time intervals.

Declares the class that defines a class to measure short time intervals on the GPU using cudaEvent.

Declares general types and functions for the entire application.

Declares the class that provides functions to store particle data in formats VTK, CSV, ASCII.

Precompiled library that provides functions to store particle data in formats VTK, CSV, ASCII.

JPartOutBi4Save.h & JPartOutBi4Save.cpp

JRadixSort.h & JRadixSort.cpp

JRangeFilter.h & JRangeFilter.cpp

JReadDatafile.h & JReadDatafile.cpp

JSpaceCtes.h & JSpaceCtes.cpp

JSpaceEParms.h & JSpaceEParms.cpp

JSpaceParts.h & JSpaceParts.cpp

JSpaceProperties.h & JSpaceProperties.cpp

JTimer.h

JTimerCuda.h

TypesDef.h

JFormatFiles2.h

JFormatFiles2.lib (libjformatfiles2.a)

JSphMotion.h

Declares the class that provides the displacement of moving objects during a time interval

Precompiled library that provides the displacement of moving objects during a time interval.

Declares the class that helps to manage the XML document using library TinyXML

Precompiled library that helps to manage the XML document using library TinyXML.

Declares the class that implements wave generation for regular and irregular waves.

Precompiled library that implements wave generation for regular and irregular waves.

Main file of the project that executes the code on CPU or GPU.

Declares/implements the class that defines the class responsible for collecting the execution parameters by
command line.

Declares/implements the class that manages the initial load of particle data.

Declares/implements the class that stores excluded particles at each instant until writing the output file.

Declares/implements the class that manages the use of prefixed values of DT loaded from an input file.

Declares/implements the class that defines all the attributes and functions that CPU and GPU simulations share.

Declares/implements the class that manages the application of external forces to different blocks of particles
(with the same MK).

JSphMotion.lib (libjsphmotion.a)

JXml.h

JXml.lib (libjxml.a)

JWaveGen.h

JWaveGen.lib (libjwavegen.a)

SPH Solver
main.cpp

JCfgRun.h & JCfgRun.cpp

JPartsLoad4.h & JPartsLoad4.cpp

JPartsOut.h & JPartsOut.cpp

JSaveDt.h & JSaveDt.cpp

JSph.h & JSph.cpp

JSphAccInput.h & JSphAccInput .cpp

Declares/implements the class that manages the info of dt.

Declares/implements the class that manages the use of viscosity values from an input file.

Defines a class to measure time intervals with precision of clock().

Declares/implements the class that manages the use of variable output time to save PARTs.

Defines specific types for the SPH application.

Declares/implements the class that defines the attributes and functions used only in CPU simulations.

Declares/implements the class that defines the attributes and functions used only in Single-CPU.

Measures time intervals during CPU execution.

Declares/implements the class responsible of generating the Neighbour List in CPU.

Declares/implements the class responsible of generating the Neighbour List in Single-CPU.

Declares/implements the class that manages arrays with memory allocated in CPU.

Declares/implements the class that defines the attributes and functions used only in GPU simulations.

JSphDtFixed.h & JSphDtFixed.cpp

JSphVisco.h & JSphVisco.cpp

JTimerClock.h

JTimeOut.h & JTimeOut.cpp

Types.h

SPH Solver only for CPU executions
JSphCpu.h & JSphCpu.cpp

JSphCpuSingle.h & JSphCpuSingle.cpp

JSphTimersCpu.h

JCellDivCpu.h & JCellDivCpu.cpp

JCellDivCpuSingle.h & JCellDivCpuSingle.cpp

JArraysCpu.h & JArraysCpu.cpp

SPH Solver only for GPU executions
JSphGpu.h & JSphGpu.cpp

JSphGpu_ker.h & JSphGpu_ker.cu

Declares/implements functions and CUDA kernels for the Particle Interaction (PI) and System Update (SU).

Declares/implements the class that defines the attributes and functions used only in single-GPU.

Measures time intervals during GPU execution.

Declares/implements the class responsible of generating the Neighbour List in GPU.

Declares/implements functions and CUDA kernels to generate the Neighbour List in GPU.

Declares/implements the class that defines the class responsible of generating the Neighbour List in Single-GPU.

Declares/implements functions and CUDA kernels to compute operations of the Neighbour List.

Declares/implements the class that manages arrays with memory allocated in GPU.

Declares/implements the class that manages the automatic computation of optimum Blocksize in kernel
interactions.

The source file JSphCpuSingle.cpp can be better understood with the help of the diagram of calls represented in
Figure 6-2. Note that now particle interactions are no longer performed in terms of cells as used in previous
versions.

JSphGpuSingle.h & JSphGpuSingle.cpp

JSphTimersGpu.h

JCellDivGpu.h & JCellDivGpu.cpp

JCellDivGpu_ker.h & JCellDivGpu_ker.cu

JCellDivGpuSingle.h & JCellDivGpuSingle.cpp

JCellDivGpuSingle_ker.h & JCellDivGpuSingle_ker.cu

JArraysGpu.h & JArraysGpu.cpp

JBlockSizeAuto.h & JBlockSizeAuto.cpp

CPU source files

Figure 6-2. Workflow of JSphCpuSingle.cpp when using Verlet time algorithm.

When the Symplectic timestepping integration scheme is used the step is split in predictor and corrector steps.
Thus, Figure 6-3 shows the workflow and calls of the CPU code using this time scheme:

Figure 6-3. Workflow of JSphCpuSingle.cpp when using Symplectic timestepping algorithm

Note that JSphCpu::Interaction_Forces performs the particle interaction in CPU using the template
InteractionForcesT. Thus, the interaction between particles is carried out considering different parameters and
considering the type of particles involved in the interaction as it can be seen in Figure 6-4 and Table 6-2:

Figure 6-4. Call graph for the template InteractionForcesT.

Table 6-2. Different particle interactions can be performed depending on the type of particles.

As mentioned before, a more complete documentation has been generated using Doxygen.

The source file JSphGpuSingle.cpp can be better understood with the workflow represented in Figure 6-5 that
includes the functions implemented in the GPU files. The dashed boxes indicates the CUDA kernels implemented
in the CUDA files (JSphGpu_ker.cu).

