Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
20 lines (19 sloc) 2.62 KB
author="Deldjoo, Yashar
and Dacrema, Maurizio Ferrari
and Constantin, Mihai Gabriel
and Eghbal-zadeh, Hamid
and Cereda, Stefano
and Schedl, Markus
and Ionescu, Bogdan
and Cremonesi, Paolo",
title="Movie genome: alleviating new item cold start in movie recommendation",
journal="User Modeling and User-Adapted Interaction",
abstract="As of today, most movie recommendation services base their recommendations on collaborative filtering (CF) and/or content-based filtering (CBF) models that use metadata (e.g., genre or cast). In most video-on-demand and streaming services, however, new movies and TV series are continuously added. CF models are unable to make predictions in such a scenario, since the newly added videos lack interactions---a problem technically known as new item cold start (CS). Currently, the most common approach to this problem is to switch to a purely CBF method, usually by exploiting textual metadata. This approach is known to have lower accuracy than CF because it ignores useful collaborative information and relies on human-generated textual metadata, which are expensive to collect and often prone to errors. User-generated content, such as tags, can also be rare or absent in CS situations. In this paper, we introduce a new movie recommender system that addresses the new item problem in the movie domain by (i) integrating state-of-the-art audio and visual descriptors, which can be automatically extracted from video content and constitute what we call the movie genome; (ii) exploiting an effective data fusion method named canonical correlation analysis, which was successfully tested in our previous works Deldjoo et al. (in: International Conference on Electronic Commerce and Web Technologies. Springer, Berlin, pp 34--45, 2016b; Proceedings of the Twelfth ACM Conference on Recommender Systems. ACM, 2018b), to better exploit complementary information between different modalities; (iii) proposing a two-step hybrid approach which trains a CF model on warm items (items with interactions) and leverages the learned model on the movie genome to recommend cold items (items without interactions). Experimental validation is carried out using a system-centric study on a large-scale, real-world movie recommendation dataset both in an absolute cold start and in a cold to warm transition; and a user-centric online experiment measuring different subjective aspects, such as satisfaction and diversity. Results show the benefits of this approach compared to existing approaches.",
You can’t perform that action at this time.