

Tx Translation & Localisation

for .NET and WPF

Overview and Documentation

Designed and written by Yves Goergen

Last updated on 2014-11-03 [DRAFT VERSION]

Contact: yves@unclassified.de

Project website: dev.unclassified.de/source/txtranslation

Published under the terms of the GNU GPL 3 licence.

mailto:yves@unclassified.de
http://dev.unclassified.de/source/txtranslation

Tx Translation & Localisation for .NET and WPF

 2

Contents

1. The Tx concept 4
1.1. Text keys 4
1.2. Cultures 4

2. Using the Tx class 5
2.1. From C# (or any other programming language) 5

2.1.1. Initialisation 5
2.1.2. Culture control 6
2.1.3. Text translation 6
2.1.4. Counts and placeholders 6
2.1.5. Text conversion and decoration 7
2.1.6. Number, date and time formatting 7

2.2. In WPF 8
2.3. In Windows Forms 9
2.4. In ASP.NET 9

2.4.1. Initialisation 9
2.4.2. Setting the request culture 10
2.4.3. Use in Web Forms views 10
2.4.4. Use in MVC views 12

3. TxEditor application 13
3.1. Dictionary files 13
3.2. Cultures 13

3.2.1. Date and time formats window 14
3.3. Text keys 14
3.4. Text editing 15

3.4.1. Comments 15
3.4.2. Text input 16
3.4.3. Quantified texts 16
3.4.4. Placeholders 16
3.4.5. Key references 16

3.5. View options and filters 17
3.6. Application settings 17
3.7. Validation 17

3.7.1. Problem types 18
3.7.2. Accepting inconsistencies 18

3.8. Suggestions 18
3.9. Keyboard shortcuts 19

3.9.1. Global shortcuts 19
3.9.2. In the text key tree 19
3.9.3. In the search filter input field 19
3.9.4. In a translation input field 19

3.10. Text key wizard 20

Tx Translation & Localisation for .NET and WPF

 3

4. Advanced topics 22
4.1. Multithreading 22
4.2. Logging 22
4.3. Test modes 22

5. Text key best practices 24
5.1. Structure 24
5.2. Naming text keys 25
5.3. Tx system keys 26

Tx Translation & Localisation for .NET and WPF The Tx concept

 4

1. The Tx concept

Tx is a simple yet powerful translation and localisation library for .NET applications. It manages a dictionary

containing all the text snippets and phrases you need, for multiple translations. If a translation is not available

in your preferred language, it can be looked up from other languages. Texts can also contain named place-

holders that are filled with your data at runtime so that you don’t need to concatenate all the parts yourself

in the right order. Localisation tasks like typography, number or time formatting according to the local

standards are also covered.

A special feature of Tx dictionaries is that each text can have different translations depending on the subject

count you’re talking about, also called pluralisation. One day is a different word than two days. This allows

you to speak to your users in the most natural way, avoiding ugly parentheses or alternatives for plural words

in the user interface.

All texts and translations are stored in an XML dictionary file, one per project. This XML file usually contains

all languages. The dictionary can be installed with your application, or compiled right into it as an embedded

resource.

The TxLib library can be used from any .NET application and is the part you’ll distribute with your application.

For more portable applications, you could also directly copy the class files into your project – it’s only a few

files. Its main class, Tx, is further described in the next chapter.

1.1. Text keys

All texts are associated with text keys. A text key is a short string that uniquely identifies a text or phrase and

is usually used in the application source code to refer to a specific text. Text keys can be freely assigned by

the developer, but there are some structuring guidelines described at the end of this document and a few

additional requirements when using the TxEditor tool.

1.2. Cultures

The .NET framework uses the concept of cultures to specify a combination of language and data formatting

rules. Each culture has a code that describes the language and optionally a region. There are more variants

but they are not supported by TxLib. Examples are “en” for the English language, “de-DE” for the German

language in Germany or “pt-BR” for the Portuguese language in Brazil (as opposed to Portugal which many

would probably first think of). TxLib uses these cultures to identify translations and both, region-specific and

language-only codes, are used where the latter ones always serve as fallback if a translation is not found for a

specific culture.

Tx Translation & Localisation for .NET and WPF Using the Tx class

 5

2. Using the Tx class

The Tx class is the heart of TxTranslation. It provides the dictionary lookups and does all the translation and

formatting work. It is designed as a static class so that it can easily be used everywhere in your application

without creating or finding an instance of it first. The dictionary is loaded into memory which is usually done

at application initialisation time. It is read from an XML file on disk or an embedded resource. When reading

from files, they can optionally be monitored for changes so that the dictionary is immediately updated when

the dictionary file is modified.

To start using the Tx class, you should first import its namespace:

using Unclassified.TxLib;

The main method of the Tx class is the shortcut method simply named T. (This class and method name com-

bination is intentionally pronounced like “text”.) It accepts the text key and has multiple overloads for addi-

tional parameters like a count or placeholder data. It returns the translated text as a string. Its use is as easy

as this:

string uiText = Tx.T("my text key");

This will look up the text key “my text key” in the dictionary for the current culture which is provided by the

.NET framework. In order to use a different translation, you can set the current thread culture to a different

value, resulting in a consistent switch for both TxLib and the rest of the framework (like for instance number

parsing).

2.1. From C# (or any other programming language)

To access translations in your application or library code, you’ll normally use the Tx class and its methods.

TxLib is written in C# so you can only copy the code in C# projects, but being a CLR library, you can of course

reference the assembly and use it from any other CLR language like VB.NET, Managed C++, F# or whatever

you have.

2.1.1. Initialisation

Before you can access any translated texts, you need to load a dictionary. This is typically done at application

initialisation time. You have several options here:

1. To load all files in a directory, you can use the LoadDirectory method. It finds all dictionary files in a

given directory, optionally matching a specified file name prefix.

2. Loading a single dictionary file is done with the LoadFromXmlFile method. It reads the specified file and

loads it into the global dictionary.

3. If you’re not deploying the dictionary as a separate file on disk but instead as an embedded resource in

the application assembly, you can load it with the LoadFromEmbeddedResource method.

When files were loaded from disk, you can later check these files for modifications and have them reloaded if

they’re changed, using the CheckReloadFiles method. Alternatively the UseFileSystemWatcher property can

be set to automatically monitor all loaded files. See the ASP.NET section below for additional notes.

You can also add text keys in your own code, but this is more suitable for small dynamic additions rather

than complete dictionaries. Use an overload of the AddText method for that.

