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Mortgage loans

Mortgage backed securities (MBS) are fixed income instruments collateralized
by mortgage loans.

A mortgage loan (or simply a mortgage) is a loan extended to an individual or a
corporation with the purpose of financing the purchase of real estate. Two major
categories of mortgages are:

(i) residential,
(ii) commercial.

We shall focus on RMBSs, i.e. MBSs backed by residential mortgages.
Depending on the size of the loan and credit worthiness of the borrower,
residential mortgages fall into two broad categories:

(i) conforming (or agency),
(ii) non-agency.
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Mortgage loans

A fixed coupon mortgage is a loan that carries an annual coupon Ĉ (say 4.50%),
and matures in N months (usually N = 360, i.e. 30 years). Denote:

c =
Ĉ
12

,

d =
1

1 + c
.

Typically, the principal repayment is amortized over the life of the loan1.
Specifically, assuming the principal of $1, the amortization schedule is given by
the following set of rules.

Scheduled monthly payment is

m =
c

1− dN
.

1
Mortgage loans that repay at maturity are called “balloons”.
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Mortgage backed securities

The principal repayment portion pj of m for month j is

pj =
cdN−j+1

1− dN
.

The interest portion ij of m for month j is

ij =
c
(
1− dN−j+1)

1− dN
.

Balance Bj outstanding at the end of month j is

Bj =
1− dN−j

1− dN
.

The amortization schedule is defined so that the following property holds:

ij = cBj−1.
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Mortgage backed securities

Agency pass-throughs are the basic MBSs: all principal repayments and interest
(less servicing and credit spread) of the underlying pool of collateral are paid to
the holder.

TBA (to be announced) pass-throughs, or simply TBAs.

Mortgage options = options on TBAs.

Structured MBSs such as IOs, POs, CMOs: cash flows are carved out from the
cash flows of the underlying pool of collateral.

Constant maturity mortgage (CMM) products.

...
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TBAs

A TBA is a futures contract on a pool of conventional, fixed coupon mortgage
loans.

It carries a coupon C reflective of the coupons on the deliverable loans. The
values of C are spaced in 50 bp increments: 3.5%, 4.0%, 4.5%, etc.

There is a standard delivery date, the PSA date, in each month. A vast majority
of the trading takes place in either the nearest or the once-deferred month, but
the market quotes prices for three or four TBAs settling on the next PSA dates.

A party long a contract at settlement takes the delivery of a pool of mortgage
loans satisfying the good delivery guidelines.
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For example, here is a snapshot of the TBA market on June 2, 2010:

Cpn \ PSA Jun 2010 Jul 2010 Aug 2010
3.5 95.594 95.211 94.773
4.0 99.125 98.789 98.484
4.5 102.086 101.695 101.359
5.0 104.852 104.430 104.047
5.5 106.906 106.500 106.141
6.0 107.930 107.609 107.328
6.5 108.953 108.656 108.375

We let PC (T ) denote the price of the TBA with coupon C and settlement date T .
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Mortgage options

Mortgage options are European calls and puts on TBAs.

They expire one calendar week before the PSA day on the underlying TBA.

The strikes on the TBA options are standardized: ATM ≡ PC (T ), ATM± 1/2 pt,
ATM± 1 pt.

Here is a market snapshot taken on June 2, 2010:

June 2010 expirations

Cpn \ Strike -1.0 -0.5 ATM +0.5 +1.0
4.0 0.0326 0.1120 0.2904 0.1016 0.0247
4.5 0.0143 0.0651 0.2279 0.0547 0.0052
5.0 0.0059 0.0299 0.1667 0.0195 N/A
5.5 N/A 0.0104 0.1185 0.0039 N/A
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Mortgage options

July 2010 expirations

Cpn \ Strike -1.0 -0.5 ATM +0.5 +1.0
4.0 0.4141 0.5755 0.7839 0.5443 0.3555
4.5 0.2852 0.4245 0.6237 0.3828 0.2096
5.0 0.1641 0.2760 0.4570 0.2227 0.0833
5.5 0.0833 0.1628 0.3216 0.1081 0.0195

August 2010 expirations

Cpn \ Strike -1.0 -0.5 ATM +0.5 +1.0
4.0 0.6992 0.8737 1.0820 0.8307 0.6133
4.5 0.5078 0.6628 0.8607 0.6029 0.3958
5.0 0.3255 0.4531 0.6341 0.3789 0.1914
5.5 0.1940 0.2930 0.4518 0.2083 0.0677
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CMM rates

A CMM rate is an index representing the yield on a hypothetical TBA pricing at
par.