GPU source files

Figure 6-5. Workflow of JSphGpuSingle.cpp when using Verlet time algorithm.

The code can be compiled for either CPU or CPU&GPU. Please note that both the C++ and CUDA version of the
code contain the same features and options. Most of the source code is common to CPU and GPU, which allows
the code to be run on workstations without a CUDA-enabled GPU, using only the CPU implementation.

To run DualSPHysics on a GPU using an executable, only an Nvidia CUDA-enabled GPU card is needed and the
latest version of the GPU driver must be installed. However, to compile the source code, the GPU programming
language CUDA and nvcc compiler must be installed on your computer. CUDA Toolkit X.X can be downloaded
from Nvidia website http://developer.nvidia.com/cuda-toolkit-XX. CUDA versions from 4.0 till 7.5 have been
tested.

Once the C++ compiler (for example gcc) and the CUDA compiler (nvcc) have been installed in your machine,
you can download the relevant files from the repository:

The project file DualSPHysics4_vs2010.sln is provided to be opened with Visual Studio 2010 and
DualSPHysics4_vs2013.sln to be opened with Visual Studio 2013. Also different configurations can be chosen for
compilation:

1. Release - For CPU and GPU

2. ReleaseCPU - Only for CPU

The result of the compilation is the dualsphysics executable.

The Visual Studio project is created including the libraries for OpenMP in the executable. To not include them,
user can modify Props config -> C/C++ -> Language -> OpenMp and compile again

The use of OpenMP can be also deactivated by commenting the code line in Types.h: #define	_WITHOMP

///<Enables/Disables	OpenMP.

You can build the project in GNU/Linux using the Makefile included in the source folder. Follow this steps (for the
GPU version):

1. Clone this repository into your system

2. Ensure you have GCC version 4.X installed. Usually there are packages in your distro like gcc49 that
provides the g++-4.9 executable.

3. In a terminal, go to the folder DualSPHysics/SOURCE/DualSPHysics/Source/

4. Execute make	clean to make sure the environment is clean and ready to compile

5. Execute make	CC=g++-4.9	CPP=g++-4.9	CXX=g++-4.9	LD=g++-4.9	-f	./Makefile . Be sure to replace g++-4.9
for the executable name you have in your system (previously installed in step 2)

After compiling you should see a message like ---	Compiled	Release	GPU/CPU	version	--- . Go to

Compiling DualSPHysics

Windows compilation

Linux compilation

http://developer.nvidia.com/cuda-toolkit-XX

DualSPHysics/EXECS_LINUX/ to check that DualSPHyiscs_linux64 or DualSPHyiscsCPU_linux64 is there and build
correctly.

To exclude the use of OpenMP you have to remove the flags –fopenmp and -lgomp in the Makefile and comment
line #define	_WITHOMP in Types.h.

The user can modify the compilation options, the path of the CUDA toolkit directory, the GPU architecture. The
GPU code is already compiled (EXECS) for compute capabilities sm20, sm30, sm35, sm37, sm50, sm52 and
with CUDA v7.5.

A new building method is supported in the new version 4.0 of DualSPHysics using CMAKE (https://cmake.org/).
CMAKE is a cross-platform and an independent building system for compilation. This software generates native
building files (like makefiles or Visual Studio projects) for any platform. The location of dependencies and the
needed flags are automatically determined. Note that this method is on trial for version 4.

The building system needs the following dependencies:

CMake version 2.8.10 or greater

Nvidia CUDA Toolkit version 4.0 or greater.

Visual Studio 2010 or 2013 version.

File CMakeLists.txt

The folder build will be created in DUALSPHYSICS/SOURCE/DualSPHysics_4. This folder will contain the
building files so it can be safely removed in case of rebuilding, it can actually be placed anywhere where the user
has writing permissions. Afterwards, open the Cmake application, a new window will appear:

Alternative building method via CMAKE

Compile instructions for Microsoft Windows with Cmake

https://cmake.org/

Paste the Source folder path in the textbox labeled as Where is the source code, and paste the build folder path
into the Where to build the binaries textbox. Once the paths are introduced, the Configure button should be
pressed. A new dialog will appear asking for the compiler to be used in the project. Please, remember that only
Visual Studio 2010 and Visual Studio 2013 for 64bit are supported.

If the configuration succeeds, now press the Generate button. This will generate a Visual Studio project file into
the build directory.

In order to compile both CPU and GPU versions, just change configuration to Release and compile. If the user
only wants to compile one version, one can choose one of the solutions dualsphysics4cpu or dualsphysics4gpu
for CPU or GPU versions respectively, and compile it.

The user can freely customize the Source/CMakeLists.txt file to add new source files or any other modifications.
For more information about how to edit this file, please, refer to official Cmake documentation
(https://cmake.org/documentation/).

Compile instructions for Linux with Cmake

https://cmake.org/documentation/

The building system needs the following dependencies:

Cmake version 2.8.10 or greater.

Nvidia CUDA Toolkit version 4.0 or greater.

GNU G++ compiler 4.4 version or greater.

File CMakeLists.txt

The folder build will be created in DUALSPHYSICS/SOURCE/DualSPHysics_4. This folder will contain the
building files so it can be safely removed in case of rebuilding, it can actually be placed anywhere where the user
has writing permissions. To create this folder and run Cmake just type:

>	cd	DUALSPHYSICS/SOURCE/DualSPHysics_4
>	mkdir	build
>	cd	build
>	cmake	../Source
--	The	C	compiler	identification	is	GNU	4.4.7
--	The	CXX	compiler	identification	is	GNU	4.4.7
--	Check	for	working	C	compiler:	/usr/bin/cc
--	Check	for	working	C	compiler:	/usr/bin/cc	--	works
--	Detecting	C	compiler	ABI	info
--	Detecting	C	compiler	ABI	info	-	done
--	Check	for	working	CXX	compiler:	/usr/bin/c++
--	Check	for	working	CXX	compiler:	/usr/bin/c++	--	works
--	Detecting	CXX	compiler	ABI	info
--	Detecting	CXX	compiler	ABI	info	-	done
Using	cuda	version	<7.5
Using	libraries	for	gcc	version	<5.0
--	Try	OpenMP	C	flag	=	[-fopenmp]
--	Performing	Test	OpenMP_FLAG_DETECTED
--	Performing	Test	OpenMP_FLAG_DETECTED	-	Success
--	Try	OpenMP	CXX	flag	=	[-fopenmp]
--	Performing	Test	OpenMP_FLAG_DETECTED
--	Performing	Test	OpenMP_FLAG_DETECTED	-	Success
--	Found	OpenMP:	-fopenmp
--	Configuring	done
--	Generating	done
--	Build	files	have	been	written	to:	/home/user/DUALSPHYSICS/SOURCE/DualSPHysics_v4/build