Tx Translation & Localisation for .NET and WPF Using the Tx class

 6

2.1.2. Culture control

There are multiple methods and properties to retrieve information about the currently selected culture or all

available cultures in the dictionary. The AvailableCultureNames property returns a string array of all culture

names currently available in the global dictionary. The AvailableCultures property instead not only returns

the names but the CultureInfo instances for them. The CurrentThreadCulture, CurrentThreadLanguage and

CurrentThreadCultureNativeName properties are only shortcuts to the framework’s CultureInfo.Current-

Culture property.

The PrimaryCulture property gets or sets the primary culture name that serves as fallback for incomplete

translations. If this is null, it will not be considered when translating texts. It is not guaranteed that this culture

is available in the global dictionary.

Use the SetCulture method to change the current thread’s culture. This only affects the currently executing

thread and is also regarded by other .NET framework functions. The GetCultureName method returns the

best supported current culture name for the thread. This can be CurrentThreadCulture, CurrentThread-

Language, one of the browser’s supported cultures (if specified, see ASP.NET section below), PrimaryCulture

or, if none of them are available, any one of the available (loaded) cultures. This culture will be tried first to

find translated texts.

2.1.3. Text translation

The main translation method is called Text and it always accepts a text key and has several overloads for

combinations of additional data like a subject count or placeholder data. If no translation could be found, the

specified text key is returned in square brackets. For less code to write, there is the T method that is basically

just a pass-through method with an abbreviated name. (There are other abbreviations and combinations of

them, see below.)

A special case is the SafeText method. It tries to find a translation for the specified text key but won’t use

fallback languages. If no translation was found in the dictionary, the key namespace part is stripped off the

remaining text is returned as the translation. You can use it to partially translate your data strings where most

elements go untranslated. An example is city names where only some cities have translated names in certain

languages. The text key would then be a namespace prefix like “city:” followed by the native name. The city of

Prague is called Praha in Czech and Prag in German. All other cultures not defining their own translation will

just get the native name. If your data is already in a consistent language like English, there would only be a

German translation for the city of Vienna, in this case Wien. This will be used for all variants of “de” cultures

whereas everybody else gets the English name.

2.1.4. Counts and placeholders

Sometimes, a different word should be used depending on the number of subjects the message is about. In

such situations, a T (or Text) overload with a count parameter can be used to specify the number of subjects.

TxLib will then use a more appropriate translation for this call if one is provided in the dictionary.

To include runtime data in the translated texts, you can define placeholders in the texts. These placeholders

need to be passed with the T method call. The easiest form is to use an overload that accepts placeholder

names and their corresponding values directly after each other as a variable number of arguments. There is

only very limited IntelliSense support in this case, like for any other method accepting a variable number of

arguments, so you need to be a little more careful here. The syntax is this: You specify all placeholder values

one after another, each with two arguments. Every first argument is the placeholder name as a string, the

second is its value which must be convertible to a string. Here’s an example with multiple placeholders:

Tx Translation & Localisation for .NET and WPF Using the Tx class

 7

Tx.T("user info", // The text key
 "name", userName, // Pairs of placeholder names and values
 "location", User.Location,
 "status", statusValue);

Combinations of count and placeholders are also available.

2.1.5. Text conversion and decoration

Different languages have different typographical rules that should be regarded to provide the most comfort-

able translations to your users. There are methods available for quoting and nested quoting of text, placing it

in parentheses, adding a colon for tables or lists, and transforming the first letter to upper case. While the last

method is only a shortcut to existing .NET functionality, all others use strings defined in a special area of the

dictionary. This allows the translator to specify matching quotation marks and other characters for a lan-

guage.

Quotation marks are different in almost every country and there are completely different styles of characters

for this purpose. Also, parentheses look different in some Asian languages. The colon was added for the

French who normally put a (narrow non-breaking) space in front of colons and a few other punctuation

marks. And lastly, the upper case shortcut can be used to define a word in lower case to use it in any context

but to transform it into upper case when used at the beginning of a line without maintaining two similar text

keys for it.

There are also abbreviated alternatives for these methods, and what makes it even more useful, combinations

of these abbreviated names. While the T method only performs a dictionary lookup, the UT method also

transforms it into upper case and the QTC method puts the text in quotes and adds a colon. Please check the

complete library reference for a list of method names.

2.1.6. Number, date and time formatting

While basic number formatting as well as date and time formatting is already provided by methods of the

.NET framework, TxLib goes beyond that and adds formatting of data for typographical contexts and more

closely to local standards. Most regional authorities, for example, encourage using a thin space as the thou-

sands group separator to avoid any confusion with the decimal point or decimal comma. Additionally, typog-

raphy disallows line breaks within such numbers. The .NET framework does not regard these recommenda-

tions and simply uses a comma respectively a point for this purpose. Also, in some regions like de-DE, thou-

sands grouping is not used for numbers of four digits or less. The NumberUnit method combines a number

and a short unit name with a non-breaking space where indicated. The DataSize method knows magnitudes

of 1024 and the Ordinal method gives you ordinal numbers in your language.

There is also the N abbreviated method for number formatting.

The date and time formatting of TxLib surpasses .NET’s formatting by providing more combinations of fields

to include. You could only express a day and month but no year, or just an hour but no minutes or seconds.

Also, month and year, or quarter and year are supported in case you need those. (The framework actually has

predefined formats for year and month as well as month and day, but they are completely wrong for most

cultures.) Most of them numeric, tabular, abbreviated and in full words. For a more individual touch, time

spans can be expressed relatively, for different use cases. The file was updated “3 hours 20 minutes ago”

(instead of “3:20:16 ago” which may not always be very useful), but the session still lasts “for 8 minutes”. Oth-

er languages than English require all the differentiation due to different grammatical contexts.

TxLib cannot parse numbers or other data from the strings it has generated. If you need to parse the strings

you display, you should stay with the .NET methods for formatting and parsing. This is the case in two situa-

tions:

Tx Translation & Localisation for .NET and WPF Using the Tx class

 8

1. Pretty printing numbers and dates in the user interface where the user can edit the values and save

them back. Here, you shouldn’t use features like thousands group separators anyway because they’re

likely to be out of place after the user has edited a number.

2. Serialising data for storing or transmitting. In this situation, any localisation is out of place. Since you’ll

be transferring data between parties of different cultures, you really should define one universal format

anyway. The invariant culture (basically English) and ISO date formats are a good choice here. Also, ty-

pography doesn’t matter when you’re writing machine-readable data.

