Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

file 760 lines (664 sloc) 25.048 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/*
* Floating point number functions.
*
* Copyright (C) 2001-2007 Peter Johnson
*
* Based on public-domain x86 assembly code by Randall Hyde (8/28/91).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "util.h"

#include <ctype.h>

#include "coretype.h"
#include "bitvect.h"
#include "file.h"

#include "errwarn.h"
#include "floatnum.h"


/* 97-bit internal floating point format:
* 0000000s eeeeeeee eeeeeeee m.....................................m
* Sign exponent mantissa (80 bits)
* 79 0
*
* Only L.O. bit of Sign byte is significant. The rest is zero.
* Exponent is bias 32767.
* Mantissa does NOT have an implied one bit (it's explicit).
*/
struct yasm_floatnum {
    /*@only@*/ wordptr mantissa; /* Allocated to MANT_BITS bits */
    unsigned short exponent;
    unsigned char sign;
    unsigned char flags;
};

/* constants describing parameters of internal floating point format */
#define MANT_BITS 80
#define MANT_BYTES 10
#define MANT_SIGDIGITS 24
#define EXP_BIAS 0x7FFF
#define EXP_INF 0xFFFF
#define EXP_MAX 0xFFFE
#define EXP_MIN 1
#define EXP_ZERO 0

/* Flag settings for flags field */
#define FLAG_ISZERO 1<<0

/* Note this structure integrates the floatnum structure */
typedef struct POT_Entry_s {
    yasm_floatnum f;
    int dec_exponent;
} POT_Entry;

/* "Source" for POT_Entry. */
typedef struct POT_Entry_Source_s {
    unsigned char mantissa[MANT_BYTES]; /* little endian mantissa */
    unsigned short exponent; /* Bias 32767 exponent */
} POT_Entry_Source;

/* Power of ten tables used by the floating point I/O routines.
* The POT_Table? arrays are built from the POT_Table?_Source arrays at
* runtime by POT_Table_Init().
*/

/* This table contains the powers of ten raised to negative powers of two:
*
* entry[12-n] = 10 ** (-2 ** n) for 0 <= n <= 12.
* entry[13] = 1.0
*/
static /*@only@*/ POT_Entry *POT_TableN;
static POT_Entry_Source POT_TableN_Source[] = {
    {{0xe3,0x2d,0xde,0x9f,0xce,0xd2,0xc8,0x04,0xdd,0xa6},0x4ad8}, /* 1e-4096 */
    {{0x25,0x49,0xe4,0x2d,0x36,0x34,0x4f,0x53,0xae,0xce},0x656b}, /* 1e-2048 */
    {{0xa6,0x87,0xbd,0xc0,0x57,0xda,0xa5,0x82,0xa6,0xa2},0x72b5}, /* 1e-1024 */
    {{0x33,0x71,0x1c,0xd2,0x23,0xdb,0x32,0xee,0x49,0x90},0x795a}, /* 1e-512 */
    {{0x91,0xfa,0x39,0x19,0x7a,0x63,0x25,0x43,0x31,0xc0},0x7cac}, /* 1e-256 */
    {{0x7d,0xac,0xa0,0xe4,0xbc,0x64,0x7c,0x46,0xd0,0xdd},0x7e55}, /* 1e-128 */
    {{0x24,0x3f,0xa5,0xe9,0x39,0xa5,0x27,0xea,0x7f,0xa8},0x7f2a}, /* 1e-64 */
    {{0xde,0x67,0xba,0x94,0x39,0x45,0xad,0x1e,0xb1,0xcf},0x7f94}, /* 1e-32 */
    {{0x2f,0x4c,0x5b,0xe1,0x4d,0xc4,0xbe,0x94,0x95,0xe6},0x7fc9}, /* 1e-16 */
    {{0xc2,0xfd,0xfc,0xce,0x61,0x84,0x11,0x77,0xcc,0xab},0x7fe4}, /* 1e-8 */
    {{0xc3,0xd3,0x2b,0x65,0x19,0xe2,0x58,0x17,0xb7,0xd1},0x7ff1}, /* 1e-4 */
    {{0x71,0x3d,0x0a,0xd7,0xa3,0x70,0x3d,0x0a,0xd7,0xa3},0x7ff8}, /* 1e-2 */
    {{0xcd,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc},0x7ffb}, /* 1e-1 */
    {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},0x7fff}, /* 1e-0 */
};

