Reinforcement Learning
Episode 4

Deep Reinforcement Learning
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Basic Definitions
Gy = iyt’tn,
Q" (s,a) = E;|G¢|s¢ = s,a; = al
V7(s) = Ex|Gi|st = 8| = Equnrn[Q" (51, a)]
Recurrent Relations
Q" (s,a) = Es, 1t + 7V (5t41)]
Q7(s,a) = Es, | arpr~nTt +YQ" (St41, Qty1)]
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Optimal Policy
For all 7,s,a QT (s,a)>Q™(s,a)

*(s) = argmaz,Q™ (s,a)

Bellman Optimality Equation

Q*(s¢,a) = Es, s ¢ +ymaxy QF(sey1,a’)]
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Q*(st,a) = Es, ., [re +ymaxey Q" (st41,a’)]
Training Step
Q(se, ar) < (1 — a)Q(s¢, ar) + ary + ymaxy Q(Si41,a"))
Q-learning as MSE optimization
Q(st, ar) < Q(st,ar) + ary + ymaxy Q(se11,a") — Q(st, ar))
L = (r; +ymaxy Q(st41,0") — Q(s¢,at))?
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Q* (Stv CL) - E~5t+1 [Tf + Yy maxg Q*<St—|—1 ) 0/)}
Training Step
Q(St, at) < (1 — @)Q(St, at) + Oé(Tt + ymaxg/ Q(St+17 a’))

Q-learning as MSE optimization

Q(st,at) < Q(st,ar) + of(ry + ymaxy Q(si4+1,a’) — Q(S¢, ar)

L = (rt + vy maxg/ Q(St+17 CL/) - Q(Stv at))2
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Q* (Stv CL) - E~5t+1 [Tt + Yy maxg Q*(St—i—] ) a/ﬂ
Training Step
Q(St, at) < (1 — @)Q(St, at) + Oé(Tt + ymaxg/ Q(3t+17 a’))

Q-learning as MSE optimization
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Q-learning

Q*(Stv CL) — E3t+1 [Tt =+ 7Y mMaXg/ Q*(St#—la CL/)]
Training Step
Q(St, at) < (1 — @)Q(St, at) + Oé(Tt + Yy maXg/ Q(St—|—17 a’))

Q-learning as MSE optimization

Q(Sta at) — Q(St7 Clt) + 06(7“75 + 7 maxg/ Q(St—i—la 0/) - Q(Sta at)
Const

L = (rt + Y mMaxeg/ Q(St—l—la a )| T (‘Q(St7 at))2

VL = 2. ('r't + Y maxg/ Q(St—|—17 a/) - Q(Sta a’t))

Stop gradient! \’




Q-learning

Q*(s¢,a) = Eq,,, [rt +ymaxy Q% (Si41,a")]
Training Step
Q(St7 ai) < (1 — @)Q(St, at) + 04(7“75 + v maxg- Q(3t+17 a’))
Q-learning as MSE optimization

Q(st,at) < Q(s¢,a¢) + a(ry + ymaxy Q(si4+1,a") — Q(S¢, ar))

Gradient descent on L = (r; + ymax, Q (si41,a’) — Q(s¢, ay))?
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“Real” world

How many states are there?

4§ — 9210168:3:8

In fact, only 256
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Problem:

State space Is usually large,
sometimes continuous

Two solutions:
- Binarize state space < Too many bins or handcrafted features

- Approximate agent with a function < Let’s pick this one
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From Tables to Approximations

Before:

- For all states and actions remember Q(s, a)

Now:
- Approximate Q(s, a) with some function

- For example, a linear model over state features
Gradient descent on L = (r; +ymax, Q (si41,a’) — Q(s¢, a))?

Note: Formally a table can be used as a functional approximator.

This can be helpful for theoretical analysis.



Continuous
control or large
number of
actions

Possible architectures

Q-value

Q-value 1 Q-value 2 Q-value n

Network

N

State Action

Given (s,a)
Predict Q(s,a)

W

Network One pass for all
T actions
State

Given s predict all g-values

Q(s,a0), Q(s,al), Q(s,a2)

10



Approximate Q-learning

Q(Stﬂa:):r"'}"maxa'Q(Sr+1!a ')

Objective:

L:(Q(St’at)_[r'l'Y'maxa'Q (St+1?a r)

Const

Gradient step:

Y
W“_I—Wt_a‘ﬁ

11



Approximate Q-learning

Q-learning:
Q(sr,ar]=r+yfmaxa.0(sm,a ')
SARSA:

L=(Q(s,,a)-Q(s,.a,))

consider const

Q(s[’ﬂl)=r+)’.Q(s[+l’al+l)
Expected Value SARSA:
(Sr,ﬂ] r+¥ E Q( r+1!'ar )

a'~nlals)

12



100

150

200

0 20 40 60 80 100 120 140

What kind of network digests images well?