2.2. In WPF

WPF (Windows Presentation Foundation) applications have the great benefit of binding data to the user in-

terface (the view) simply by a markup declaration. Any object that exposes public properties can be used as a

source of data. Additionally, you can use converters on the raw data and implement your own XAML markup

extensions to add more functionality to the bindings. TxLib makes use of these features to provide a simple

syntax for text translations directly within your XAML markup. It looks similar to what you know about the

Tx.T method, but is regularly integrated in the XAML syntax.

First, to add Tx support to a XAML file, you need to add its namespace declaration. For a Window element, it

looks like this:

<Window x:Class="WpfDemo.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:Tx="http://dev.unclassified.de/source/txtranslation" ...>

This works only if the TxLib assembly is referenced as a separate assembly. In case you copied the source files

into your project, you need to use the usual notation like xmlns:Tx="clr-namespace:Unclassified.TxLib".

The namespace is now “Tx”, just like the Tx class you already know. This namespace provides a number of

markup extensions, again with similar names like the described methods. To insert the translation for a text

key, use the {Tx:T} markup:

<TextBlock Text="{Tx:T my text key}"/>

It requires the text key as first argument and optionally accepts a subject count as second argument. The

count can also be bound to another source value:

<TextBlock Text="{Tx:T n months, {Binding Value, ElementName=Counter}}"/>

Similar to the abbreviated method names, you can also use Tx:UT for upper-case text, Tx:QT for quoted text,

Tx:UTC for upper-case text with a colon, and so on.

Besides the variants of Tx:T for text translation, you can also use Tx:Number for number and Tx:DataSize for

data size formatting as well as Tx:Time for date and time formatting:

<TextBlock Text="{Tx:Number {Binding Power}, 2, Unit=kW}"/><!-- ex.: 2,07 kW -->
<TextBlock Text="{Tx:DataSize {Binding FileSize}}"/><!-- ex.: 45.8 KiB -->
<TextBlock Text="{Tx:Time {Binding LastUpdate}, Details='DowLong,YearMonthDay'}"/>

Relative time specifications are also supported and come with the additional bonus of keeping themselves

up-to-date as the time passes. Here are two alternative markup variants for the same result:

Tx Translation & Localisation for .NET and WPF Using the Tx class

 9

<TextBlock Text="{Tx:RelativeTime {Binding SelectedDate, ElementName=DatePicker1},
 UpperCase=True}"/>

<TextBlock>
 <TextBlock.Text>
 <Tx:RelativeTime TimeBinding="{Binding SelectedDate, ElementName=DatePicker1}"
 UpperCase="True"/>
 </TextBlock.Text>
</TextBlock>

To select from one of the grammatical contexts of the relative time, set the RelativeTimeKind parameter to

the desired value. (None displays an absolute time value, PointInTime and CurrentTimeSpan work on a

DateTime type value and TimeSpan requires a TimeSpan type value to display.)

2.3. In Windows Forms

Much of the text to translate usually lies in the user interface definitions of a GUI application. While Windows

Forms doesn’t provide the same level of binding comfort as WPF, TxLib still makes use of every supported

feature to ease the most common translation tasks. It provides the TxDictionaryBinding class that handles

the Windows Forms type of data binding to the Tx dictionary. Simply call

TxDictionaryBinding.AddTextBindings(this);

in the Form’s constructor (after InitializeComponent) to let it find all bindable controls that have a text key in

their visible text at design time. So all you need to do is place your Label controls as usual and set a text like

“[my text key]” (without the quotes, but with the square brackets around the text key) on them.

To use a dictionary text in another property of a control, you can add that binding with the following method

call:

TxDictionaryBinding.AddBinding(IntroLabel, "Text", "intro");

And finally you can always assign texts the manual way, without bindings and automatic updating:

IntroLabel.Text = Tx.T("intro");

The Windows Forms bindings are only updated when the primary culture is changed (for example through a

list selection control) or when monitored dictionary files were modified. Additional features like subject

counts, placeholder data and number or time formatting from other bound sources are not supported for

Windows Forms.

2.4. In ASP.NET

2.4.1. Initialisation

ASP.NET web applications keep running after the first request, so the Tx dictionary initialisation is only re-

quired once when the application is started. A good place is the Global.asax.cs file that defines a class inherit-

ing the HttpApplication class. You can define a number of methods by a naming convention that will auto-

matically be called on the corresponding HttpApplication events. The following example initialises all diction-

ary files from the “lang” subdirectory on the application:

Tx Translation & Localisation for .NET and WPF Using the Tx class

 10

protected void Application_Start()
{
 Tx.LoadDirectory(Server.MapPath("lang"));
 // Other application initialisation
}

2.4.2. Setting the request culture

Web applications can be used by multiple users at the same time. Each request is handled in a separate

thread. To set different languages for each user, the current thread culture must be set at the beginning of

each page request. This per-request initialisation could be done in the Global.asax.cs file in the

Application_BeginRequest, Application_PostAuthenticateRequest or Application_PreRequestHandlerExecute

methods. This is also where the checking for modified dictionary files with the CheckReloadFiles method can

be added.

The SetWebCulture method is useful for web contexts where the browser indicates a number of language

preferences in the HTTP request header. This ordered preference can be used by TxLib to provide better

fallback translations as understood by the user.

Technical note: Since referencing the ASP.NET classes requires the full .NET framework and is not covered by

the client profile (in versions 3.5 to 4.0), this is not directly included in TxLib. So you still have to provide the

connection and pass the request header data to this method for it to do all the rest:

protected void Application_BeginRequest()
{
 Tx.CheckReloadFiles();
 Tx.SetWebCulture(Request.ServerVariables["HTTP_ACCEPT_LANGUAGE"] as string);
 // Other request initialisation
}

2.4.3. Use in Web Forms views

You can also use Tx.T calls in ASP.NET Web Forms .aspx files to insert translated text directly on the HTML

page. To introduce the Unclassified.TxLib assembly and the corresponding namespace, an additional declara-

tion can be added on each page.