/* This table contains the powers of ten raised to positive powers of two:
*
* entry[12-n] = 10 ** (2 ** n) for 0 <= n <= 12.
* entry[13] = 1.0
* entry[-1] = entry[0];
*
* There is a -1 entry since it is possible for the algorithm to back up
* before the table. This -1 entry is created at runtime by duplicating the
* 0 entry.
*/
static /*@only@*/ POT_Entry *POT_TableP;
static POT_Entry_Source POT_TableP_Source[] = {
    {{0x4c,0xc9,0x9a,0x97,0x20,0x8a,0x02,0x52,0x60,0xc4},0xb525}, /* 1e+4096 */
    {{0x4d,0xa7,0xe4,0x5d,0x3d,0xc5,0x5d,0x3b,0x8b,0x9e},0x9a92}, /* 1e+2048 */
    {{0x0d,0x65,0x17,0x0c,0x75,0x81,0x86,0x75,0x76,0xc9},0x8d48}, /* 1e+1024 */
    {{0x65,0xcc,0xc6,0x91,0x0e,0xa6,0xae,0xa0,0x19,0xe3},0x86a3}, /* 1e+512 */
    {{0xbc,0xdd,0x8d,0xde,0xf9,0x9d,0xfb,0xeb,0x7e,0xaa},0x8351}, /* 1e+256 */
    {{0x6f,0xc6,0xdf,0x8c,0xe9,0x80,0xc9,0x47,0xba,0x93},0x81a8}, /* 1e+128 */
    {{0xbf,0x3c,0xd5,0xa6,0xcf,0xff,0x49,0x1f,0x78,0xc2},0x80d3}, /* 1e+64 */
    {{0x20,0xf0,0x9d,0xb5,0x70,0x2b,0xa8,0xad,0xc5,0x9d},0x8069}, /* 1e+32 */
    {{0x00,0x00,0x00,0x00,0x00,0x04,0xbf,0xc9,0x1b,0x8e},0x8034}, /* 1e+16 */
    {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xbc,0xbe},0x8019}, /* 1e+8 */
    {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x40,0x9c},0x800c}, /* 1e+4 */
    {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xc8},0x8005}, /* 1e+2 */
    {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xa0},0x8002}, /* 1e+1 */
    {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},0x7fff}, /* 1e+0 */
};


static void
POT_Table_Init_Entry(/*@out@*/ POT_Entry *e, POT_Entry_Source *s, int dec_exp)
{
    /* Save decimal exponent */
    e->dec_exponent = dec_exp;

    /* Initialize mantissa */
    e->f.mantissa = BitVector_Create(MANT_BITS, FALSE);
    BitVector_Block_Store(e->f.mantissa, s->mantissa, MANT_BYTES);

    /* Initialize exponent */
    e->f.exponent = s->exponent;

    /* Set sign to 0 (positive) */
    e->f.sign = 0;

    /* Clear flags */
    e->f.flags = 0;
}

/*@-compdef@*/
void
yasm_floatnum_initialize(void)
/*@globals undef POT_TableN, undef POT_TableP, POT_TableP_Source,
POT_TableN_Source @*/
{
    int dec_exp = 1;
    int i;

    /* Allocate space for two POT tables */
    POT_TableN = yasm_xmalloc(14*sizeof(POT_Entry));
    POT_TableP = yasm_xmalloc(15*sizeof(POT_Entry)); /* note 1 extra for -1 */