The command cmake ../Source will search for a Cmake file (CMakeLists.txt) in the specified folder. As mentioned
before, the user can freely customize this file to add new source files or any other modifications. For more
information about how to edit this file, please, refer to Cmake official documentation
(https://cmake.org/documentation/).

Once the cmake command runs without error, a Makefile can be found in the build folder. To build both CPU and
GPU versions of DualSPHysics just type make. If the user only needs to build one of the executable files he can
use the commands make dualsphysics4cpu or make dualsphysics4gpu for CPU and GPU versions respectively.
In order to install the compiled binaries into the EXECS folder, the user can either copy the executable files or
type the command make install.

https://cmake.org/documentation/

The codes provided within the DualSPHysics package present some important improvements in comparison to
the codes available within SPHysics. One of them is related to the format of the files that are used as input and
output data throughout the execution of DualSPHysics and the pre-processing and post-processing codes.
Different format files for the input and the output data are involved in the DualSPHysics execution: XML, binary
and VTK-binary.

The XML (EXtensible Markup Language) is a textual data format that can easily be read or written using any
platform and operating system. It is based on a set of labels (tags) that organise the information and can be
loaded or written easily using any standard text or dedicated XML editor. This format is used for input files for the
code.

The output data in the SPHysics code is written in text files, so ASCII format is used. ASCII files present some
interesting advantages such as visibility and portability, however they also present important disadvantages
particularly with simulations with large numbers of particles: data stored in text format consumes at least six
times more memory than the same data stored in binary format, precision is reduced when values are converted
from real numbers to text while reading and writing data in ASCII is more expensive (two orders of magnitude).
Since DualSPHysics allows performing simulations with a high number of particles, a binary file format is
necessary to avoid these problems. Binary format reduces the volume of the files and the time dedicated to
generate them. These files contain the meaningful information of particle properties. In this way, some variables
can be removed, e.g., the pressure is not stored since it can be calculated starting from the density using the
equation of state. The mass values are constant for fluid particles and for boundaries so only two values are used
instead of an array. Data for particles that leave the limits of the domain are stored in an independent file
(PartOut_000.obi4) which leads to an additional saving. Hence, the advantages can be summarised as: (i)
memory storage reduction, (ii) fast access, (iii) no precision lost and (iv) portability (i.e. to different architectures or
different operating systems).

The file format used now in DualSPHysics v4.0 is named BINX4 (.bi4) which is the new binary format and can
save particle position in single or double precision. This format file is a container so the user can add new
metadata and new arrays can be processed in an automatic way using the current post-processing tools of the
package.

VTK (Visualization ToolKit) files are used for final visualization of the results and can either be generated as a
pre-processing step or output directly by DualSPHysics instead of the standard BINX format (albeit at the
expense of computational overhead). VTK not only supports the particle positions, but also physical quantities
that are obtained numerically for the particles involved in the simulations. VTK supports many data types, such as
scalar, vector, tensor, texture, and also supports different algorithms such as polygon reduction, mesh smoothing,
cutting, contouring and Delaunay triangulation. The VTK file format consists of a header that describes the data
and includes any other useful information, the dataset structure with the geometry and topology of the dataset
and its attributes. Here VTK files of POLYDATA type with legacy-binary format is used. This format is also easy
for input-output (IO) or read-write operations.

Format Files

XML File

BINARY File

VTK File

A program named GenCase is included to define the initial configuration of the simulation, movement description
of moving objects and the parameters of the execution in DualSPHysics. All this information is contained in a
definition input file in XML format; Case_Def.xml. Two output files are created after running GenCase: Case.xml
and Case.bi4 (the input files for DualSPHysics code). These input (red boxes) and output files (blue boxes) can
be observed in Figure 9-1. Case.xml contains all the parameters of the system configuration and its execution
such as key variables (smoothing length, reference density, gravity, coefficient to calculate pressure, speed of
sound...), the number of particles in the system, movement definition of moving boundaries and properties of
moving bodies. Case.bi4 contains the initial state of the particles (number of particles, position, velocity and
density) in BINX4 (.bi4) format.

Figure 9-1. Input (red) and output (blue) files of GenCase code.

Particle geometries created with GenCase can be initially checked by visualising in Paraview the files
Case_All.vtk, Case_Bound.vtk and Case_Fluid.vtk.

GenCase employs a 3-D Cartesian mesh to locate particles. The idea is to build any object using particles. These
particles are created at the nodes of the 3-D Cartesian mesh. Firstly, the mesh nodes around the object are
defined and then particles are created only in the nodes needed to draw the desired geometry. Figure 9-2

Preprocessing

illustrates how this mesh is used; in this case a triangle is generated in 2D. First the nodes of a mesh are defined
starting from the maximum dimensions of the desired triangle, then the edges of the triangle are defined and
finally particles are created at the nodes of the Cartesian mesh which are inside the triangle.

Figure 9-2. Generation of a 2-D triangle formed by particles using GenCase.

All particles are placed over a regular Cartesian grid. The geometry of the case is

defined independently to the inter-particle distance. This allows the discretization of each test case with a
different number of particles simply by varying the resolution (or particle size) dp. Furthermore, GenCase is very
fast and able to generate millions of particles only in seconds on the CPU.

Very complex geometries can be easily created since a wide variety of commands (labels in the XML file) are
available to create different objects; points, lines, triangles, quadrilateral, polygons, pyramids, prisms, boxes,
beaches, spheres, ellipsoids, cylinders, waves (`, , , , ,

, , , , ,

, , , , , , , `).