<%@ Import Namespace="Unclassified.TxLib" %>

<h1><%= Tx.T("page heading") %></h1>

Note that you cannot use the <% %> syntax within the XML element of server-side controls. So you can only

use this inline translation for simple HTML tags or text content. You might, however, add a custom attribute

to any server-side control, like for example tx-key, and then scan the page upon loading and apply a trans-

lated text to those controls. This requires code in your application though. Here is an example:

<asp:TextBox runat="server" ID="DateTextBox" tx-placeholder-key="placeholder.date" />
<asp:Button runat="server" ID="SubmitButton" tx-key="form.submit" OnClick="SubmitButton_Click"/>

And the code behind of the page and a helper class:

protected void Page_Load()
{
 // ...
 HtmlHelper.CompleteTranslation(Page);
}

Tx Translation & Localisation for .NET and WPF Using the Tx class

 11

internal static class HtmlHelper
{
 /// <summary>
 /// Completes the translation of form controls.
 /// </summary>
 /// <param name="rootControl">The control to start iterating in.
 /// Should be <c>Page</c> in most cases.</param>
 public static void CompleteTranslation(Control rootControl)
 {
 foreach (Control control in rootControl.Controls)
 {
 Button button = control as Button;
 if (button != null)
 {
 if (!string.IsNullOrEmpty(button.Attributes["tx-key"]))
 {
 button.Text = Tx.T(button.Attributes["tx-key"]);
 button.Attributes.Remove("tx-key");
 }
 }
 CheckBox checkbox = control as CheckBox; // includes RadioButton
 if (checkbox != null)
 {
 if (!string.IsNullOrEmpty(checkbox.Attributes["tx-key"]))
 {
 checkbox.Text = Tx.T(checkbox.Attributes["tx-key"]);
 checkbox.Attributes.Remove("tx-key");
 }
 }
 TextBox textbox = control as TextBox;
 if (textbox != null)
 {
 if (!string.IsNullOrEmpty(textbox.Attributes["tx-placeholder-key"]))
 {
 textbox.Attributes["placeholder"] =
 Tx.T(textbox.Attributes["tx-placeholder-key"]);
 textbox.Attributes.Remove("tx-placeholder-key");
 }
 }

 // Process all children in this control
 CompleteTranslation(control);
 }
 }
}

To avoid declaring the namespace on each page, the use of TxLib can be registered centrally in the

Web.config file by incorporating the following XML elements:

<configuration>
 <system.web>
 <compilation>
 <assemblies>
 <add assembly="Unclassified.TxLib"/>
 </assemblies>
 </compilation>
 <pages>
 <namespaces>
 <add namespace="Unclassified.TxLib"/>
 </namespaces>
 </pages>
 </system.web>
</configuration>

Tx Translation & Localisation for .NET and WPF Using the Tx class

 12

You also need to add a regular reference to the Unclassified.TxLib assembly for the project to use it from

code-behind files and other code classes.

2.4.4. Use in MVC views

To use the Tx class in ASP.NET MVC Razor views, you can add the namespace on each page with the @using

command.

@using Unclassified.TxLib;

<h1>@Tx.T("page heading")</h1>

To avoid adding the namespace in each view, the central namespace registration for all views must be done

in the Web.config file in the Views directory, not in the application root. Incorporate the following XML ele-

ments:

<configuration>
 <system.web.webPages.razor>
 <pages pageBaseType="System.Web.Mvc.WebViewPage">
 <namespaces>
 <add namespace="System.Web.Mvc"/>
 <add namespace="System.Web.Mvc.Ajax"/>
 <add namespace="System.Web.Mvc.Html"/>
 <add namespace="System.Web.Optimization"/>
 <add namespace="System.Web.Routing"/>
 <add namespace="Unclassified.TxLib"/>
 </namespaces>
 </pages>
 </system.web.webPages.razor>
</configuration>

Tx Translation & Localisation for .NET and WPF TxEditor application

 13

3. TxEditor application

The TxLib solution comes with a graphical translation file editor that provides all the functionality for translat-

ing personnel that don’t necessarily have any programming experience. The TxEditor application can load a

dictionary file, list all the text keys that it defines and allows viewing and editing the translation texts. It per-

forms consistency checks to point the user to potential errors and highlight missing translations. TxEditor

also makes use of TxLib itself so it is fully localisable and can be used to translate itself into other languages.

Many of the toolbar buttons are also accessible by hotkeys. If available, the hotkey is displayed in the but-

ton’s tool tip, along with a short description of the function. The hotkeys are also described in the Keyboard

shortcuts section below.

3.1. Dictionary files

TxEditor loads a dictionary file () into memory so that the user can edit its contents and save it back ().

This works just like with any normal document or picture editor. There can only be one dictionary loaded at a

time. In the current file format (version 2), dictionaries are stored as a single file for all text keys and cultures.

In the older file format, a separate file was used for each culture. This is what the  Load Directory button is

used for. The  New button creates an empty dictionary. All file-related buttons are in the File section of the

toolbar.

Multiple dictionaries can be merged or imported one into another with the  Import button. This optionally

creates all cultures included in the imported file as necessary and creates or updates all text key contents.

Existing data will be overwritten by the imported file, but no data will be deleted from the loaded dictionary

only because it does not exist in the imported file.

In return, selected text keys can be exported to a new dictionary file to pass them on to somebody else or

split one dictionary into multiple. First select the text keys to export, then click the  Export button. All sub-

keys of the selected items are exported as well. If you want to split up a dictionary, you can simply delete the

selected keys after exporting them. The created file contains all cultures from the loaded dictionary. You can

also use the export and import functions to perform batch-like operations, for example delete all translations

of an entire keys subtree for specific cultures: Export and delete the subtree to a separate file, open that file

individually, delete the cultures, and finally import that temporary file into your main dictionary again.

If you updated the system keys or added a new culture and translated the system keys, you may just export

the entire Tx namespace (just select the top namespace item) and send it to the TxTranslation developer to

have it included in the main template and made available to all users (including you for your next project).

3.2. Cultures

A culture is the .NET framework concept of a language and optional region to support localisation. A diction-

ary contains a set of cultures for which translations can be added. Cultures are selected on the dictionary

level, so for all text keys within a dictionary, a culture is either available or not. Cultures without a region

specification are always used as fallback if a text wasn’t found in a region-specific culture.

To add a new culture to the dictionary, press the  New culture button in the Culture section in the toolbar.

In the dialog window, you can browse and filter all cultures that are supported by the .NET framework instal-

lation. After a while getting used to the culture codes, you may already know the code you need and can

type it directly in the text box at the top.

Tx Translation & Localisation for .NET and WPF TxEditor application

 14

Check the Insert system keys checkbox to include the Tx system keys for the new culture. These are internal

text keys for formatting functions like date, time or numbers. System keys are located under the “Tx”

namespace. This checkbox is only enabled if the selected culture is available in the included template file. If

you would like to see a certain culture included for the system keys then please add them in the template file

from the TxEditor source code and submit your additions to the Tx developer. Click the Add culture button

to add the selected culture.