13



Basic deep Q-learning

action

Qvalues is a
dense layer with ,
no nonlinearity
e-greedy rule
(tune € or use
probabilistic rule)
Whatever
you found in
your favorite
deep learning

14



WHAT IFITOLD YOU

THATIT'S ALL ONE GﬁEﬂT BIG LIE.



100

150

200
0 20 40 60 B0 100 120 140

How bad it is if agent spends

next 1000 ticks under the left rock?
(while training)

16



Problem

» Training samples are not i

THE ” ' — -n-:-du'r-ﬂwr-mm‘l |
1.1.d”, ‘

environment it hasn't
visited for some time

* Model forgets parts of A | WN:Q

! N t'
+ Drops on learning curve f{f th f A_Jr‘f

« Any ideas? L

= [T ] ) ) [ M

17



Multiple agent trick

parameter
server

Idea: Throw in several
agents with shared W.

« Chances are, they will be
exploring different parts of
the environment,

« More stable training,

« Requires a lot of interaction

Question: your agent is a real
robot car. Any problems?

18



Experience replay

Interaction

z " i

Idea: store several past interactions I - ,
<s,a,r,s"™> I i

Train on random subsamples L

1

» Closer to i.i.d
pool contains several sessions training
» Older interactions were obtained
under weaker policy
training g ~_
batches

Replay

buffer

19
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Experience Replay

You approximate Q(s, a) with a neural network

You use experience replay when training

Agent trains off-policy on an older version of him

Question: which of these algorithms will fail?
Q-Learning CEM

SARSA Expected Values SARSA



When training with on-policy methods,

- use no (or small) experience replay
- compensate with parallel game sessions

22



Left or right?



N-gram trick

ldea:
sraéo(st]

s,~(o(s,_,),a,__,..,o(s,_,)

y A 15 O(SI))

e.g. ball movement in breakout

- One frame

- Several frames

24



N-gram trick

- Nth-order markov assumption

- Works for velocity/timers

- Falls for anything longer that N frames
- Impractical for large N



Autocorrelation

feed-forward

network

Target is based on prediction

Q(s, a) correlates with Q(s’, a)

Q-values

26



Target network

Idea: use network with frozen weights to compute the target
L(©) = Esus.a~al|(Q(s,a,0) — (r + ymax, Q(s',a’, @_)))2]

where © ~is the frozen weights Const

Hard target network:

Update © ~every n steps and set its weights as ©

27



Target network

Idea: use network with frozen weights to compute the target
L(©) = Es~s,a~al(Q(s; a,0) — (r + ymaxy Q(s', a’,07)))?]

where O ~is the frozen weights Const

Hard target network:

Update © ~every n steps and set its weights as ©

Soft target network:

Update ©~ every step:

O =(1—-a)8™ +ab

28



Playing Atari with Deep Reinforcement Learning (2013, Deepmind)

CNN

4 last frames as input

Update weights using:

L(®) = Esu5.a~a[(Q(s,a,0) — (r + ymax, Q(s',a’,07)))?]

Update © ~ every 5000 train steps

- Q-values

Experience replay

10° last transitions

29
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CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING
(DDPG)

Q-network takes (state, action) as input and outputs 1 Q-value

and is called Critic.
Q-value
+1 more network, which selects an action, it is
T called (Actor)
Both Actor and Critic have a target network, so
Network now it's 4 networks total
/—“,\— Environment interaction step: action chosen by Critic + noise

State Action
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CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING

(DDPG)
B vahn Training step
T 1. Use the Critic to select the optimal action, using target networks:
Qta,rget =T+ ’}/Q/(Snexta N/(Snext))
Network 2. Make a gradient descent step for Critic by the regular DQN loss:

/_‘“'\ Leritie = (Q(8, @) — Quarget)”

3. Make a gradient descent step for Actor by the by the loss
State Action maximizing Q:

LActor — _Q(Sa ,LL<8>)

Notation. Actor: p , Critic: Q



Problem of overestimation

We use “max” operator to compute the target

L(s,a) = (Q(s,a) — (r + ymaxy Q(s',a’)))*

We have a problem

(although we want Ess.a~a[L(s,a)] to be equal zero)

30



E max & > max E&

i=1..n i=1..n

For any set of random variables {&; }'__, .