Once the mesh nodes that represent the desired object are selected, these points are stored as a matrix of
nodes. The shape of the object can be transformed using a translation (<move	/>), a scaling (<scale	/>) or a
rotation (<rotate	/>,	<rotateline	/>). With the generation process creating particles at the nodes, different
types of particles can be created; a fluid particle (<setmkfluid	/>), a boundary particle (<setmkbound	/>) or
none (<setmkvoid	/>). Hence, mk is the marker value used to mark a set of particles with a common feature in
the simulation. Note that values of the final mk are different to mkfluid, mkbound and mkvoid following the rules:

mk for boundaries = mkbound + 11

mk for fluid particles = mkfluid + 1

Particles can be created only at the object surface (<setdrawmode	mode="face"	/>), or only inside the bounds of
the objects (<setdrawmode	mode="solid"	/>) or both (<setdrawmode	mode="full"	/>).

The set of fluid particles can be labelled with features or special behaviours (<initials	/>). For example, initial
velocity (<velocity	/>) can be imposed for fluid particles or a solitary wave can be defined (<velwave	/>).
Furthermore, particles can be defined as part offloating object (<floatings	/>).

Once boundaries are defined, filling a region with fluid particles can be easily obtained using the following
commands: (<fillpoint	/>,	<fillbox	/>,	<fillfigure	/>,	<fillprism	/>). This works also in the presence of
arbitrarily complex geometries.

In cases with more complex geometries, external objects can be imported from 3DS files (Figure 9-3) or CAD files

(Figure 9-4). This enables the use of realistic geometries generated by 3D designing application with the drawing
commands of GenCase to be combined. These files (3DS or CAD) must be converted to STL format
(<drawfilestl	/>), PLY format (<drawfileply	/>) or VTK format (<drawfilevtk	/>), formats that are easily
loaded by GenCase. Any object in STL, PLY or VTK (object.vtk, object.stl or object.ply in Figure 9-1) can be split
in different triangles and any triangle can be converted into particles using the GenCase code.

Figure 9-3. Example of a 3D file imported by GenCase and converted into particles.

Figure 9-4. Example of a CAD file imported by GenCase and converted into particles.

Different kinds of movements can be imposed to a set of particles; linear, rotational, circular, sinusoidal, etc. To
help users define movements, a directory with some examples is also included in the DualSPHysics package.
Thus, the directory MOTION includes:

Motion01: uniform rectilinear motion (<mvrect	/>) that also includes pauses (<wait	/>)

Motion02: combination of two uniform rectilinear motion (<mvrect	/>)

Motion03: movement of an object depending on the movement of another (hierarchy of objects)

Motion04: accelerated rectilinear motion (<mvrectace	/>)

Motion05: rotational motion (<mvrot	/>). See Figure 9-5.

Motion06: accelerated rotation motion (<mvrotace	/>) and accelerated circular motion (<mvcirace	/>). See
Figure 9-6.

Motion07: sinusoidal movement (<mvrectsinu	/>,	<mvrotsinu	/>,	<mvcirsinu	/>)

Motion08: prescribed with data from an external file (time , position) (<mvfile/>)

Motion09: prescribed with data from an external file (time , angle) (<mvrotfile	/>)

Figure 9-5. Example of rotational motion.

Figure 9-6.Example of accelerated rotation motion and accelerated circular motion.

The main code which performs the SPH simulation is named DualSPHysics.

The input files to run DualSPHysics code include one XML file (Case.xml in Figure 10-1) and a binary file
(Case.bi4 in Figure 10-1). Case.xml contains all the parameters of the system configuration and its execution
such as key variables (smoothing length, reference density, gravity, coefficients to compute pressure starting
from density, speed of sound...), the number of particles in the system, movement definition of moving
boundaries and properties of moving bodies. The binary file Case.bi4 contains the particle data; arrays of
position, velocity and density and headers. The output files consist of binary format files with the particle
information at different instants of the simulation (Part0000.bi4, Part0001.bi4, Part0002.bi4 ...) file with excluded
particles (PartOut.obi4) and text file with execution log (Run.out).

Figure 10-1. Input (red) and output (blue) files of DualSPHysics code.

Different parameters defined in the XML file can be be changed using executions parameters of DualSPHysics:
time stepping algorithm specifying Symplectic or Verlet (-symplectic, -verlet[:steps]) , choice of kernel function
which can be Cubic or Wendland (- cubic, -wendland), the value for artificial viscosity (-viscoart:) or laminar+SPS
viscosity treatment (-viscolamsps:), activation of the Delta-SPH formulation (- deltasph:), use of shifting algorithm
(-shifting:) the maximum time of simulation and time intervals to save the output data (-tmax:, -tout:). To run the

Processing

code, it is also necessary to specify whether the simulation is going to run in CPU or GPU mode (- cpu, -gpu[:id]),
the format of the output files (-sv:[formats,...], none, binx, ascii, vtk, csv), that summarises the execution process
(-svres:<0/1>) with the computational time of each individual process (-svtimers:<0/1>). It is also possible to
exclude particles as being out of limits according to prescribed minimum and maximum values of density (-
rhopout:min:max) or that travel further than maximum Z position (-incz:).

For CPU executions, a multi-core implementation using OpenMP enables executions in parallel using the
different cores of the machine. It takes the maximum number of cores of the device by default or users can
specify it (-ompthreads:). On the other hand, different cell divisions of the domain can be used (-cellmode:) that
differ in memory usage and efficiency.

One of the novelties version 4 of DualSPHysics is the use of double precision in variables of position of the
particles (-posdouble:) for the computation of particle interactions. The particle interaction is one of the most time-
consuming parts of the simulation, hence the precision in this part can be controlled using the -posdouble
parameter, which takes the following values:

0: particle interaction is performed using single precision for position variables (x, y, z) When “dp” is much
smaller than size of the domain, the user is recommended to choose one of the following:

1: particle interaction is performed using double precision for position variables but final position is stored
using simple precision

2: particle interaction is performed using double precision for position variables and final position is stored
using double precision.