When a text key is selected, an input field for each available culture is displayed in the text editing area of the

application window. The cultures are sorted by primary first, then alphabetically by language code, each fol-

lowed by the specific regions. Once a culture is added to the dictionary, it is available for all text keys auto-

matically.

Cultures can also be deleted from the dictionary by first focusing a text input field of the culture to delete

(any selected text key will do) and then pressing the  Delete button in the Culture section.

With the  Set primary button, you can specify the selected culture as primary culture for the dictionary.

Again, focus any key’s input field of the desired culture first. The primary culture is normally the one your

development team is communicating in or the culture of your largest user group.

The  Tools button opens a menu of additional commands. You can replace one culture by another () to

effectively move all present translations from one culture code to another. This may be useful when restruc-

turing regional-specific cultures. You can also insert the system keys () for the selected culture to the load-

ed dictionary, if available in the built-in template. (Please note that this essentially imports the built-in tem-

plate for the selected culture, so any existing translations will be merged.) Lastly, there is a dialog available to

browse .NET’s own formatting of numbers and times as well as the current Tx formats () which can give an

impression of how data will look in a certain culture, and serve as basis for additional time formats in the Tx

namespace.

3.2.1. Date and time formats window

The date and time formats window (), available from the  Tools button in the Culture section in the

toolbar, gives an overview of all available date and time formats for a selected culture and point in time.

These formats include the .NET framework formats for short and long dates, short and long times, and the

less useful year-month and month-day formats. Below, most of the formats supported by TxLib are displayed,

in the short (normal), tabular (fixed-width), abbreviated, and long form, with additional options for the day of

week for the dates. Finally, two of the three relative time/time span formats are displayed. These are continu-

ously updating as time goes by and the relative time description changes.

One of the major advantages of this window is that it presents the various date and time formats not

grouped by the text key (like in the editor view) but grouped by the culture selected from the list at the top.

This makes it easy to compare all formats of a single culture and find any inconsistencies. And obviously you

will see how a given time looks when formatted, so you can verify that the format string is valid.

The formatted times use the format keys that are defined in the loaded dictionary, under the “Tx” namespace,

and are updated as you modify them in the editor view. So you get a direct feedback of whether the format

is correct. If an invalid format is entered, no times are displayed.

3.3. Text keys

Text keys are the main part of a dictionary. All currently defined text keys are displayed in the tree view that

makes the left part of the main window. It can be navigated just like a folder view in the Windows Explorer.

To view and edit the translations for a text key, select it from the tree. The editor area at the right side of the

main window always shows the texts for the currently selected key (see next section).

Tx Translation & Localisation for .NET and WPF TxEditor application

 15

To create a new text key, press the  New key button in the Text key section of the toolbar. A dialog win-

dow opens to let you enter the name of the text key to create. After you have created some keys, you will

notice that the text field already contains the currently selected text key with parts of it preselected. Only the

last segment of the key is selected so that you can quickly go three different ways:

1. Just start typing to replace the selected text and create a new key on the same level as the selected key.

2. Press the Right arrow or the End key to continue typing after the preset text and create a new key one

level below the selected key.

3. Press Ctrl+A and type a whole new name to create a key with no relation to the selected key.

This presetting and selection of the text is only a comfort feature to give you a good start to type a key

name. After all, everything that matters is the full key name in the text field when you confirm the dialog by

pressing the Create text key button. The new key will be selected in the tree view and you can directly con-

tinue typing the first translation.

While the Tx library can handle any text key string in the dictionary, the TxEditor tool imposes a few re-

strictions on the text key syntax due to its hierarchical approach to text key management:

 The key name cannot contain multiple consecutive points (.).

 The key name cannot contain multiple colons (:).

 The key name cannot be empty or contain only white-space.

 The key name cannot start or end with a colon (:) or point (.).

 If the key name contains a namespace separator (:), no point (.) may occur before it.

 No namespace prefix (followed by :) may also be defined as regular prefix (followed by .).

Selected text keys can also be deleted with the  Delete button, renamed with the  Rename button and

duplicated with the  Duplicate button. Deleting works with multiple selected keys, but renaming and du-

plicating only supports a single selected key because you need to enter a new key name in a dialog window.

In any case, these three operations optionally include all text keys down the tree hierarchy. You will be given

appropriate check fields or confirmation dialogs when applicable.

3.4. Text editing

When a text key is selected from the tree, its translations for all available cultures can be viewed and edited in

the editor area at the right side of the main window. It prominently shows the full selected text key at the

top, followed by an optional comment field and then all culture texts.

3.4.1. Comments

Each text key can have a comment associated with it that purely serves documentation purposes to explain

the usage context of a text key to a translating person who is not part of the development team. Since the

text keys in TxEditor are not viewed in the context of their use in the target application, such explanations

may be helpful. There is no restriction on the contents of that field, but be aware that it is part of the diction-

ary file and as such being deployed with the application. Don’t include any internal material in the comments

and don’t write too long stories.

This input field can be toggled with the  Comment button in the View section of the toolbar. That icon

turns to yellow () when a comment is entered for the selected text key.

Tx Translation & Localisation for .NET and WPF TxEditor application

 16

3.4.2. Text input

The rest of the editor view contains the input fields for each culture. The primary culture, indicated by the

green culture name, is always at the first position. This is the fallback culture that will be used at runt ime if

nothing else works. Then, in the order described in the Cultures section above, all other cultures are listed.

Each culture text has a default unquantified translation text. Just click on the “Enter text” placeholder and

start typing to enter the translation. The text field height will extend to its contents.

3.4.3. Quantified texts

Additionally, quantified texts can be added for each text key and culture combination. These texts will be

used when the application indicates a matching subject count. This allows using a different translation for

singular and plural forms, or in a more creative way to use different texts for multiple count values. Any posi-

tive integer count value can be used here. To add a quantified text, press one of the buttons at the right side,

labelled 0, 1, or +. The third button just adds an empty item and the other two preset the count value with 0

and 1, respectively. The count value can be entered in the first text field of that row, right after the “=” sign.

To delete a quantified text, press the × button to the right of it. Some languages like for example Polish re-

quire additional tests for the count value modulo 10 or 100 to select the correct word form. If such a modulo

test shall be used, the number can be entered in the second field, after the word “mod”. To refresh the sort-

ing of all count entries after editing them, press the ↻ button, the fourth in the row.