Spot CMM rate is calculated by interpolation:
(i) For each coupon C, synthesize a TBA which settles in T = 30 days. Its

price PC (T ) is defined as the linear interpolation of the two bracketing
instruments.

(i) Synthesize a par TBA with settlement 30 calendar days from today by
linearly interpolating the prices PC (T ). Its coupon, expressed in terms of
the bracketing coupons C1 and C2 (with C1 < C2),

M = w1C1 + w2C2,

is the spot CMM rate.

Forward CMM rates are quoted in the CMM markets (forward rate agreements
and swaps).
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CMM rates

A CMM FRA is structured as follows:
(i) The counterparties agree on the contract rate K .
(ii) The spot CMM rate M is fixed two business days before the start date T .

The net rate M − K is applied to the notional over the accrual period
[T , Tpay].

(iii) The payment of the net amount is made on Tpay.

A CMM swap is a multi-period version of a CMM FRA.

The break even value of K is called the CMM rate M0 (T ).

We letM0 denote the curve [0,∞) 3 T → M0 (T ), the CMM curve (or
mortgage rate curve).

Generally, there is a good deal of liquidity in the CMM markets for T out to about
a year, and it is possible to get quotes for settlements further out.
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Modeling framework

The primary source of risk of MBSs is the interest rates risk modeled by a term
structure model.

The interest rates dynamics is modeled by a term structure model whose state
variables are denoted by X1 (t) , . . . ,Xk (t).

Underlying this dynamics is a probability space
(
Ω, (Ft )t≥0,P

)
with a

(multi-dimensional) Wiener process driving the interest rates dynamics.

The model describes the evolution of the forward curve C (t). Its detailed
specification will play no role in the following, it can be any model such as the
Hull-White model, LMM, SABR/LMM, ... .

It is of practical importance that the model is properly specified and capable of
accurate calibration to the market data.
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Modeling framework

We assume the following about the model.
(i) The initial value X1 (0) , . . . ,Xk (0) of the dynamics is given by the current

LIBOR forward curve C0. Here, C0 is defined in terms of a smooth (say,
twice continuously differentiable) function f0 : R+ → R, representing the
instantaneous forward rate. The rates dynamics depends smoothly on C0.

(ii) The current interest rates volatility V0, represented as a smooth surface
σ0 : R2

+ → R, is mapped smoothly on the dynamics of the interest rates
process. Ideally, in order to accurately take into account the volatility smile,
one should represent V0 as a three dimensional object σ0 : R3

+ → R. This
mapping is such that the model prices correctly relevant benchmark
interest rates options.
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Modeling framework

A key feature of MBSs is a variety of event risks embedded in the collateral. In
particular, a borrower has the right to prepay the loan.

This prepayment risk is modeled by a random time T , the time to event. T is not
necessarily a stopping time with respect to (Ft )t≥0.

A borrower’s decision to prepay is driven by factors which are partly exogenous
to the interest rates.

The probability of prepayment depends only on the information up to time t ,

P (T > t |F∞) = P (T > t |Ft ) .

There exists a doubly stochastic Cox process λ (t) such that

P (T > t |Ft ) = exp
(
−
∫ t

0
λ (s) ds

)
.
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Modeling framework

The intensity process λ (t) represents the conditional prepayment probability
density. The quantity S (0, t) = exp

(
−
∫ t

0 λ (s) ds
)

is the prepayment survival
probability. Note that S (0, t) itself is random.

Key among the factors affecting λ (t) is the mortgage rate curveM (t).

Mortgage rate process is modeled as a diffusion defined on a suitable probability
space

(
Ω1, (Gt )t≥0,P1

)
.

