Skip to content

yaoyao-liu/mini-imagenet-tools

main
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

mini-ImageNet Logo

Tools for mini-ImageNet Dataset

LICENSE Python PyPI Downloads CodeFactor Grade

This repo provides python source code for creating mini-ImageNet dataset from ImageNet and the utils for generating batches during training. This repo is related to our work on few-shot learning: Meta-Transfer Learning.

Summary

About mini-ImageNet

The mini-ImageNet dataset was proposed by Vinyals et al. for few-shot learning evaluation. Its complexity is high due to the use of ImageNet images but requires fewer resources and infrastructure than running on the full ImageNet dataset. In total, there are 100 classes with 600 samples of 84×84 color images per class. These 100 classes are divided into 64, 16, and 20 classes respectively for sampling tasks for meta-training, meta-validation, and meta-test.

Please note that the split files in csv_files folder are created by Ravi and Larochelle (GitHub link). Vinyals et al. didn't include their split files for mini-ImageNet when they first released their paper, so Ravi and Larochelle created their own splits. Additional split files are provided here.

Requirements

  • Python 2.7 or 3.x
  • numpy
  • tqdm
  • opencv-python
  • Pillow

Installation

Install via PyPI:

pip install miniimagenettools

Install via GitHub:

git clone https://github.com/yaoyao-liu/mini-imagenet-tools.git

Usage

First, you need to download the image source files from ImageNet website. If you already have it, you may use it directly. Some people report the ImageNet website is not working. Here is an alternative download link. Please carefully read the terms for ImageNet before you download it.

Filename: ILSVRC2012_img_train.tar
Size: 138 GB
MD5: 1d675b47d978889d74fa0da5fadfb00e

Then clone the repo:

git clone https://github.com:y2l/mini-imagenet-tools.git
cd mini-imagenet-tools

To generate mini-ImageNet dataset from tar file:

python mini_imagenet_generator.py --tar_dir [your_path_of_the_ILSVRC2012_img_train.tar]

To generate mini-ImageNet dataset from untarred folder:

python mini_imagenet_generator.py --imagenet_dir [your_path_of_imagenet_folder]

If you want to resize the images to the specified resolution:

python mini_imagenet_generator.py --tar_dir [your_path_of_the_ILSVRC2012_img_train.tar] --image_resize 100

P.S. In default settings, the images will be resized to 84 × 84.

If you don't want to resize the images, you may set --image_resize 0.

To use the MiniImageNetDataLoader class:

from miniimagenettools.mini_imagenet_dataloader import MiniImageNetDataLoader

dataloader = MiniImageNetDataLoader(shot_num=5, way_num=5, episode_test_sample_num=15)

dataloader.generate_data_list(phase='train')
dataloader.generate_data_list(phase='val')
dataloader.generate_data_list(phase='test')

dataloader.load_list(phase='all')

for idx in range(total_train_step):
    episode_train_img, episode_train_label, episode_test_img, episode_test_label = \
        dataloader.get_batch(phase='train', idx=idx)
    ...

Performance

Check the SOTA results for mini-ImageNet on this page.

Download Processed Images

Download jpg files (Thanks for the contribution by @vainaijr)

Download tar files

Acknowledgement

Model-Agnostic Meta-Learning

Optimization as a Model for Few-Shot Learning

Meta-Learning for Semi-Supervised Few-Shot Classification

@ChristopherDaw