3.4.4. Placeholders

If you need to include user input, dynamic data or other information within your translated texts, you can

insert placeholders for them which will be resolved at runtime. Each placeholder has a unique name and is

specified inside curly braces in the translation text. A placeholder may be used multiple times in a text. The

actual values for these placeholders are passed to the Tx.T function at runtime. An example for a simple

placeholder is this:

Are you sure to switch the primary culture to {name}?

TxEditor will highlight placeholders with a beige background colour. The placeholder is called name here and

its value must be passed at runtime. A special placeholder is the hash sign (#), which is resolved to the speci-

fied count value. With this, you can use different translations for each count value and display the count val-

ue at the same time, without passing it twice to the function. Examples:

{#} files loaded (Generic form)

File loaded (For count 1)

3.4.5. Key references

As a more advanced feature, you can insert references to other text keys in your translations. This may be

useful if you want to include similar texts or text snippets defined elsewhere (under a different text key) in-

stead of copying their content verbatim which may become outdated sometime. To insert a reference, place

the other text key in curly braces, following after an equals sign (=), like this:

{=error}: The file cannot be opened.

Key references are highlighted with a blue background colour. You may even pass along a count value to the

other text key in case it’s necessary or useful, by appending a hash sign (#), or pass an integer placeholder

value as count value to the subkey, by additionally appending the placeholder name:

Tx Translation & Localisation for .NET and WPF TxEditor application

 17

Translated text. {=other key#}

Translated text. {=other key#mycount}

TxEditor checks these references and marks invalid references with a red underline.

3.5. View options and filters

There are several options to customise the editor view available directly in the toolbar. First there are the

navigation commands  Back,  Forward and  Definition that allow you to quickly navigate through the

previously selected text keys and the text key referenced under the cursor in a translation input field, if avail-

able.

The other buttons in the View group of the toolbar change the text appearance and toggle additional helper

views. The  Monospace button switches to a fixed-width font for all translation texts which may be easier

to read when many narrow characters or signs a used. The  Hidden chars button visualises normally invisi-

ble characters in the translation texts like spaces or line breaks. Different types of spaces are partly marked

with different symbols to help distinguishing them.

The  Character map button shows or hides a list of characters under the toolbar that you cannot type on

your keyboard. When any of those characters is clicked on, it will be inserted at the current cursor position in

the translation input field. This allows you to enter special characters for foreign languages, typographical

punctuation like quotation marks or diverse spacings, or other decorative characters. Each button shows its

code point and Unicode character name in its tooltip. The character list can be specified in the application

settings.

The  Suggestions button shows or hides the list of similar translation texts as described in the Suggestions

section below. The icon turns to green () when suggestions are available for the selected text key and cul-

ture. The  Comment button shows or hides the comment input field for all text keys. The text key comment

can explain a text key’s usage and help in choosing a reasonable translation. See the Text editing section

above.

To find text key names or occurrences of certain words, type the search terms into the input field next to the

Search term label. Matching text keys will be displayed in the tree view as you type your query. TODO: Op-

tions

The  problems filter button shows the current number of text keys with validation errors and switches the

filter to only show these text keys. You can use it to quickly find and handle all problems with translation

texts. Text keys do not disappear from the filter view when the problem is resolved until you modify the filter

settings again. The icon turns to red () when there are text keys with problems in the dictionary.

TODO: Culture filter

3.6. Application settings

TODO

3.7. Validation

To support the user to create high quality and consistent translations, the editor performs a number of tests

on the entered translation texts. If any problem was found, the text key icon in the tree changes its colour

from black () to red () and a short description of the problem is displayed next to the key. All parent tree

Tx Translation & Localisation for .NET and WPF TxEditor application

 18

nodes of a key with a problem are also red so that nothing goes unnoticed. You can also use the filter option

to quickly find and handle all problems, as described above. Each message is described below.

3.7.1. Problem types

Additional placeholder. A translation text contains a placeholder that does not occur in the text of the pri-

mary culture. This placeholder will likely not get any data at runtime.

Duplicate count/modulo. There are multiple quantified text items for the same combination of count and

modulo. They must be unique or an arbitrary instance will be selected at runtime.

Inconsistent punctuation. A translation text has a different spacing at the beginning or end, or a different

punctuation at the end than the text of the primary culture. This may lead to inconsistent layout or misunder-

standings in the user interface.

Invalid count. A negative count value was entered or the count value for a quantified text is missing. Don’t

use quantified texts if there’s nothing to quantify.

Invalid modulo. A negative modulo or a modulo of 0 or 1 or greater than 1000 was entered. These are not

defined by maths or not supported by TxLib.

Missing placeholder. In any translation text, at least one of the placeholders used in the primary culture is

missing. The user will probably see less information when using that language. Each placeholder name is

counted only once, no matter how often it occurs in a single text.

Missing referenced key. A translation text is referencing another text key that does not exist in the diction-

ary. This may not necessarily be an error as the missing text key may be defined in another dictionary loaded

at runtime, or added by code at runtime.

Missing translation. For at least one language, no translation text was entered. If a non-region-specific cul-

ture is available, this is what is checked. Additional region-specific cultures are optional in this case. If only

region-specific cultures are available for a language, all of them must have a translation text set.

Referenced key loop. A translation text is referencing its own text key or another text key that eventually

leads to a referencing loop. The actual translation text for this key (or any other key along the loop) cannot

be correctly determined at runtime.

The problems are checked in their order of greatest significance and the first determined problem is indicat-

ed. If further problems were found, it is noted by “more errors”.

3.7.2. Accepting inconsistencies

In the case that a detected inconsistency is intentional, you should hide the problem marker to be able to

focus on the real problems. In addition to the tree message, problem indicators are displayed below each

causing text field, one for each type of acceptable inconsistency. Click this button to accept or unaccept the

particular type of problem. The icon in the indicator (/) represents the current accept state. Text keys with

all accepted problems are displayed with a green icon () in the tree view.

3.8. Suggestions

Another feature to support the user in creating more consistent translations is suggestions. Based on the text

of the primary culture, other texts with similar words are searched and listed along with their translation for

the currently selected culture. This allows you to easily find other instances of the same word and use the

same translation for it in the entire dictionary. The suggestions are displayed in a separate area below or next

to the editor area, depending on your settings. It can be displayed and hidden with the  Suggestions but-

Tx Translation & Localisation for .NET and WPF TxEditor application

 19

ton in the View section of the toolbar. The icon turns to green () when suggestions are available for the

selected text key and culture.