The prepayment intensity λ (t) depends exogenously on the mortgage rate curve
at time t :

λ (t) = λ (t ,M (t)) .
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Modeling framework

Prepayment behavior shows the following characteristics:
(i) The intensity of prepayments λ increases, as the mortgage rate M goes

down, and decreases, as it goes up.
(ii) If C is the coupon on the existing loan, λ approaches finite saturation

levels λ0 and λ1, as C −M →∞ and C −M → −∞, respectively.

This pattern of prepayments is fairly well captured by the logistic function (the
“S-curve”) model of the prepayment intensity:

λ (t) = λ0 + (λ1 − λ0)
1

1 + γeκ(M(t)−C)
.

Here, 0 < λ0 < λ1, and γ, κ > 0.

Later in this lecture we will discuss more sophisticated prepayment models.
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Valuation of a TBA

The holder of a TBA is short an American call: the cash flows on a mortgage are
uncertain because of the borrower’s right to prepay.

For calculation of the TBA’s PV, the cash flows should be discounted by the
survival probability S.

Let T denote the TBA’s settlement date, and let T1, . . . ,TN denote the payment
dates. The scheduled cash flow on the date Tj is denoted by Cj , and Bj denotes
the outstanding balance.

The price of a TBA is then given by2

P (T ) = E
[∑

j
Z
(
T ,Tj

)
×
(

S
(
T ,Tj−1

)
Cj +

(
S
(
T ,Tj−1

)
− S

(
T ,Tj

) )
Bj

)]
.

Here E is the expected value under the risk neutral measure, and Z
(
T ,Tj

)
denotes the discount factor.

2
For simplicity, we assume here that the TBA is brand new. For seasoned pools, it is necessary to take into

account the factor, which accounts for the already repaid fraction of the principal.
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Valuation of a TBA

Alternatively, we can write this as

P (T ) = E
[∑

j
Zπ
(
T ,Tj

) (
Cj + λ

(
Tj−1,Tj

)
Bj
)]
.

Here, Zπ
(
T ,Tj

)
= Z

(
T ,Tj

)
S
(
T ,Tj−1

)
is the prepaying discount factor, and

λ
(
Tj−1,Tj

)
=

S
(
T ,Tj−1

)
− S

(
T ,Tj

)
S
(
T ,Tj−1

)
'
∫ Tj

Tj−1

λ (t) dt

is the conditional probability of prepayment in month j , also known as the single
month mortality (SMM).
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Valuation of a TBA

The scheduled cash flow on a TBA is Cj = pj + inet
j , where pj is the scheduled

principal repayment, and inet
j is the interest less the servicing and credit spread

F ,

inet
j =

Ĉ − F
12

Bj−1.

The rate C = Ĉ − F is the net coupon. We can thus recast the valuation formula
as:

P (T ) = PO (T ) + IO (T ) .
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Valuation of a TBA

The first term on the RHS is the principal only (PO),

PO (T ) = E
[∑

j
Zπ
(
T ,Tj

) (
pj + λ

(
Tj−1,Tj

)
Bj
)]
.

Note that the cash flows consist of the scheduled and prepaid principal
repayments.

The second term is the interest only (IO),

IO (T ) = E
[∑

j
Zπ
(
T0,Tj

)
inet
j

]
=

C
12

E
[∑

j
Zπ
(
T ,Tj

)
Bj−1

]
.
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CMM valuation

In order to define the forward CMM rate we will make the following completeness
assumption about the TBA market: For each coupon C > 0 and each settlement
date T > 0, there exists a traded TBA of that coupon and maturity.

Since this assumption is in practice violated, TBAs for arbitrary settlements and
coupons have to be created synthetically:

(i) For settlements not exceeding the longest traded PSA date, interpolate the
coupons and settlement dates.

(ii) For settlement dates past the longest traded PSA date, we model the TBA
prices based on the currently calibrated term structure and prepayment
models.
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CMM valuation

From the TBA valuation formula,

C =
PC (T )− POC (t)

LIO (T )
,

where
LIO

C (T ) =
1
12

∑
j
Zπ
(
T ,Tj

)
Bj−1

is the IO annuity associated with the specified TBA.

Let Y (T ) denote the coupon on the par TBA. Then

Y (T ) =
1− PO (T )

LIO (T )
,

where LIO (T ) = LIO
Y (T )

(T ) is the IO annuity associated with the par TBA.
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CMM valuation

As a consequence, Y (T ) is a tradable asset, if the IO annuity is used as a
numeraire, and its dynamics is given by a martingale.

