Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
ud1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tagger

A Joint Chinese segmentation and POS tagger based on bidirectional GRU-CRF

News

Add instructions on how to use the tagger as a word segmenter (without performing joint POS tagging).

TimeDistributed is completely suppressed now. Modified CNNs for graphical feature extraction. (2018.1.8)

Add instructions on how to tag raw sentences with trained models. (2017.12.9)

Intergrated the feedforward neural network model introduced in Zheng et al. (2013) (2017.11.25)

Updated HiddenLayer for efficiency. TimeDistributed is not applied for output inference anymore. (2017.11.25)

The code is updated to TensorFlow 1.2.0 (2017.7.14)

Dyniamic bidirectional rnn is employed, now it requires drastically less memory both for training and tagging (2017.7.14)

Now the tagger supports bucket model to very efficiently tag very large files.

Requirements

Python 2.7

TensorFlow 1.2.0 or newer

Pygame (Convert Chinese characters into pictures)

Reference

Yan Shao, Christian Hardmeier, Jörg Tiedemann and Joakim Nivre. "Character-based Joint Segmentation and POS Tagging for Chinese using Bidirectional RNN-CRF", Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 173–183, Taipei, Taiwan, 2017

http://aclweb.org/anthology/I/I17/I17-1018.pdf

To reproduce the results reported in the paper:

Single

python tagger.py train -p ud1 -t train.txt -d dev.txt -wv -cp -rd -gru -m model_ud1 -emb Embeddings/glove.txt

python tagger.py test -p ud1 -e test.txt -m model_ud1 -emb Embeddings/glove.txt

Ensemble

python tagger.py train -p ud1 -t train.txt -d dev.txt -wv -cp -rd -gru -m model_ud1_1 -emb Embeddings/glove.txt

python tagger.py train -p ud1 -t train.txt -d dev.txt -wv -cp -rd -gru -m model_ud1_2 -emb Embeddings/glove.txt

python tagger.py train -p ud1 -t train.txt -d dev.txt -wv -cp -rd -gru -m model_ud1_3 -emb Embeddings/glove.txt

python tagger.py train -p ud1 -t train.txt -d dev.txt -wv -cp -rd -gru -m model_ud1_4 -emb Embeddings/glove.txt

python tagger.py test -ens -p ud1 -e test.txt -m model_ud1 -emb Embeddings/glove.txt

To tag raw sentences:

Use simple model:

(simple)

python tagger.py tag -p ud1 -r raw.txt -m model_ud1 -emb Embeddings/glove.txt -opth tagged_file.txt

(ensemble)

python tagger.py tag -ens -p ud1 -r raw.txt -m model_ud1 -emb Embeddings/glove.txt -opth tagged_file.txt

Use bucket model (recommended for tagging very large corpora):

(simple)

python tagger.py tag -p ud1 -r raw.txt -m model_ud1 -emb Embeddings/glove.txt -opth tagged_file.txt -tl

(ensemble)

python tagger.py tag -ens -p ud1 -r raw.txt -m model_ud1 -emb Embeddings/glove.txt -opth tagged_file.txt -tl

To use the tagger as a word segmenter (without POS tagging):

add -tg seg while training.

About

A Joint Chinese segmentation and POS tagger based on bidirectional GRU-CRF

Resources

Releases

No releases published

Packages

No packages published

Languages