Translations for the suggested similar text keys are only displayed if you focus an input field of another cul-

ture than the primary culture. In that case, only similar texts are displayed but no translations because they

are obviously the same anyway.

All results are sorted by relevance, beginning with the most relevant match. The relevance of an item is com-

puted by finding other texts that contain the same words, case-insensitive but otherwise as-spelled. Common

stop words for a number of built-in languages are ignored. The longer the text, the less is the value of a sin-

gle matched word. This is a rather basic approach to find similar texts, don’t expect recognition of slightly

different word forms and synonyms or any further intelligence like on popular web search engines for now.

3.9. Keyboard shortcuts

For improved productivity, the most important functions can be quickly accessed by keyboard shortcuts

(hotkeys). The shortcuts for functions represented by a toolbar button are displayed in their tooltip. Other

shortcuts may be less obvious.

3.9.1. Global shortcuts

Ctrl+F Select the search filter input field

Ctrl+N Create a new text key

Ctrl+O Open another dictionary file

Ctrl+Shift+O Open dictionary files from a folder

Ctrl+S Save the currently loaded dictionary

Ctrl+Shift+T Open the text key wizard dialog (only when in a Visual Studio window, configurable)

Alt+Left Navigate back to the previous view in history

Alt+Right Navigate forward to the next view in history

Alt+Up Navigate to the previous visible text key in the tree (keeping culture input focus)

Alt+Down Navigate to the next visible text key in the tree (keeping culture input focus)

3.9.2. In the text key tree

Delete Delete the selected text key(s)

F2 Rename the selected text key

Ctrl+C Copy the selected text key name(s) to the clipboard, one per line

Ctrl+D Duplicate the selected text key

3.9.3. In the search filter input field

Escape Clear the search filter and select the tree view

3.9.4. In a translation input field

F12 Navigate to the definition of the referenced text key under the cursor

Ctrl+0 Add a quantified text with the count 0

Ctrl+1 Add a quantified text with the count 1

Ctrl++ (Plus) Add a quantified text with no count preset

Ctrl+- (Minus) Delete the selected quantified text

Tx Translation & Localisation for .NET and WPF TxEditor application

 20

3.10. Text key wizard

Often you need to translate many texts in an already existing application, when localisation must later be

added to an application. It can be a lot of work to copy all the texts, create a new text key for each, paste the

original text into TxEditor and finally write the code to access the new text key. This process is largely auto-

mated by the text key wizard. It is currently targeted primarily to Microsoft Visual Studio and sits in the back-

ground until you press a hotkey. The workflow is the following:

1. Start TxEditor and open the application’s dictionary to work on. You may do that through Visual Studio’s

Extras menu where TxEditor has been added to in the setup (option).

2. Select the literal string in the source code editor in Visual Studio.

 For C# files, you usually include the double quotes around the string because you need to remove

them as well when inserting the Tx.T method call. If the string is concatenated from multiple strings

containing data from variables or other functions, placeholders will be generated for them.

You can also select partial strings by not including the quotes. The generated code will then in-

clude quotes to correctly put the Tx.T call inside the existing string.

 For XAML files, you first need to move any text from the element content into the corresponding

property attribute. I. e. write <TextBlock Text="abc"/> instead of <TextBlock>abc</TextBlock>.

Then do not include the double quotes around the string because you need to keep them when in-

serting the {Tx:T} binding.

Mixed string and markup extension is not supported in XAML so you cannot translate parts of an

existing text. Instead you need to split the <TextBlock> into multiple <Run> items or introduce a

<TextBlock> at all.

 For ASP.NET Web Forms (.aspx files), you just select the text to translate. The result will be in the

<%= Tx.T(...) %> syntax.

This cannot be used inside server-side controls (HTML elements with the runat="server" attribute).

Hand-coding is required for those cases. See the Use in Web Forms views section above for an al-

ternative solution.

3. Press the hotkey Ctrl+Shift+T.

4. The TxEditor text key wizard dialog appears in the bottom right corner of the screen (configurable). It

allows you to select the source file language (C#/XAML/.aspx; selection is remembered but not auto-

matically recognised) and to enter a new text key for the text you just selected. The selected text from

Visual Studio is set in the text field where you can further edit it to clean up any source remains. If the

selected text is surrounded by double quotes, these are removed and backslash escape sequences are

automatically resolved.

 If the wizard was used before, the previously defined text key is preset and the last segment is se-

lected just like when renaming a text key. This allows you to either overwrite the last segment and

create a new text key on the same level, or move the cursor to the end and create a new text key

one level below.

 If the selected text already appears in an existing text key, then that text key is preset instead.

Above the new text key, a list box shows all other text keys with an exact match or similar texts,

and the previously assigned text key, if any. Double-click on an item in the list to set its text key.

5. For XAML files, you have the option to set the selected text as Default property in the Tx binding so that

you still see the original text at design time. Otherwise, the text key will be displayed instead.

 Note: Keeping a default text in the source code may leave old texts when they’re updated in the

dictionary, which can confuse the developer. You may also want to change these default texts in

the XAML code to an abbreviated version to keep the layout readable with large amounts of con-

trols in the designer, like for instance in a toolbar.

Tx Translation & Localisation for .NET and WPF TxEditor application

 21

6. Confirm the dialog by pressing the Save text button or the Enter key (not in the translation text input

field). The new text item is added to the dictionary for the primary culture. No other cultures are sup-

ported in this workflow, you need to add translations afterwards back in TxEditor.

If the text key already existed before, its primary culture text is changed to the new text that was en-

tered in the wizard window.

7. The required source code is put back in the file opened in Visual Studio, replacing the text that you se-

lected before. You can now modify the generated code to set the placeholder data or count value as

necessary.

Don’t forget to save both (), your source code files and the dictionary, from time to time (preferably at the

same time) to avoid data loss in case anything goes wrong.

Transferring the text between Visual Studio and the TxEditor wizard technically uses the Windows clipboard.

You could press Ctrl+C and Ctrl+V yourself but TxEditor just does that for you to speed up the workflow.

While the clipboard is used to transfer the selected text, it tries to backup and restore whatever was in the

clipboard before that transfer. This only works for a handful of data formats, including most text formats (like

other text keys you want to use in the wizard), but do not expect the clipboard to contain all its original data

after using the wizard.