Equality is only reached when one of them (let it be &, ) is greater
than all the otherswith P = 1, i.e.
E(¢)=Emax ¢ < P{& =max &} = I

i=1..n i=1..n



Problem of overestimation

Normal distribution
3*10° samples

mean: ~0.0004

040 1
035 1
0.30 -
0.25 -
0.20 -
0.15 1
0.10 -
0.05 1

0.00

kY|



Problem of overestimation

Normal distribution
3*10° x 3 samples
Then take maximum of every tuple
mean: ~0.8467

0.5 -

04 A

03 1

0.2 1

01 4

0.0 -

32



Problem of overestimation

Normal distribution
3*10° x 10 samples
Then take maximum of every tuple
mean: ~1.538

0.7 -

06 4

05 1

04 4

03 1

0.2 1

01 1

0.0 -




Problem of overestimation

" possible
r=0 actions

Y (S*:ao)
g SIE‘:.:.‘: ----- B Q(Sr,ﬂl)

Suppose true Q(s’,a’) are equal to 0 for all a’
But we have an approximation (or other) error ~ N (0, 02)

So (s, a) should be equal to 0

34



Problem of overestimation

. T
g - :‘::.‘::----- Q(S ',Gl)

But if we update Q(s,a) towards " + 7y mMaX,’ Q(S’, a")

we will have overestimated ()(s,a) > 0 because

E[max, Q(s',a’)] >= max, E|Q(s",a’)]

35



Overestimation

A tabular environment: -

1 non-terminal state, Exam p I e U RO u Ie'tte
170 betting actions,

Betting $1 (infinite budget) or stop playing

(yielding $0)

Expected gain per $1 bet: -$0.053

a=1/n(s, a) a = 1/n(s,a)’8

ey
o
I
1

Q
Double Q

o
-]
T
|
i
1
'
|
i
1
|
W

1
'
|
1
|
1
|

Expected profit
iS5 <
]
S

| 5 x 104 10° 5 x 10* 10°
Number of trials Number of trials




Double Q-learning (NIPS 2010)

Y = 7 + ymaxg Q(S’, af) - Q-learning target

y=r-+ f}/Q(S” argmax, Q(S!, a’)) - Rewritten Q-learning target

Idea: use two estimators of g-values: Q*, QP
They should compensate mistakes of each other because they will be independent
Let's get argmax from another estimator!

Yy=1r-+ nyA(s’, argmax, QB (8’, a")) - Double Q-learning target

36



Double Q-learning (NIPS 2010)

Algorithm 1 Double Q-learning

1: Initialize Q4,QP,s
2: repeat
3:  Choose a, based on Q* (s, -) and QZ(s, ), observe r, s’

4 Choose (e.g. random) either UPDATE(A) or UPDATE(B)

5: if UPDATE(A) then

6: Define a* = arg max,, Q4(s,a)

7 Q% (s,a) «— Q*(s,a) + a(s,a) (r + 7Q”(s',a*) — Q*(s,a))
8:  else if UPDATE(B) then

9: Define b* = arg max, Q”(s’,a)
10: Q"(s,a) « Q°(s,a) + a(s,a)(r + yQ*(s',b*) — Q¥ (s, a))
11:  endif

122 s+ &
13: until end

Can we combine this algorithm with DQN?

a7



Deep Reinforcement Learning with Double Q-learning (Deepmind, 2015)

Idea: use main network to choose action!

Ydgn =T +ymaxy Q(s',a',07)

yddqn =T T ’YQ(S,& argmaxeg- Q(Sfa CL’, @)3 @_)

Alien Space Invaders Time Pilot Zaxxon

i ; i

0 50 100 150 200 0 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)

b
b
=

DON estimate

Double DON estimate

| N

10

Value estimates

Double DON true value
DON true value

DQN Double DQN  Double DQN (tuned)

Median | 47.5% 88.4%

116.7%

Mean 122.0% 273.1%

475.2%

38



Experience Replay

State Action | Reward Next state
s 0 a0 | 0 s 1
s 1 a_1 | 0 s_2
s (n-1) a_(n-1) 0 S
s n an | 100 s_(n+1)
s_(n+1) a_(n+1) | 0 s (n+2)

39



Prioritized Experience Replay (2016, Deepmind)
Idea: sample transitions from xp-replay cleverly

We want to set probability for every transition. Let's use the absolute value of
TD-error of transition as a probability!

TD-error 6 = Q(s,a) — (r + vQ(s’, argmax, Q(s',a’,0),07))
p=|9]

N P;
Ple) = LY

where « is the priority parameter (when « is O it's the uniform case)

Do you see the problem?