Other important novelty in v4.0 is the determination of the optimum BlockSize for the CUDA kernels that execute
particle interaction (-blocksize:):

Fixed (-blocksize:0): A fixed block size of 128 threads is used. This value does not always provides the
maximum performance but it usually offers good performance for those type of kernels.

Occupancy (-blocksize:1): Occupancy Calculator of CUDA is used to determine the optimum block size
according to the features of the kernel (registers and shared memory however data used in the kernels are
not considered). This option is available from CUDA 6.5

Empirical (-blocksize:2): Here, data used in the CUDA kernels is also considered. The optimum BlockSize is
evaluated every certain number of steps (500 by default). In this way, block size can change during the
simulation according to input data.

The PartVTK code is used to convert the output binary files of DualSPHysics into different formats that can be
visualised and /or analysed. Thus, the output files of DualSPHysics, the binary files (.bi4), are now the input files
for the post-processing code PartVTK.

Figure 11-1. Input (red) and output (blue) files of PartVTK code.

The output files can be VTK-binary (-savevtk), CSV (-savecsv) or ASCII (-saveascii). In this way the results of the
simulation can be plotted using Paraview, gnuplot, Octave, etc.... For example; PartVtkBin_0000.vtk,... These
files can be generated by selecting a set of particles defined by mk (-onlymk:), by the id of the particles (-onlyid:),
by the type of the particle (-onlytype:), by the position of the particles (-onlypos: and -onlyposfile) or by the limits
of velocity of the particles (-onlyvel:), so we can check or uncheck all the particles (+/-all), the boundaries (+/-

Postprocessing
Visualization of particle output data

bound), the fixed boundaries (+/-fixed), the moving boundaries (+/-moving), the floating bodies (+/-floating) or the
fluid particles (+/-fluid). The output files can contain different particle data (-vars:); all the physical quantities (+/-
all), velocity (+/-vel), density (+/-rhop), pressure (+/-press), mass (+/-mass), volume (+/-vol), acceleration (+/-
ace), vorticity (+/-vor), the id of the particle (+/-idp), the mk of the particle (+/-mk) and the type (+/-type:). The
user can define new variables in DualSPHysics and make reference to those in PartVTK using -vars:NewVar or -
vars:all.

In addition, the PartVTKOut code is used to generate files with the particles that were excluded from the
simulation (stored in PartOut.obi4). The output file of DualSPHysics, PartOut.obi4 is the input file for the post-
processing code PartVTKOut. Information with excluded particles can be stored in CSV files (-savecsv: -
SaveResume) and VTK (-savevtk:) can be generated with those particles.

Figure 11-2. Input (red) and output (blue) files of PartVTKOut code.

Particles can be excluded from the simulation for three reasons:

Position: Limits of the domain are computed starting from particles that were created in GenCase. Note that
these limits are different from pointmin and pointmax defined in section of the input XML and can be also

changed by the user when executing DualSPHysics code. The actual limits of the domain can be seen in
Run.out: MapRealPos(final). Therefore, when one particle moves beyond those limits, the particle is
excluded. Only in the Z+ direction, can particles move to higher positions according to parameter IncZ.,
where new cells are created to contain the particles.

Position: Valid values of particle density are between RhopOutMin (default=700) and RhopOutMax
(default=1300), but the user can also change those values.

Velocity: One particle can be also removed from the system when its displacement exceeds 0.9*Scell during
one time step (Scell is the size of the cell).

In order to visualise the boundary shapes formed by the boundary particles, different geometry files can be
generated using the BoundaryVTK code. The code creates triangles or planes to represent the boundaries.

As input data, shapes can be loaded from a VTK file (-loadvtk), a PLY file (-loadply) or an STL file (-loadstl) while
boundary movement can be imported from an XML file (- loadxml file.xml) using the timing of the simulation (-
motiontime) or with the exact instants of output data (-motiondatatime). The movement of the boundaries can
also be determined starting from the particle positions (-motiondata). The output files consist of VTK files (-
savevtk), PLY files (-saveply) or STL files (-savestl) with the loaded information and the moving boundary
positions at different instants. For example the output files can be named motion_0000.vtk, motion_0001.vtk,
motion_0002.vtk... These files can be also generated by only a selected object defined by mk (-onlymk:), by the
id of the object (-onlyid:).

Visualization of boundaries

Figure 11-3. Input (red) and output (blue) files of BoundaryVTK code.

To compare experimental and numerical values, a tool to analyse these numerical measurements is needed. The
MeasureTool code allows different physical quantities at a set of given points to be computed. The binary files
(.bi4) generated by DualSPHysics are the input files of the MeasureTool code and the output files are again VTK-
binary or CSV or ASCII. The numerical values are computed by means of an SPH interpolation of the values of
the neighbouring particles around a given position.

Analysis of numerical measurements

Figure 11-4. Input (red) and output (blue) files of MeasureTool code.

The interpolation is computed using the Wendland kernel. Kernel correction is also applied when the summation
of the kernel values around the position is higher than a value (-kclimit:) defining a dummy value if the correction
is not applied (-kcdummy:). The positions where the interpolation is performed are given in a text file for fixed
position (-points) or with position that changes in time (-pointspos). Variables can be also computed at the
position of existing particles with a given mk (-particlesmk:) or by indicating their id (-particlesid:). The distance
of interpolation can be 2h (the size of the kernel) or can be changed (-distinter_2h:, -distinter:). The interpolation
is carried out using a selected set of particles, so the same commands for PartVTK can be used (- onlymk: , -
onlyid:, -onlytype:, -onlypos:, -onlyposfile). Different interpolated variables (-vars) can be numerically calculated;
all available ones (+/-all), velocity (+/-vel), density (+/- rhop), pressure (+/-press), mass (+/-mass), volume (+/-
vol), id (+/-idp), vorticity (+/-vor), acceleration (+/-ace) the summation of the kernel multiplied by volume (+/-
kcorr), and variables defined by the user (+/-XXX). The maximum water depth can be also computed. Height
values (-height:) are calculated according to the interpolated mass, if the nodal mass is higher than a given
reference mass, that Z-position will be considered as the maximum height. The reference value can be calculated
in relation to the mass values of the selected particles (-height:0.5 , half the mass by default in 3D and -height:0.4
in 2D) or can be given in an absolute way (-heightlimit:).