    /* Initialize entry[0..12] */
    for (i=12; i>=0; i--) {
        POT_Table_Init_Entry(&POT_TableN[i], &POT_TableN_Source[i], 0-dec_exp);
        POT_Table_Init_Entry(&POT_TableP[i+1], &POT_TableP_Source[i], dec_exp);
        dec_exp *= 2; /* Update decimal exponent */
    }

    /* Initialize entry[13] */
    POT_Table_Init_Entry(&POT_TableN[13], &POT_TableN_Source[13], 0);
    POT_Table_Init_Entry(&POT_TableP[14], &POT_TableP_Source[13], 0);

    /* Initialize entry[-1] for POT_TableP */
    POT_Table_Init_Entry(&POT_TableP[0], &POT_TableP_Source[0], 4096);

    /* Offset POT_TableP so that [0] becomes [-1] */
    POT_TableP++;
}
/*@=compdef@*/

/*@-globstate@*/
void
yasm_floatnum_cleanup(void)
{
    int i;

    /* Un-offset POT_TableP */
    POT_TableP--;

    for (i=0; i<14; i++) {
        BitVector_Destroy(POT_TableN[i].f.mantissa);
        BitVector_Destroy(POT_TableP[i].f.mantissa);
    }
    BitVector_Destroy(POT_TableP[14].f.mantissa);

    yasm_xfree(POT_TableN);
    yasm_xfree(POT_TableP);
}
/*@=globstate@*/

static void
floatnum_normalize(yasm_floatnum *flt)
{
    long norm_amt;

    if (BitVector_is_empty(flt->mantissa)) {
        flt->exponent = 0;
        return;
    }

    /* Look for the highest set bit, shift to make it the MSB, and adjust
* exponent. Don't let exponent go negative. */
    norm_amt = (MANT_BITS-1)-Set_Max(flt->mantissa);
    if (norm_amt > (long)flt->exponent)
        norm_amt = (long)flt->exponent;
    BitVector_Move_Left(flt->mantissa, (N_int)norm_amt);
    flt->exponent -= (unsigned short)norm_amt;
}

/* acc *= op */
static void
floatnum_mul(yasm_floatnum *acc, const yasm_floatnum *op)
{
    long expon;
    wordptr product, op1, op2;
    long norm_amt;

    /* Compute the new sign */
    acc->sign ^= op->sign;

    /* Check for multiply by 0 */
    if (BitVector_is_empty(acc->mantissa) || BitVector_is_empty(op->mantissa)) {
        BitVector_Empty(acc->mantissa);
        acc->exponent = EXP_ZERO;
        return;
    }

    /* Add exponents, checking for overflow/underflow. */
    expon = (((int)acc->exponent)-EXP_BIAS) + (((int)op->exponent)-EXP_BIAS);
    expon += EXP_BIAS;
    if (expon > EXP_MAX) {
        /* Overflow; return infinity. */
        BitVector_Empty(acc->mantissa);
        acc->exponent = EXP_INF;
        return;
    } else if (expon < EXP_MIN) {
        /* Underflow; return zero. */
        BitVector_Empty(acc->mantissa);
        acc->exponent = EXP_ZERO;
        return;
    }

    /* Add one to the final exponent, as the multiply shifts one extra time. */
    acc->exponent = (unsigned short)(expon+1);

    /* Allocate space for the multiply result */
    product = BitVector_Create((N_int)((MANT_BITS+1)*2), FALSE);

    /* Allocate 1-bit-longer fields to force the operands to be unsigned */
    op1 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);
    op2 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);

    /* Make the operands unsigned after copying from original operands */
    BitVector_Copy(op1, acc->mantissa);
    BitVector_MSB(op1, 0);
    BitVector_Copy(op2, op->mantissa);
    BitVector_MSB(op2, 0);

