
  

Reinforcement Learning
Episode 4

Deep Reinforcement Learning
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“Real” world

How many states are there?

In fact, only 256
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Problem:
State space is usually large, 

sometimes continuous

Two solutions:

- Binarize state space

- Approximate agent with a function

Too many bins or handcrafted features

Let’s pick this one
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From Tables to Approximations

Before:

- Approximate Q(s, a) with some function

Now:

Before:Before:

- For all states and actions remember Q(s, a)

- For example, a linear model over state features

Note: Formally a table can be used as a functional approximator.

This can be helpful for theoretical analysis.
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CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 
(DDPG)

+1 more network, which selects an action, it is 
called (Actor)

Q-network takes (state, action) as input and outputs 1 Q-value 
and is called Critic.

Both Actor and Critic have a target network, so 
now it’s 4 networks total

Environment interaction step: action chosen by Critic + noise
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Overestimation 
Example: RouletteA tabular environment:

1 non-terminal state,
170 betting actions,
Betting $1 (infinite budget) or stop playing 
(yielding $0)
Expected gain per $1 bet: -$0.053



  



  



  



  



  



  



  

Prioritized Experience Replay Example: Roulette

A replay buffer generates a distribution over transitions (s, a, r, s’).
Off-policy algorithms can handle an arbitrary distribution of s and a.
(s, a) pairs come from a playing policy, initial state selection is 
possible.
The distribution of (s, a) will roughly affect only which part of the 
environment the agent adapts to.
However, r and s’ are required to be unbiased.
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Prioritized Replay Buffer Example: Roulette
Example: a toy roulette

Single non-terminal state, 2 actions: bet $1 or quit with no loss.
On a $1 bet a prize of $100 is won with a 0.001 chance.
After a bet or a quit the environment enters the terminal state.

Suppose the buffer is infinitely large, and the 
approximator is a table.

Which Q-function will the learner converge to?

Which policy will it produce?
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Let’s watch a video
https://www.youtube.com/watch?v=UXurvvDY93o

You will have it in your homework assignment to 
observe the spread between Q-values in a state
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