The corresponding martingale measure QIO is called the IO measure.

No market for CMM swaptions currently exists.

Should such a market ever come to existence, the IO measure introduced above
would be the natural martingale measure for CMM swaption valuation, very
much like the swap measure is the natural martingale measure for interest rate
swaption valuation.

For example, the price of a CMM receiver swaption struck at K would be

RecSwptT = LIO (T ) EQIO
[max (S (T )− K , 0)] .
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CMM valuation

The CMM rate is the contract rate K in the definition of a CMM FRA. This leads
to the following definition:

M (T |Tpay) = EQT pay [Y (Tfix + ϑ)] ,

where ϑ is the 30 day settlement delay on the underlying TBA.

We will be assuming that the payment on the FRA is made on the start date T ,
and, for simplicity, we will neglect the small convexity correction coming from the
fact that the rate fixes on Tfix rather than on T .

We thus define the forward CMM rate for the date T as

M (T ) = EQT [Y (T + ϑ)] .

A. Lesniewski Interest Rate and Credit Models



MBS Markets
Modeling MBSs

Prepayment and default modeling

Empirical Model of a TBA

We now describe a simple empirical model of a TBA [5].

To motivate, consider a mortgage which pays a continuous stream of cash.

By Ĉ we denote the annual coupon on the mortgage, and assume that its term is
Tm years.

(i) The (constant) payment dm (t) in [t , t + dt] is

dm (t) =
Ĉ dt

1− e−ĈTm
.

(ii) The outstanding balance at time t is

B (t) =
1− e−Ĉ(Tm−t)

1− e−ĈTm
.

(iii) The interest portion di (t) of the payment dm (t) is

di (t) = ĈB (t) dt .
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Empirical Model of a TBA

Consider now a TBA collateralized by a pool of such mortgages, and assume
that :

(i) All cash flows are discounted on a constant interest rate r .
(ii) The prepayment intensity is time independent, λ = λ(r , Ĉ).

The price of the TBA is given by the integral

PC (T ) =

∫ Tm

T
e−(r+λ)t[dm (t) + (λ− F ) B (t) dt

]
,

where F denotes the servicing and credit spread.

This integral is closed (albeit lengthy) form. Assuming that T = 0, and Tm →∞,

P =
C + λ

r + λ
.
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Empirical Model of a TBA

Note that PC = 1, if and only if r = Ĉ − F ≡ C. We expand P = P (r) around
r = C,

P (r) ' 1− D (r − C) ,

where

D = −
d
dr

log P (r)
∣∣
r=C

is the duration.

This yields:

D '
1

r + λ
.

Explicitly, we can write the duration in the form:

D = D0 + (D1 − D0)
1

1 + Γe−κ(r−C)
.
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Empirical Model of a TBA

The graph below shows the duration function in the empirical model.
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Figure: 1. The model duration function
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Empirical Model of a TBA

This leads us to the following model of a TBA.

Let M = M (T ) denote the CMM rate on the TBA settlement date T . The
duration of a TBA is assumed to be a function of

X (T ) = M (T )− C.

We parameterize the duration of a TBA by means of a logistic function of X :

D (X) = L + (U − L)
1

1 + e−κ(X−∆)
.

Integrating D (X) and exponentiating the result yields the following shape of the
TBA model price function:

P (X) = µ exp
(
−

(L + U) X
2

) { cosh κ∆
2

cosh κ(X−∆)
2

} U−L
κ

.
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Empirical Model of a TBA

The graph below shows the price function in the empirical model.
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Figure: 2. The model price function
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Empirical Model of a TBA

The convexity of a TBA is given by the following function:

K (X) = D (X)2 −
κ (U − L)

4
1

cosh2 κ(X−∆)
2

.

The price of a TBA in the empirical model is given by

PC (T ) = P (M (T )− C) .

The model parameters L,U, κ and ∆ and µ = P (0) are determined to fit to the
market.

Note that the key assumption behind this model is that the price of a TBA
depends on the forward mortgage rate for the same settlement as that of the
TBA (rather than on the entire CMM curve).

