
Advanced Policy Gradient Methods: Natural Gradient,

TRPO, and More

March 8, 2017

Defining a Loss Function for RL

I Let η(π) denote the expected return of π

η(π) = Es0∼ρ0,at∼π(· | st)

[∞∑
t=0

γtrt

]

I We collect data with πold. Want to optimize some objective to get a new policy π

I A useful identity1:

η(π) = η(πold) + Eτ∼π

[∞∑
t=0

γtAπold(st , at)

]

1S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002.

Proof of Useful Identity

First note that Aπold(s, a) = Es′∼P(s′ | s,a) [r(s) + γV πold(s ′)− V πold(s)].

Eτ∼π

[∞∑
t=0

γtAπold
(st , at)

]

= Eτ∼π

[∞∑
t=0

γt(r(st) + γV πold(st+1)− V πold(st))

]

= Eτ∼π

[
−V πold(s0) +

∞∑
t=0

γtr(st)

]

= −Es0 [V πold(s0)] + Eτ∼π

[∞∑
t=0

γtr(st)

]
= −η(πold) + η(π)

Surrogate Loss Function
I Want to manipulate η(π) into an objective that we can estimate from sampled data

η(π) = const + Es∼π,a∼π [Aπold(s, a)]

= const + Es∼π,a∼πold

[
π(a | s)

πold(a | s)
Aπold(s, a)

]
I Define Lπold

(π) to be the “surrogate objective” that ignores change in state distrib:

L(π) = Es∼πold,a∼π [Aπold(st , at)]

= Es∼πold,a∼πold

[
π(a | s)

πold(a | s)
Aπold(s, a)

]

Matches to first order for parameterized policy

∇θL(πθ)
∣∣
θold

= Es,a∼πold

[
∇θπθ(a | s)

πold(a | s)
Aπold(s, a)

] ∣∣
θold

= Es,a∼πold
[∇θ log πθ(a | s)Aπold(s, a)]

∣∣
θold

= ∇θη(πθ)
∣∣
θ=θold

I Local approximation to the performance of the policy

Improvement Theory

I Theory: bound the difference between Lπold
(π) and η(π), the performance of the policy

(error due because we’re ignoring state distrib. change)

I Result: η(π) ≥ Lπold
(π)− C ·maxs KL[πold(· | s), π(· | s)], where c = 2εγ/(1− γ)2

I Monotonic improvement guaranteed (MM algorithm)

Practical Approximations

Theory: should maximize Lπold(π)− C ·maxs KL[πold(· | s), π(· | s)].
Approximations:

I Estimate Lπold(π) using trajectories sampled from πold
I L̂πold(π) =

∑
n

π(an | sn)
πold(an | sn) Ân

I If just gradient needed, can use L̂πold(π) =
∑

n log π(sn | sn)Ân

I Use mean KL divergence Es∼πold [KL[πold(· | s), π(· | s)]] instead of
maxs KL[. . .]

I Define KLπold(π) = Es∼πold [KL[πold(· | s), π(· | s)]]
I Use estimate from samples,

∑
n KL[πold(· | sn), π(· | sn)]

I C is too pessimistic and provides guarantee for discounted return
I Natural policy gradient and PPO: use fixed or adaptive coefficient C
I TRPO: use hard constraint with fixed KL penalty

Solving KL-Penalized Problem

I maximizeθ Lπθold (πθ)− C ·KLπθold (πθ)

I Make linear approximation to Lπθold and quadratic approximation to KL term:

maximize
θ

g · (θ − θold)− C
2

(θ − θold)TF (θ − θold)

where g =
∂

∂θ
Lπθold (πθ)

∣∣
θ=θold

, F =
∂2

∂2θ
KLπθold (πθ)

∣∣
θ=θold

I Quadratic part of L is negligible compared to KL term
I F is positive semidefinite, but not if we include Hessian of L

I Solution: θ − θold = 1
C
F−1g

Solving Linear Systems using Conjugate Gradient

I Previous slide: θ − θold = 1
C
F−1g . Don’t want to form full Hessian matrix

F = ∂2

∂2θ
KLπθold (πθ)

∣∣
θ=θold

(memory and computation)

I Can compute F−1g approximately using conjugate gradient algorithm
without forming F explicitly

Truncated Newton Method
I Conjugate gradient algorithm approximately solves for x = A−1b, without explicitly

forming matrix A, just reads A through matrix-vector products v → Av .

I After k iterations, CG has minimized 1
2x

TAx − bx in subspace spanned by
b,Ab,A2b, . . . ,Ak−1b

I Given vector v with same dimension as θ, want to compute H−1v , where H = ∂2

∂2θ f (θ).