    /* Compute the product of the mantissas */
    BitVector_Multiply(product, op1, op2);

    /* Normalize the product. Note: we know the product is non-zero because
* both of the original operands were non-zero.
*
* Look for the highest set bit, shift to make it the MSB, and adjust
* exponent. Don't let exponent go negative.
*/
    norm_amt = (MANT_BITS*2-1)-Set_Max(product);
    if (norm_amt > (long)acc->exponent)
        norm_amt = (long)acc->exponent;
    BitVector_Move_Left(product, (N_int)norm_amt);
    acc->exponent -= (unsigned short)norm_amt;

    /* Store the highest bits of the result */
    BitVector_Interval_Copy(acc->mantissa, product, 0, MANT_BITS, MANT_BITS);

    /* Free allocated variables */
    BitVector_Destroy(product);
    BitVector_Destroy(op1);
    BitVector_Destroy(op2);
}

yasm_floatnum *
yasm_floatnum_create(const char *str)
{
    yasm_floatnum *flt;
    int dec_exponent, dec_exp_add; /* decimal (powers of 10) exponent */
    int POT_index;
    wordptr operand[2];
    int sig_digits;
    int decimal_pt;
    boolean carry;

    flt = yasm_xmalloc(sizeof(yasm_floatnum));

    flt->mantissa = BitVector_Create(MANT_BITS, TRUE);

    /* allocate and initialize calculation variables */
    operand[0] = BitVector_Create(MANT_BITS, TRUE);
    operand[1] = BitVector_Create(MANT_BITS, TRUE);
    dec_exponent = 0;
    sig_digits = 0;
    decimal_pt = 1;

    /* set initial flags to 0 */
    flt->flags = 0;

    /* check for + or - character and skip */
    if (*str == '-') {
        flt->sign = 1;
        str++;
    } else if (*str == '+') {
        flt->sign = 0;
        str++;
    } else
        flt->sign = 0;

    /* eliminate any leading zeros (which do not count as significant digits) */
    while (*str == '0')
        str++;

    /* When we reach the end of the leading zeros, first check for a decimal
* point. If the number is of the form "0---0.0000" we need to get rid
* of the zeros after the decimal point and not count them as significant
* digits.
*/
    if (*str == '.') {
        str++;
        while (*str == '0') {
            str++;
            dec_exponent--;
        }
    } else {
        /* The number is of the form "yyy.xxxx" (where y <> 0). */
        while (isdigit(*str)) {
            /* See if we've processed more than the max significant digits: */
            if (sig_digits < MANT_SIGDIGITS) {
                /* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
                BitVector_shift_left(flt->mantissa, 0);
                BitVector_Copy(operand[0], flt->mantissa);
                BitVector_Move_Left(flt->mantissa, 2);
                carry = 0;
                BitVector_add(operand[1], operand[0], flt->mantissa, &carry);

                /* Add in current digit */
                BitVector_Empty(operand[0]);
                BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
                carry = 0;
                BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
            } else {
                /* Can't integrate more digits with mantissa, so instead just
* raise by a power of ten.
*/
                dec_exponent++;
            }
            sig_digits++;
            str++;
        }

        if (*str == '.')
            str++;
        else
            decimal_pt = 0;
    }

    if (decimal_pt) {
        /* Process the digits to the right of the decimal point. */
        while (isdigit(*str)) {
            /* See if we've processed more than 19 significant digits: */
            if (sig_digits < 19) {
                /* Raise by a power of ten */
                dec_exponent--;

                /* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
                BitVector_shift_left(flt->mantissa, 0);
                BitVector_Copy(operand[0], flt->mantissa);
                BitVector_Move_Left(flt->mantissa, 2);
                carry = 0;
                BitVector_add(operand[1], operand[0], flt->mantissa, &carry);