This is somewhat unsatisfying, as one might believe that prepayment behavior
depends on the entire rates outlook (i.e. forward rates) rate than the spot rate
only.
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Empirical Model of a TBA

The graph below shows the price function in the empirical model.
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Figure: 3. The model convexity function
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Event risk embedded in MBSs

There is no useful concept of an “implied prepayments” measure in the MBS
markets, and modeling prepayments relies on the analysis of historical data and
projecting these data forward.

The mathematical framework used in prepayment modeling is survival analysis.

The main challenge in modeling event risk affecting an MBS is to capture the
heterogeneity of the collateral loans. The heterogeneity may be:

(i) Observable and possible to capture in terms of a small number of factors.
This is conveniently modeled by the Cox model.

(ii) Unobservable and difficult to capture in terms of measurable factors. We
model it by implying a distribution of unobservable factors. The relevant
model is the frailty / threshold model.
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Modeling observed heterogeneity

Observed heterogeneity is described by means of the Cox (or “proportional
hazards”) model:

λ(t |V ) = λ0 (t) exp
(∑

j
βj Vj (t)

)
.

Here,
(i) λ0 (t) is the baseline hazard.
(ii) V1, . . . ,Vm are the factors affecting the event. They may be deterministic

(constant or time dependent) or stochastic.
(iii) β1, . . . , βm are the factor loadings.
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Modeling unobserved heterogeneity

The unobserved heterogeneity is described by the probability distribution F (x)
on a set X . The elements of X are the unobserved factors affecting the
probability of an event to occur.

Each borrower has intensity λ (t , x). Their survival probability is

S(t , x) = exp
(
−
∫ t

0
λ(s, x)ds

)
.

The population survival probability is

S (t) = exp
(
−
∫ t

0
λ (s) ds

)
=

∫
X

S(t , x)dF (x) .
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Modeling unobserved heterogeneity

In the frailty / threshold model, the heterogeneity space X is two-dimensional,
x = (f , c). Here,

(i) f = frailty, c = threshold.
(ii) Borrower’s intensity process

λ (t , x) = f 1C(t)≥c λ0 (t) .

(iii) C (t) is the incentive process.
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Modeling prepayment risk

Decomposition of S (t) into independent competing risks:
(i) Turnover (Cox model)
(ii) Refinancing (frailty / threshold model)
(iii) ...

Then S (t) = S1 (t) S2 (t) . . ., where Sj (t) are the survival probabilities
corresponding to the latent risks. Factors affecting Sj (t):

(i) Interest rates
(ii) Housing prices (HPI)
(iii) Loan characteristics (size, age, FICO score)
(iv) Unobserved heterogeneity characteristics of borrowers
(v) Macroeconomic factors
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Modeling mortgage default risk

The loss process of an MBS is a multi-state process which is modeled as a
continuous time Markov chain. The underlying state space is assumed to be of
the form:

S =


S1
S2
S3
S4
S5

 =


Current

60+ Days Delinquent
In Foreclosure

REO
Liquidated

 .
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Modeling mortgage default risk

The generator D (t) of the Markov chain is of given by:

D (t) =


−λ1 (t) λ1 (t) 0 0 . . . 0 0

0 λ2 (t) −λ2 (t) 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . −λn−1 (t) λn−1 (t)
0 0 0 0 . . . 0 0

 ,

where λj (t) are the hazard rates for the transitions Sj → Sj+1.

Here, for i = 1, . . . , 4:
(i) 1− λi (t) dt is the conditional probability of staying in state Si .
(ii) λi (t) dt is the conditional probability of transition Si → Si+1.
(iii) For tractability, we ban all transitions of the form Si → Si+2, Si → Si−1,

etc. This is an approximation that is borne out by the data.
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Modeling mortgage default risk

Break up the problem into a sequence of survival processes:

D = DS1→S2
+ DS2→S3

+ DS3→S4
+ DS4→S5 .

Here, each summand is the generator of a survival Markov chain[
−λj (t) λj (t)

0 0

]
embedded in a 5× 5 matrix.
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Modeling mortgage default risk

The cumulative time to event is (approximately)

T = TS1→S2
+ TS2→S3

+ TS3→S4
+ TS4→S5 .