The ComputeForces code is employed to compute the force exerted by the fluid onto a boundary object. The
value of force is calculated as the summation of the acceleration values (solving the momentum equation)
multiplied by the mass of each boundary particle (see also PostprocessingCalculations.pdf).

Figure 11-5. Input (red) and output (blue) files of ComputeForces code.

The momentum equation to solve the acceleration values is computed using the Wendland kernel. The distance
of interpolation can be 2h (the size of the kernel) or can be changed (-distinter_2h:, -distinter:). The interpolation
is carried out using a selected set of particles, so the same commands for PartVTK can be used (-onlymk:, -
onlyid:, - onlypos:). The output files can be VTK-binary (-savevtk), CSV (-savecsv) or ASCII (- saveascii).

The FloatingInfo code is employed to obtain different data of the floating objects such as linear velocity, angular
velocity, displacement of the center, motions and angles of rotation. The binary files (.bi4) generated by
DualSPHysics and the file PartFloat.fbi4 are the input files of the FloatingInfo code and the output files are CSV
files.

Force computation

Analysis of floating data

By default, the code always saves time, fvel (linear velocity), fomega (angular velocity), center. Motions and
rotation can be also obtained (-savemotion) in 2D (surge, heave, roll) and in 3D (surge, sway, heave, roll, pitch,
yaw). A CSV file will be created with the information of each floating in the simulation, but user can choose a
given floating object (-onlymk:) or the name of the file (-savedata).

Using a large number of particles, the visualization of the simulation can be improved by representing surfaces
instead of particles. To create the surfaces, the marching cubes algorithm is used [Lorensen and Cline, 1987].

Surface representation

This computer graphics technique extracts a polygonal mesh (set of triangles) of an isosurface from a 3-D scalar
field.

Figure 11-6, represents a 3-D dam-break simulation using 300,000 particles. The first snapshot shows the
particle representation. Values of mass are interpolated at the nodes of a 3-D Cartesian mesh that covers the
entire domain using an SPH interpolation. Thus a 3-D mesh vertex that belongs to the free surface can be
identified. The triangles of this surface (generated by means of the marching cubes algorithm) are represented in
the second frame of the figure. The last snapshots correspond to the surface representation where the colour
corresponds to the interpolated velocity value of the triangles.

Figure 11-6. Conversion of points to surfaces.

The output binary files of DualSPHysics are the input files of the IsoSurface code and the output files are VTK
files (-saveiso[:]) with the isosurfaces calculated using a variable () or can be structured points (-savegrid) with
data obtained after the interpolation. The Cartesian mesh size can be defined by specifying the discretisation size
using either the particle size dp (-distnode_dp:) or by specifying an absolute internode distance (-distnode:). On
the other hand, the maximum distance for the interaction between particles to interpolate values on the nodes can
be also defined depending on 2h (-distinter_dp:) or in an absolute way (-distinter:). The particles to be
considered to create the isosurface can be defined by the user using positions (-onlypos & -onlyposfile) or the
limits of the isosurface can be indicated (-iso_limits:)

Figure 11-7. Input (red) and output (blue) files of IsoSurface code.

DualSPHysics can be executed either on CPU or GPU. In order to use DualSPHysics code on a GPU, you need
a CUDA-enabled Nvidia GPU card on your machine (http://developer.nvidia.com/cuda-gpus).

If you want to run GPU simulations (i.e. not develop the source code) the latest version of the driver for your
graphics card must be installed. If no source code development is required, there is no need to install any
compiler to run the binary of the code, only the driver must be updated. If you also want to compile the code you
must install the nvcc compiler and a C++ compiler. The nvcc compiler is included in the CUDA Toolkit that can be
downloaded from the Nvidia website and must be installed on your machine.

If you are trying to run the executable GPU version on a CUDA-enabled Nvidia GPU card, the error message:
Exception (JSphGpuSingle::SelecDevice) Text: Failed getting devices info. (CUDA error: CUDA driver version is
insufficient for CUDA runtime version) can be solved by installing the latest version of the driver for the GPU card.

The provided source files in this release can be compiled for linux using a ‘makefile’ along with gcc and nvcc
compilers, and for windows using a project for Visual Studio (both VS2010 and VS2013 are provided). In case
you use another compiler or other environment, you can adjust the contents of the makefile or you can also use
CMAKE.

Please refer to section 6 on Compiling DualSPHysics

The amount of particles that can be simulated depends on (i) the memory space of the GPU card and (ii) the
options of the simulation.

Section DualSPHysics open-source code of the guide introduces the source files including some call graphs for a
better understanding and it is also highly recommended that you read the documentation generated with
Doxygen.

Users can follow the provided example cases in the package. Those input XML files can be modified following
XML_GUIDE_v4.0.pdf. Different input formats of real geometries can be converted using
ExternalModelsConversion_GUIDE.pdf. This manuscript also describes in detail the input files of the different test
cases.

FAQ
What do I need to use DualSPHysics? What are the
hardware and software requirements?\

Why DualSPHysics binary is not running?

How can I compile the code with different
environments/compilers?

How many particles can I simulate with the GPU code?

How should I start looking at the source code?

How can I create my own geometry?

http://developer.nvidia.com/cuda-gpus

You can contribute to the DualSPHysics project by reporting bugs, suggesting new improvements, citing
DualSPHysics [See the answer to Question 24] in your paper if you use it, submitting your modified codes
together with examples.

To read more info on that, please refer to the repository main page

Some code is provided in precompiled libraries to reduce the number of source files and to facilitate the
comprehension of only the SPH algorithms by the users. These precompiled code covers secondary aspects
during SPH simulations that are only used in specific simulations so they are not used in most of the cases. If the
user wants to modify some of the codes included in the precompiled libraries, he can just replace that library by
his own implementation.