                /* Add in current digit */
                BitVector_Empty(operand[0]);
                BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
                carry = 0;
                BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
            }
            sig_digits++;
            str++;
        }
    }

    if (*str == 'e' || *str == 'E') {
        str++;
        /* We just saw the "E" character, now read in the exponent value and
* add it into dec_exponent.
*/
        dec_exp_add = 0;
        sscanf(str, "%d", &dec_exp_add);
        dec_exponent += dec_exp_add;
    }

    /* Free calculation variables. */
    BitVector_Destroy(operand[1]);
    BitVector_Destroy(operand[0]);

    /* Normalize the number, checking for 0 first. */
    if (BitVector_is_empty(flt->mantissa)) {
        /* Mantissa is 0, zero exponent too. */
        flt->exponent = 0;
        /* Set zero flag so output functions don't see 0 value as underflow. */
        flt->flags |= FLAG_ISZERO;
        /* Return 0 value. */
        return flt;
    }
    /* Exponent if already norm. */
    flt->exponent = (unsigned short)(0x7FFF+(MANT_BITS-1));
    floatnum_normalize(flt);

    /* The number is normalized. Now multiply by 10 the number of times
* specified in DecExponent. This uses the power of ten tables to speed
* up this operation (and make it more accurate).
*/
    if (dec_exponent > 0) {
        POT_index = 0;
        /* Until we hit 1.0 or finish exponent or overflow */
        while ((POT_index < 14) && (dec_exponent != 0) &&
               (flt->exponent != EXP_INF)) {
            /* Find the first power of ten in the table which is just less than
* the exponent.
*/
            while (dec_exponent < POT_TableP[POT_index].dec_exponent)
                POT_index++;

            if (POT_index < 14) {
                /* Subtract out what we're multiplying in from exponent */
                dec_exponent -= POT_TableP[POT_index].dec_exponent;

                /* Multiply by current power of 10 */
                floatnum_mul(flt, &POT_TableP[POT_index].f);
            }
        }
    } else if (dec_exponent < 0) {
        POT_index = 0;
        /* Until we hit 1.0 or finish exponent or underflow */
        while ((POT_index < 14) && (dec_exponent != 0) &&
               (flt->exponent != EXP_ZERO)) {
            /* Find the first power of ten in the table which is just less than
* the exponent.
*/
            while (dec_exponent > POT_TableN[POT_index].dec_exponent)
                POT_index++;

            if (POT_index < 14) {
                /* Subtract out what we're multiplying in from exponent */
                dec_exponent -= POT_TableN[POT_index].dec_exponent;

                /* Multiply by current power of 10 */
                floatnum_mul(flt, &POT_TableN[POT_index].f);
            }
        }
    }

    /* Round the result. (Don't round underflow or overflow). Also don't
* increment if this would cause the mantissa to wrap.
*/
    if ((flt->exponent != EXP_INF) && (flt->exponent != EXP_ZERO) &&
        !BitVector_is_full(flt->mantissa))
        BitVector_increment(flt->mantissa);

    return flt;
}

yasm_floatnum *
yasm_floatnum_copy(const yasm_floatnum *flt)
{
    yasm_floatnum *f = yasm_xmalloc(sizeof(yasm_floatnum));

    f->mantissa = BitVector_Clone(flt->mantissa);
    f->exponent = flt->exponent;
    f->sign = flt->sign;
    f->flags = flt->flags;

    return f;
}

void
yasm_floatnum_destroy(yasm_floatnum *flt)
{
    BitVector_Destroy(flt->mantissa);
    yasm_xfree(flt);
}

int
yasm_floatnum_calc(yasm_floatnum *acc, yasm_expr_op op,
                   /*@unused@*/ yasm_floatnum *operand)
{
    if (op != YASM_EXPR_NEG) {
        yasm_error_set(YASM_ERROR_FLOATING_POINT,
                       N_("Unsupported floating-point arithmetic operation"));
        return 1;
    }
    acc->sign ^= 1;
    return 0;
}

int
yasm_floatnum_get_int(const yasm_floatnum *flt, unsigned long *ret_val)
{
    unsigned char t[4];

    if (yasm_floatnum_get_sized(flt, t, 4, 32, 0, 0, 0)) {
        *ret_val = 0xDEADBEEFUL; /* Obviously incorrect return value */
        return 1;
    }

