diff --git a/ydb/tests/datashard/vector_index/large/test_vector_index.py b/ydb/tests/datashard/vector_index/large/test_vector_index.py index dc16605ba42e..2d0e5d316057 100644 --- a/ydb/tests/datashard/vector_index/large/test_vector_index.py +++ b/ydb/tests/datashard/vector_index/large/test_vector_index.py @@ -36,7 +36,7 @@ def _create_table(self, table_path): PRIMARY KEY(pk) ); """ - self.query(create_table_sql, True) + self.query(create_table_sql) def _create_index( self, table_path, vector_type, vector_dimension, levels, clusters, distance=None, similarity=None @@ -73,7 +73,7 @@ def _create_index( ); """ logger.info(create_index_sql) - self.query(create_index_sql, True) + self.query(create_index_sql) def _upsert_values(self, table_path, vector_type, vector_dimension): logger.info("Upsert values") @@ -90,7 +90,7 @@ def _upsert_values(self, table_path, vector_type, vector_dimension): UPSERT INTO `{table_path}` (pk, embedding) VALUES {",".join(values)}; """ - self.query(upsert_sql, False) + self.query(upsert_sql) def _select(self, table_path, vector_type, vector_dimension, distance, similarity): if distance is not None: @@ -110,20 +110,19 @@ def _select(self, table_path, vector_type, vector_dimension, distance, similarit ORDER BY {target}(embedding, $Target) {order} LIMIT {self.limit}; """ - return self.query(select_sql, False) + return self.query(select_sql) def _select_top(self, table_path, vector_type, vector_dimension, distance, similarity): logger.info("Select values from table") - result_set = self._select( + rows = self._select( table_path=table_path, vector_type=vector_type, vector_dimension=vector_dimension, distance=distance, similarity=similarity, ) - assert len(result_set) != 0, "Query returned an empty set" + assert len(rows) != 0, "Query returned an empty set" - rows = result_set[0].rows logger.info(f"Rows count {len(rows)}") prev = 0.0 if distance is not None else 1.0 @@ -183,7 +182,7 @@ def test_vector_index(self): similarity_data = ["cosine"] # "inner_product", "cosine" vector_type_data = ["float", "int8"] levels_data = [1, 3] - clusters_data = [1, 17] + clusters_data = [2, 17] vector_dimension_data = [5] for vector_type in vector_type_data: diff --git a/ydb/tests/datashard/vector_index/large/test_vector_index_large_levels_and_clusters.py b/ydb/tests/datashard/vector_index/large/test_vector_index_large_levels_and_clusters.py index 550273fe2688..e0d6c8bf1cc7 100644 --- a/ydb/tests/datashard/vector_index/large/test_vector_index_large_levels_and_clusters.py +++ b/ydb/tests/datashard/vector_index/large/test_vector_index_large_levels_and_clusters.py @@ -17,7 +17,7 @@ def setup_method(self): self.rows_count = 1000 self.count_prefix = 5 - def test_vecot_index_large_levels_and_clusters(self): + def test_vector_index_large_levels_and_clusters(self): prefix_data = {"String": lambda i: f"{i}"} vector = {"String": lambda i: f"{i}"} all_types = { @@ -52,8 +52,8 @@ def test_vecot_index_large_levels_and_clusters(self): create_table_sql = create_table_sql_request( table_name=self.table_name, columns=columns, - pk_colums=pk_columns, - index_colums={}, + pk_columns=pk_columns, + index_columns={}, unique="", sync="", )