In the input XML file, the parameters pointmin and pointmax only define the domain to create particles beyond
these limits fluid or boundary particles will not be created. The limits of the computational domain are computed at
the beginning of the DualSPHysics simulation and use the initial minimum and maximum positions of the particles
that were already created with GenCase. In order to modify the limits automatically computed by DualSPHysics,
different execution parameters can be used: -domain_particles[:xmin,ymin,zmin,xmax,ymax,zmax] -
domain_particles_prc:xmin,ymin,zmin,xmax,ymax,zmax -domain_fixed:xmin,ymin,zmin,xmax,ymax,zmax so that
the limits can be specified instead of using initial particle positions.

Examples of the different type of movements that can be described with DualSPHysics are addressed in directory
MOTION. Different kind of movements can be defined such as rectilinear, rotational, sinusoidal or circular motion
and they can be uniform or accelerated, with pauses or with hierarchy of movements. And a final option is to load
the movement from an external file with a prescribed movement (info of time, X- position, Y-position, Z-position
and velocities) or with rotational movement (info of time, angle) that will be interpolated at each time step during
the simulation (see CaseSloshingMotion).

A new movement can be always defined by using an external file with mvfile or mvrotfile where the desired
movement can be computed in advance and loaded from that file. However if a user wants to create the new type
of movement in the source code, this should be implemented in the functions JSphCpu::RunMotion() for CPU or
JSphGpu::RunMotion() for GPU, since the code implemented now is in the library JSphMotion.

As explained in the previous question, the limits of the computational domain are computed starting from the
initial minimum and maximum positions of the particles. Since these values use the initial configuration, any

How can I contribute to the project?

How can I modify the code of the precompiled libraries?

How does the code define the limits of the domain?

How can I define the movement of boundaries?

How can I include a new type of movement?

How do I prevent the boundary particles from going outside
of the domain limits when applying motion?

https://github.com/DualSPHysics/DualSPHysics

movement of boundaries that implies positions beyond these limits will give us the error ‘boundary particles out
the domain’. The solutions to solve this problem and to avoid creating larger tanks or domains are:

defining boundary points <drawpoint> at the minimum and maximum positions that the particles are
expected to reach during the simulation. The option <drawpoint> will create a particle at the given location
x,y,z.

using the parameters of DualSPHysics execution mentioned in the answer to Question 9.

The gap is a result of pressure overestimation across density discontinuities. It is inherent to the boundary
formulation used in DualSPHysics. The forces exerted by the boundary particles create a small gap between
them and fluid particles (1.5 times h). Note that by increasing the resolution (i.e. using a smaller “dp”) the gap is
reduced however new boundary conditions are being developed and should be available in future releases
[Domínguez et al., 2015].

Validation of floating using experimental data from [Hadzic et al., 2005], as shown in
http://dual.sphysics.org/index.php/validation/wavesfloatings/, has been performed only for floating objects created
with <setdrawmode	mode="full"	/> or <setdrawmode	mode="solid"	/> , therefore the use of these options is
suggested. In this way, floating particles are created in the faces of the object and inside the object so no particle
penetration will be observed.

The new code FloatingInfo allows to obtain different variables of interest of the floating objects during the
simulation; positions of the center, linear velocity, angular velocity, motions (surge, sway and heave) and angles
of rotation (pitch, roll and yaw). As shown in http://dual.sphysics.org/index.php/validation/wavesfloatings/, the
study of a floating body subjected to a wave packet is validated with data from [Hadzic et al., 2005].

Fluid particles are excluded during the simulation: (i) if their positions are outside the limits of the domain, (ii)
when density values are out of a range (700-1300 by default), (iii) when particles moves beyond 0.9 times the cell
size during one time step.

DualSPHysics can also perform 2-D simulations. To generate a 2-D configuration you only have to change the
XML file; imposing the same values in the Y-direction that

define the limits of the domain where particles are created (pointmin.y=1 and pointmax.y=1).

Why do I observe a gap between boundaries, floating bodies
and fluid in the solution?

How do I prevent the fluid particles from penetrating inside
floating bodies?

How do I numerically compute the motion and rotations of
floating bodies?

When are fluid particles excluded from the simulation?

How do I create a 2-D simulation?

http://dual.sphysics.org/index.php/validation/wavesfloatings/
http://dual.sphysics.org/index.php/validation/wavesfloatings/

Constant ‘b’ appears in the equation of state (Eq. 14). Constant ‘b’ is zero when fluid height (hswl) is zero (or fluid
particles were not created) or if gravity is zero. First, you should check that fluid particles have been created.
Possible errors can appear in 2-D simulations when the seed point of the option <fillbox> is not located at the
correct y-position. Other solution is to specify the value of ‘hswl’ in <constantsdef> <hswl	value="0.8"
auto="false"	/>). When using gravity zero, the value of ‘b’ needs to be specified in <constantsdef> (<b
value="1.1200e+05"	auto="false"	/>) as occurs in CaseMovingSquare.

When using gravity zero, the value of ‘b’ needs to be specified in <constantsdef> (<b	value="1.1200e+05"
auto="false"	/>) as occurs in CaseMovingSquare. Otherwise, ‘b’ is zero and gives the error shown in Question
18.

By default, the speed of sound (speedofsound=coefsoundspeedsystem) is calculated as 10∙sqrt(ghswl). In order
to calculate a more suitable ‘speedofsound‘ for a particular case requires the user to set the parameters
‘coefsound‘ and ‘speedsystem‘.

The value of α=0.01 has proven to give the best results in the validation of wave flumes to study wave
propagation and wave loadings exerted onto coastal structures [Altomare et al., 2015a; 2015c]. However in the
simulation of other cases such as dam-breaks, the interaction between fluid and boundaries during dam
propagation becomes more relevant and the value of α should be changed according to the resolution (“dp”) to
obtain accurate results.

The file format XML offers several resources to define new general parameters or specific properties for different
type of particles. In order to load parameters from the section <parameters> , the user can mimic how this is also
carried out by DualSPHysics. If different properties will be defined for different fluid volumes, section
<properties> can be used (that is also explained in the XML guide).

The new file format (.bi4) and the post-processing tools have been designed to include new properties defined by
the user for its own implementation. The function JSph::SavePartData() already includes an example of how to
store new particle data. Then, the post-processing codes will automatically manage all variables included in the
.bi4 files.