I To perform CG, Hessian-vector products v → Hv . Can form this function using autodiff
software like Tensorflow. Example:

theta = tf.placeholder(...) # parameter vector

f_of_theta = ... # scalar

vector = tf.placeholder([dim_theta])

gradient = tf.grad(f, theta)

gradient_vector_product = tf.sum(gradient * vector)

hessian_vector_product = tf.grad(gradient_vector_product, theta)

I Hessian vector product computation takes 1-2 times as long as gradient computation

S. J. Wright and J. Nocedal. Numerical optimization. Springer New York, 1999

Truncated Newton Method

I Hessian-vector can be formed as follows if KL Hessian (F) is computed using KL

theta = tf.placeholder(...) # parameter vector

actprob = ... # batchsize x n_actions.

E.g., outputs of neural network with softmax

oldactprob = tf.stop_gradient(actprob)

vector = tf.placeholder([dim_theta])

kl = tf.sum(oldactprob * tf.log(oldactprob / actprob), axis=1)

gradient = tf.grad(kl, theta)

gradient_vector_product = tf.sum(gradient * vector)

hessian_vector_product = tf.grad(gradient_vector_product, theta)

S. J. Wright and J. Nocedal. Numerical optimization. Springer New York, 1999

Solving KL-Penalized Problem: Summary

I maximizeθ Lπθold (πθ)− C ·KLπθold (πθ)

I Make linear approximation to Lπθold and quadratic approximation to KL term:

maximize
θ

g · (θ − θold)− C
2

(θ − θold)TF (θ − θold)

where g =
∂

∂θ
Lπθold (πθ)

∣∣
θ=θold

, F =
∂2

∂2θ
KLπθold (πθ)

∣∣
θ=θold

I Solution: θ − θold = 1
C
F−1g

I Solve for F−1g approximately using conjugate gradient algorithm by forming
Hessian-vector product function

Truncated Natural Policy Gradient Algorithm

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Compute policy gradient g
Use CG (with Hessian-vector products) to compute F−1g
Update policy parameter θ = θold + αF−1g

end for

TRPO: KL-Constrained Problem

I Unconstrained problem: maximize Lπθold (πθ)− C ·KLπθold (πθ)

I Constrained problem: maximize Lπθold (πθ) subject to KLπθold (πθ) ≤ δ

I Often easier to set hyperparameter δ rather than C , can remain fixed over
whole learning process

I We’ll solve constrained quadratic problem: compute F−1g , and then rescale
step to get correct KL

I Take linear and quadratic constraint:
maximizeθ g · (θ − θold) subject to 1

2(θ − θold)TF (θ − θold) ≤ δ
I Form Lagrangian L(θ, λ) = g · (θ − θold)− λ

2 [(θ − θold)TF (θ − θold)− δ]
I Differentiate wrt θ, get θ − θold = 1

λF
−1g

I To satisfy constraint, want 1
2s

TFs = δ.

I Given candidate step sunscaled, rescale to s =
√

2δ
sunscaled·(Fsunscaled)sunscaled

TRPO: KL-Constrained Problem

I Compute sunscaled = F−1g

I Rescale: s =
√

2δ
sunscaled·(Hsunscaled)

sunscaled

I Now do backtracking line search on original problem (before quadratic
constraint) maximize Lπθold (πθ)− 1[KLπθold (πθ) ≤ δ]

I Use steps s, s/2, s/4, . . . until line search objective improves

TRPO Algorithm

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Compute policy gradient g
Use CG (with Hessian-vector products) to compute F−1g
Compute rescaled step s = αF−1g with rescaling and line search
Apply update: θ = θold + αF−1g

end for

Alternative Method for Calculating Natural Gradients

I Given parameterized probability density pθ(x)

I Fisher information matrix

∂

∂2θ
KL[pθold , pθ] = Ex∼pθold

[(
∂

∂θ
log pθ(x)

)T(
∂

∂θ
log pθ(x)

)] ∣∣
θ=θold

I FIM forms a “metric” on policy’s parameter space, induced by KL
divergence. Makes step invariant to reparameterization of coordinates
(θ′ = f (θ)), whereas gradient is not invariant.

I In policy optimization setting, instead of forming Fisher by differentiating

KL, can explictly form
∑

n

(
∂
∂θ

log πθ(an | sn)
)T(∂

∂θ
log πθ(an | sn)

)

“Proximal” Policy Optimization

I Back to penalty instead of constraint

maximize
θ

N∑
n=1

πθ(an | sn)

πθold(an | sn)
Ân − C ·KLπθold (πθ)

I Pseudocode:

for iteration=1, 2, . . . do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase β. If KL too low, decrease β.

end for

I ≈ same performance as TRPO, but only first-order optimization

Approximations in Supervised vs Reinforcement Learning

I Supervised learning
I Linear approximation given by gradient f (θ) ≈ f (θ0) + (θ − θ0) · g
I Training loss approximates test loss

I Reinforcement learning (policy gradients)
I Linear approximation given by gradient of surrogate

f (θ) ≈ f (θ0) + (θ − θ0) · g
I Training surrogate approximates test surrogate (sampled data is

representative of visitation distribution)
I State distribution doesn’t change much

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate
reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust
Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel.
“Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with
Hessian-free optimization”. Neural Networks: Tricks of the Trade.
Springer, 2012

That’s all. Questions?