The composite CDF can be expressed as the convolution of the constituent
CDFs,

Q (t) = QS1→S2
∗ QS2→S3

∗ QS3→S4
∗ QS4→S5 (t) .

Rapid computation of multiple convolutions can be done by means of the FFT
algorithm.
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Modeling mortgage default risk

Factors affecting the Ti ’s:
(i) Combined loan to value (CLTV)
(ii) FICO score
(iii) Property state (may be grouped in categories)
(iv) Log of loan size
(v) Mortgage servicer
(vi) ...
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Modeling mortgage default risk

The severity, or loss given a default (LGD), is given by:

L (T ) = B(1− R (T ))− A (T ) ,

where B is the balance on the loan, A (T ) is the cash advanced, and R (T ) is the
recovery rate.

We model the recovery rate by

R (T ) =
∑

i
αi Xi ,

where Xi are the factors affecting LGD such as:
(i) Time in foreclosure and REO
(ii) CLTV
(iii) ...
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HPI modelling

Housing prices enter both the prepayment and credit models, and they impact
they way the market perceives the values of mortgage backed securities.

The 2007 - 2008 financial crisis was largely caused by a bubble in housing
pricing and the market’s belief in continuing appreciation of house prices.

The lesson learned from the housing prices bust is that they should be regarded
as stochastic, and can depreciate as well as appreciate.

Modeling HPI is an inexact science:
(i) There is no liquid forward looking market on housing prices.
(ii) Historical prices are noisy and affected by a variety of exogenous factors

(such as e.g. geography).
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HPI modelling

There exists a number of HPI indices; the most popular among them are:
(i) FHFA indices are based on the repeat-sale method.
(ii) Case-Shiller indices are also based on the repeat-sale method. CME

trades futures on one of the CS indices.
(iii) Radar Logic indices (RPX) computes the price per square feet. There is a

futures market on RPX.

Projecting future HPI levels can be done by means of one the following
approaches:

(i) A stochastic process with a mean everting component.
(ii) Kalman filter.
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Calibration of the Time to Event Model

Calibration is done by means of maximum likelihood estimation (MLE) on recent
historical data. This can be framed as minimization of the distance between the
observed event frequencies and model probability distribution.

Calculations are distributed on the computational cluster when dealing with large
data sets.

The “goodness of fit” measure of the calibration is the Kullback-Leibler
divergence between the observed probability distribution {pi} and the model
probability distribution {pi (θ)}:

D (p‖p (θ)) =
∑

i
pi log

(
pi

pi (θ)

)
.

Then
(i) D (p‖p (θ)) ≥ 0.
(ii) “Best” value of θ⇒ minimum KL divergence.
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OAS

We see from the discussion above that modeling of MBSs is a hybrid of two
approaches:

(i) Risk neutral valuation (Q -measure)
(ii) Historical valuation (P - measure).

As a result, model prices of securities typically do not match market prices.

Furthermore, model prices produced by various models disagree among each
other.
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OAS

Since the 1980’s the MBS market adopted the convention according to which the
discrepancy between the market and model price of a security is eliminated by
means of an additional spread applied to the discounting rate.

For historical reasons, this spread is called the option adjusted spread (OAS).

Specifically, consider an MBS whose (contingent) cashflow on a coupon date Tj
is Cj (Tj ). Assuming that we use the spot measure Q0 for valuation, its model
price is given by

P = EQ0
[∑

j
e−

∫ Tj
0 r(t) dt Cj (Tj )

]
. (1)

Adding the OAS spread to r we replace this expression with

P(OAS) = EQ0
[∑

j
e−

∫ Tj
0 (r(t)+OAS) dt Cj (Tj )

]
. (2)
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OAS

We calculate the OAS of a security by requiring that its market price P matches
the OAS-adjusted model price,

P(OAS) = P, (3)

and solving this equation for OAS (using, for example, the secant method).

Securities with OAS > 0 are referred to as cheap, while those with OAS < 0 are
referred to as rich.

This terminology reflects the fact that, relative to the model, their market prices
are too low and too high, respectively.

For example, Trust IOs are typically cheap, while Trust POs are typically rich.

The richness / cheapness measure is the the basis for many MBS managers’
investment strategies.

The concept of OAS can also be extended to account for credit events, and it is
referred to as credit OAS.
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