Please refer to the code if you use it in a paper with reference [Crespo et al., 2015].

How can I solve the error “Constant 'b' cannot be zero”?

How can I create a case without gravity?

How can I define the speed of sound?

What is the recommended alpha value in artificial viscosity?

How can I define new properties of the particles?

How can I store new properties of the particles (e. g.
Temperature)?

How must I cite the use of the code in my paper?

	Introduction
	Developers and institutions
	Developers:
	Universidade de Vigo, Spain
	EPHYTECH SL, Spain
	The University of Manchester, UK
	Science & Technology Facilities Council, UK
	Instituto Superior Tecnico, Lisbon, Portugal
	Università degli studi di Parma, Italy
	Universiteit Gent - Flanders Hydraulics Research, Belgium
	Contributors:

	SPH formulation
	SPH formulation
	The Smoothing Kernel
	Momentum Equation
	Artificial Viscosity
	Laminar viscosity and Sub-Particle Scale (SPS) Turbulence
	Continuity Equation
	Equation of State
	DeltaSPH
	Shifting algorithm
	Time stepping
	Verlet Scheme
	Symplectic Scheme
	Variable Time Step
	Boundary Conditions
	Wave Generation
	Coupling with Discrete Element Method (DEM)
	Multi-phase: Two-phase liquid-sediment implementation in DualSPHysics

	CPU and GPU implementation
	General Information
	Double Precision
	OpenMP for multi-core executions.
	Optimisation of the size of blocks for execution of CUDA kernels.

	DualSPHysics open source code
	Common Files
	Functions.h & Functions.cpp
	JBinaryData.h & JBinaryData.cpp
	JException.h & JException.cpp
	JLog2.h & JLog2.cpp
	JMatrix4.h
	JMeanValues.h & JMeanValues.cpp
	JObject.h & JObject.cpp
	JObjectGpu.h & JObjectGpu.cpp
	JPartDataBi4.h & JPartDataBi4.cpp
	JPartFloatBi4.h & JPartFloatBi4.cpp
	JPartOutBi4Save.h & JPartOutBi4Save.cpp
	JRadixSort.h & JRadixSort.cpp
	JRangeFilter.h & JRangeFilter.cpp
	JReadDatafile.h & JReadDatafile.cpp
	JSpaceCtes.h & JSpaceCtes.cpp
	JSpaceEParms.h & JSpaceEParms.cpp
	JSpaceParts.h & JSpaceParts.cpp
	JSpaceProperties.h & JSpaceProperties.cpp
	JTimer.h
	JTimerCuda.h
	TypesDef.h
	JFormatFiles2.h
	JFormatFiles2.lib (libjformatfiles2.a)
	JSphMotion.h
	JSphMotion.lib (libjsphmotion.a)
	JXml.h
	JXml.lib (libjxml.a)
	JWaveGen.h
	JWaveGen.lib (libjwavegen.a)

	SPH Solver
	main.cpp
	JCfgRun.h & JCfgRun.cpp
	JPartsLoad4.h & JPartsLoad4.cpp
	JPartsOut.h & JPartsOut.cpp
	JSaveDt.h & JSaveDt.cpp
	JSph.h & JSph.cpp
	JSphAccInput.h & JSphAccInput .cpp
	JSphDtFixed.h & JSphDtFixed.cpp
	JSphVisco.h & JSphVisco.cpp
	JTimerClock.h
	JTimeOut.h & JTimeOut.cpp
	Types.h

	SPH Solver only for CPU executions
	JSphCpu.h & JSphCpu.cpp
	JSphCpuSingle.h & JSphCpuSingle.cpp
	JSphTimersCpu.h
	JCellDivCpu.h & JCellDivCpu.cpp
	JCellDivCpuSingle.h & JCellDivCpuSingle.cpp
	JArraysCpu.h & JArraysCpu.cpp

	SPH Solver only for GPU executions
	JSphGpu.h & JSphGpu.cpp
	JSphGpu_ker.h & JSphGpu_ker.cu
	JSphGpuSingle.h & JSphGpuSingle.cpp
	JSphTimersGpu.h
	JCellDivGpu.h & JCellDivGpu.cpp
	JCellDivGpu_ker.h & JCellDivGpu_ker.cu
	JCellDivGpuSingle.h & JCellDivGpuSingle.cpp
	JCellDivGpuSingle_ker.h & JCellDivGpuSingle_ker.cu
	JArraysGpu.h & JArraysGpu.cpp
	JBlockSizeAuto.h & JBlockSizeAuto.cpp

	CPU source files
	GPU source files

	Compiling DualSPHysics
	Windows compilation
	Linux compilation
	Alternative building method via CMAKE
	Compile instructions for Microsoft Windows with Cmake
	Compile instructions for Linux with Cmake

	Format Files
	XML File
	BINARY File
	VTK File

	Preprocessing
	Processing
	Postprocessing
	Visualization of particle output data
	Visualization of boundaries
	Analysis of numerical measurements
	Force computation
	Analysis of floating data
	Surface representation

	FAQ
	What do I need to use DualSPHysics? What are the hardware and software requirements?\
	Why DualSPHysics binary is not running?
	How can I compile the code with different environments/compilers?
	How many particles can I simulate with the GPU code?
	How should I start looking at the source code?
	How can I create my own geometry?
	How can I contribute to the project?
	How can I modify the code of the precompiled libraries?
	How does the code define the limits of the domain?
	How can I define the movement of boundaries?
	How can I include a new type of movement?
	How do I prevent the boundary particles from going outside of the domain limits when applying motion?
	Why do I observe a gap between boundaries, floating bodies and fluid in the solution?
	How do I prevent the fluid particles from penetrating inside floating bodies?
	How do I numerically compute the motion and rotations of floating bodies?
	When are fluid particles excluded from the simulation?
	How do I create a 2-D simulation?
	How can I solve the error “Constant 'b' cannot be zero”?
	How can I create a case without gravity?
	How can I define the speed of sound?
	What is the recommended alpha value in artificial viscosity?
	How can I define new properties of the particles?
	How can I store new properties of the particles (e. g. Temperature)?
	How must I cite the use of the code in my paper?