    YASM_LOAD_32_L(*ret_val, &t[0]);
    return 0;
}

/* Function used by conversion routines to actually perform the conversion.
*
* ptr -> the array to return the little-endian floating point value into.
* flt -> the floating point value to convert.
* byte_size -> the size in bytes of the output format.
* mant_bits -> the size in bits of the output mantissa.
* implicit1 -> does the output format have an implicit 1? 1=yes, 0=no.
* exp_bits -> the size in bits of the output exponent.
*
* Returns 0 on success, 1 if overflow, -1 if underflow.
*/
static int
floatnum_get_common(const yasm_floatnum *flt, /*@out@*/ unsigned char *ptr,
                    N_int byte_size, N_int mant_bits, int implicit1,
                    N_int exp_bits)
{
    long exponent = (long)flt->exponent;
    wordptr output;
    charptr buf;
    unsigned int len;
    unsigned int overflow = 0, underflow = 0;
    int retval = 0;
    long exp_bias = (1<<(exp_bits-1))-1;
    long exp_inf = (1<<exp_bits)-1;

    output = BitVector_Create(byte_size*8, TRUE);

    /* copy mantissa */
    BitVector_Interval_Copy(output, flt->mantissa, 0,
                            (N_int)((MANT_BITS-implicit1)-mant_bits),
                            mant_bits);

    /* round mantissa */
    if (BitVector_bit_test(flt->mantissa, (MANT_BITS-implicit1)-(mant_bits+1)))
        BitVector_increment(output);

    if (BitVector_bit_test(output, mant_bits)) {
        /* overflowed, so zero mantissa (and set explicit bit if necessary) */
        BitVector_Empty(output);
        BitVector_Bit_Copy(output, mant_bits-1, !implicit1);
        /* and up the exponent (checking for overflow) */
        if (exponent+1 >= EXP_INF)
            overflow = 1;
        else
            exponent++;
    }

    /* adjust the exponent to the output bias, checking for overflow */
    exponent -= EXP_BIAS-exp_bias;
    if (exponent >= exp_inf)
        overflow = 1;
    else if (exponent <= 0)
        underflow = 1;

    /* underflow and overflow both set!? */
    if (underflow && overflow)
        yasm_internal_error(N_("Both underflow and overflow set"));

    /* check for underflow or overflow and set up appropriate output */
    if (underflow) {
        BitVector_Empty(output);
        exponent = 0;
        if (!(flt->flags & FLAG_ISZERO))
            retval = -1;
    } else if (overflow) {
        BitVector_Empty(output);
        exponent = exp_inf;
        retval = 1;
    }

    /* move exponent into place */
    BitVector_Chunk_Store(output, exp_bits, mant_bits, (N_long)exponent);

    /* merge in sign bit */
    BitVector_Bit_Copy(output, byte_size*8-1, flt->sign);

    /* get little-endian bytes */
    buf = BitVector_Block_Read(output, &len);
    if (len < byte_size)
        yasm_internal_error(
            N_("Byte length of BitVector does not match bit length"));

    /* copy to output */
    memcpy(ptr, buf, byte_size*sizeof(unsigned char));

    /* free allocated resources */
    yasm_xfree(buf);