40



Prioritized Experience Replay (2016, Deepmind)
Idea: sample transitions from xp-replay cleverly

We want to set probability for every transition. Let's use the absolute value of
TD-error of transition as a probability!

TD-error 6 = Q(s,a) — (r + yQ(s’, argmax, Q(s’,a’,0),07))
p=|9]

N P;
Ple) = 2 5Pk

where « is the priority parameter (when « is O it's the uniform case)

Do you see the problem?
Transitions become non i.i.d. and therefore we introduce the bias.

40



Prioritized Experience Replay Example: Roulette

A replay buffer generates a distribution over transitions (s, a, r, s’).
Off-policy algorithms can handle an arbitrary distribution of s and a.
(s, a) pairs come from a playing policy, initial state selection is
possible.

The distribution of (s, a) will roughly affect only which part of the
environment the agent adapts to.

However, r and s’ are required to be unbiased.
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Prioritized Replay Buffer Example: Roulette

Example: a toy roulette
Single non-terminal state, 2 actions: bet $1 or quit with no loss.

On a $1 bet a prize of $100 is won with a 0.001 chance.
After a bet or a quit the environment enters the terminal state.

Suppose the buffer is infinitely large, and the
approximator is a table.

Which Q-function will the learner converge to?

Which policy will it produce?




Prioritized Experience Replay (2016, Deepmind)

Solution: we can correct the bias by using importance-sampling weights

&
1 1 ' r
; : where 5 i1s the parameter
. (N Pm) RS

Y
P;

Ek Py

So we sample using P(i) = and multiply error by w;
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Prioritized Experience Replay (2016, Deepmind)

Additional details

We also normalize weights by 1/ max; w; (here is no mathematical reason)

When we put transition into experience replay, we set maximal priority p; = max;«¢ p;
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Let's watch a video
https://www.youtube.com/watch?v=UXurvvDY930



Let's watch a video
https://www.youtube.com/watch?v=UXurvvDY930

You will have it in your homework assignment to
observe the spread between Q-values in a state



Dueling Network Architectures for Deep Reinforcement Learning (2016, Deepmind)

Idea: change the network'’s architecture.

Recall:
Advantage Function A(s,a) = Q(s,a) - V(s)

So, Q(s,a) = A(s,a) + V(s)

=

=4

=1

=+

Do you see the problem?

Q(s)
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Dueling Network Architectures for Deep Reinforcement Learning (2016, Deepmind)

Here is one extra freedom degree!

Example:

W =M
i

Which one is good?



Dueling Network Architectures for Deep Reinforcement Learning (2016, Deepmind)

Solution: require mzﬁl A(s,a’; 0, a) to be equal to zero!
a’ €

So the Q-function computes as:
Q(s,a;0,a,8) =V(s;0,5) +

(A(s,a;@, o) — max A(s,a’;0, a))
a’'€|A|

46



Dueling Network Architectures for Deep Reinforcement Learning (2016, Deepmind)

Solution: require I}l:ﬁlA(s a’; 0, «) to be equal to zero!

So the Q-function computes as:
Q(s,a;0,a,8) =V(s;0,5) +

(A(s ;0,) — max A(s,a';0 a))

Authors of this papers also introduced this way to compute Q-values:

Q(s,a;0,a,8) =V (s;0,8) +
(A(sa()a —WZA'?{I 0, « )

They wrote that this variant increases stability of the optimization
(The fact that this loses the original semantics of Q doesn’t matter)
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Distributional Q-learning
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Distributional Q-learning

Gy = f:fyt/_trt/
V7 (s) :tI:EiT G|s; = s
Q" (s,a) = E;|G¢|s¢ = s,a; = a
27 (s,a) = |G¢|st = s,a: = al
Recurrent Relation
Z™(2,a) 2 R(z,a) + vZ™ (X', A")
Bellman Operator

TZ(x,a) = R(z,a) +~vZ(X',argmaxE Z(X' a'))
a’'€ A




Asynchronous Methods for Deep Reinforcement Learning (2016, Deepmind)

Worker Worker Worker

Transitions
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Rainbow (2017, Deepmind)

Dueling DQN
Noisy DQN

multi-step DQN
DQN

Algorithm Median

DQN 79.5%
Double DQN 117%

Rainbow 223%
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ﬂ Reward re-scaling

: Double DQN
Experience Replay

n-step DQN ﬂ l Dueling DQN

AAARARRRAAAAAARAAM
& nnnnARRRRRRARRRA.

@ ¥ Median performance: 1920% of human performance! &
50

Distributed Prioritized




Thanks for your attention!
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