    BitVector_Destroy(output);

    return retval;
}

/* IEEE-754r "half precision" format:
* 16 bits:
* 15 9 Bit 0
* | | |
* seee eemm mmmm mmmm
*
* e = bias 15 exponent
* s = sign bit
* m = mantissa bits, bit 10 is an implied one bit.
*
* IEEE-754 (Intel) "single precision" format:
* 32 bits:
* Bit 31 Bit 22 Bit 0
* | | |
* seeeeeee emmmmmmm mmmmmmmm mmmmmmmm
*
* e = bias 127 exponent
* s = sign bit
* m = mantissa bits, bit 23 is an implied one bit.
*
* IEEE-754 (Intel) "double precision" format:
* 64 bits:
* bit 63 bit 51 bit 0
* | | |
* seeeeeee eeeemmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
*
* e = bias 1023 exponent.
* s = sign bit.
* m = mantissa bits. Bit 52 is an implied one bit.
*
* IEEE-754 (Intel) "extended precision" format:
* 80 bits:
* bit 79 bit 63 bit 0
* | | |
* seeeeeee eeeeeeee mmmmmmmm m...m m...m m...m m...m m...m
*
* e = bias 16383 exponent
* m = 64 bit mantissa with NO implied bit!
* s = sign (for mantissa)
*/
int
yasm_floatnum_get_sized(const yasm_floatnum *flt, unsigned char *ptr,
                        size_t destsize, size_t valsize, size_t shift,
                        int bigendian, int warn)
{
    int retval;
    if (destsize*8 != valsize || shift>0 || bigendian) {
        /* TODO */
        yasm_internal_error(N_("unsupported floatnum functionality"));
    }
    switch (destsize) {
        case 2:
            retval = floatnum_get_common(flt, ptr, 2, 10, 1, 5);
            break;
        case 4:
            retval = floatnum_get_common(flt, ptr, 4, 23, 1, 8);
            break;
        case 8:
            retval = floatnum_get_common(flt, ptr, 8, 52, 1, 11);
            break;
        case 10:
            retval = floatnum_get_common(flt, ptr, 10, 64, 0, 15);
            break;
        default:
            yasm_internal_error(N_("Invalid float conversion size"));
            /*@notreached@*/
            return 1;
    }
    if (warn) {
        if (retval < 0)
            yasm_warn_set(YASM_WARN_GENERAL,
                          N_("underflow in floating point expression"));
        else if (retval > 0)
            yasm_warn_set(YASM_WARN_GENERAL,
                          N_("overflow in floating point expression"));
    }
    return retval;
}

/* 1 if the size is valid, 0 if it isn't */
int
yasm_floatnum_check_size(/*@unused@*/ const yasm_floatnum *flt, size_t size)
{
    switch (size) {
        case 16:
        case 32:
        case 64:
        case 80:
            return 1;
        default:
            return 0;
    }
}

void
yasm_floatnum_print(const yasm_floatnum *flt, FILE *f)
{
    unsigned char out[10];
    unsigned char *str;
    int i;

    /* Internal format */
    str = BitVector_to_Hex(flt->mantissa);
    fprintf(f, "%c %s *2^%04x\n", flt->sign?'-':'+', (char *)str,
            flt->exponent);
    yasm_xfree(str);

    /* 32-bit (single precision) format */
    fprintf(f, "32-bit: %d: ",
            yasm_floatnum_get_sized(flt, out, 4, 32, 0, 0, 0));
    for (i=0; i<4; i++)
        fprintf(f, "%02x ", out[i]);
    fprintf(f, "\n");

    /* 64-bit (double precision) format */
    fprintf(f, "64-bit: %d: ",
            yasm_floatnum_get_sized(flt, out, 8, 64, 0, 0, 0));
    for (i=0; i<8; i++)
        fprintf(f, "%02x ", out[i]);
    fprintf(f, "\n");

    /* 80-bit (extended precision) format */
    fprintf(f, "80-bit: %d: ",
            yasm_floatnum_get_sized(flt, out, 10, 80, 0, 0, 0));
    for (i=0; i<10; i++)
        fprintf(f, "%02x ", out[i]);
    fprintf(f, "\n");
}
Something went wrong with that request. Please try again.