Copying and pasting the selected text in Visual Studio by TxEditor works by sending generated keystrokes to

the other window. This fails if Visual Studio runs in a higher isolation level than TxEditor. Also, the wizard

hotkey won’t work from within Visual Studio in this situation. In the rare case when you started Visual Studio

as administrator, you need to either start it as a regular user this time, or start TxEditor as administrator as

well.

Tx Translation & Localisation for .NET and WPF Advanced topics

 22

4. Advanced topics

4.1. Multithreading

All TxLib methods are thread-safe. The Tx class, which, at the core of TxLib, is used by all other supporting

classes, maintains a static dictionary with all texts for all loaded cultures. Any reading access to it uses a read-

er lock. Whenever the dictionary itself is modified, a writer lock is acquired to lock out all other reading and

writing access to it.

The culture selection always depends on the current thread culture as already provided by the .NET frame-

work, so multiple threads are independent of each other.

4.2. Logging

Tx has some logging capabilities to track any issues with text key lookups, placeholder resolution or key us-

age. The logging is generally controlled by the static LogFileName property of the Tx class. It is set to null by

default, which means that logging is entirely disabled. This is the recommended setting for production code

because it doesn’t generate any data or decrease performance. Setting this property to a full file name (or

anything that can be resolved from the current working directory), all subsequent log events will be written

to that file. The special value "" (an empty string) enables logging to the Trace output which can be moni-

tored with the Visual Studio debugger or other tools that can read data written by the OutputDebugString

function, like Sysinternals’ DebugView or the FieldLogViewer. Existing log files will be appended to. The direc-

tory must already exist. Some events are logged with a stack trace that helps you find the place in your part

of the source code that caused the problem.

The logging behaviour can also be controlled with environment variables. The LogFileName property can be

initialised to a different value to activate Tx logging in the target environment without modifying the source

code or other configuration files. The environment variable for this is named TX_LOG_FILE and must be de-

fined in the current user profile. Both, a regular file name and an empty string as described above, are sup-

ported.

The additional environment variable TX_LOG_UNUSED controls writing a list of all unused text keys when the

application ends. This helps in finding unused text keys that may be left over from refactorings. This is only

enabled if logging is enabled in general.

These environment variables are evaluated in the static class constructor of the Tx class. That means that they

may be evaluated before any other application code is executed and changes to these variables from the

application itself will only be considered the next time the application starts.

4.3. Test modes

TxLib offers a test mode feature that allows you to easily spot texts in your application that are not localisable

yet. This mode can be set globally for the entire process (AppDomain actually) or for the current thread only

with the properties Tx.GlobalMode and Tx.ThreadMode, respectively. The following values can be set:

 Normal: TxLib looks up translation texts as usual. This is the default value.

 ShowKey: No lookups are performed at all. Instead, the text key is returned for every Text call like it

didn’t exist in the dictionary.

 UnicodeTest: TxLib looks up translation texts as usual but replaces common ASCII letters by similar

characters from the Unicode character set. This allows you to read the regular texts but also recognise

http://technet.microsoft.com/en-us/sysinternals/bb896647
http://dev.unclassified.de/source/fieldlog

Tx Translation & Localisation for .NET and WPF Advanced topics

 23

untranslated strings (from their normal letters) and test the application’s capabilities to handle non-

ASCII character sets in different languages.

In ASP.NET applications, you can expose these test modes to the URL API so that they can be used directly

from the web browser. The following code should be integrated in the Global.asax.cs file:

protected void Application_PreRequestHandlerExecute()
{
 // Refresh loaded dictionary files
 Tx.CheckReloadFiles();

 // Set the current request culture from a user preference or the browser’s HTTP header
 string sessionLanguage = null;
 try
 {
 sessionLanguage = Session["cultureName"] as string;
 }
 catch
 {
 }
 if (!string.IsNullOrEmpty(sessionLanguage))
 {
 Tx.SetCulture(sessionLanguage);
 }
 else
 {
 Tx.SetWebCulture(Request.ServerVariables["HTTP_ACCEPT_LANGUAGE"] as string);
 }

 // Enable test mode if indicated by a URL parameter
 if (!string.IsNullOrEmpty(Request.Params["_txtest"]))
 Tx.ThreadMode = TxMode.UnicodeTest;
 if (!string.IsNullOrEmpty(Request.Params["_txkey"]))
 Tx.ThreadMode = TxMode.ShowKey;
}

protected void Application_EndRequest()
{
 // Always reset the test mode for the next request on this pool thread
 Tx.ThreadMode = TxMode.Normal;
}

Tx Translation & Localisation for .NET and WPF Text key best practices

 24

5. Text key best practices

Basically you are entirely free to use whatever text keys you like in your dictionaries. But to keep some order

and to guide new users to a more structured approach, there are some guidelines and best practices for text

key management.

5.1. Structure

You should not see the text keys as a flat list of entries with a more or less common naming scheme, but

instead consider structuring the keys according to their use in the application. Only the most common and

general texts and phrases can be stored with a short key in the “root” scope. Anything more special should

have a context to group the entries in. Think of the text keys as a folders and files hierarchy like the one you

use to organise your documents or pictures. (At least I hope you do…)

TxEditor supports this structure by displaying it in a tree view. At first, only the top-level “folders” and text

keys are visible and you can then dive in through the contexts to the actual text key by expanding the tree

nodes.

By convention, the scope separator character is a point (.). Use it to separate the different scope segments in

a text key.

Here are some examples for an application that has a toolbar with different sections, a status bar displaying

the current status and some message dialogs for user input.

toolbar.file.new New

toolbar.file.open Open

toolbar.file.save Save

toolbar.edit.copy Copy

toolbar.edit.paste Paste

statusbar.file saved File saved.

statusbar.no file loaded No file loaded.

statusbar.error loading file There was an error loading the specified file. {details}

message.user name.caption User name

message.user name.enter user name Please enter your name:

buttons.ok OK

buttons.cancel Cancel

After all, even though TxEditor displays the keys in a tree, a text key is always the full string as it’s displayed at

the right side of the editor. This full key is also the string that you need to use in your code to refer to a spe-

cific text. Knowing this, a part of a text key can also be a text key, so “toolbar.file” and “toolbar.file.new” can

perfectly coexist (unlike the folders and files on your disk). Sometimes it’s even useful to do that, like when

defining an explanatory description for some text key by appending “.desc” to it.

A special case of a scope is a namespace. It can be used together with the Tx.SafeText method. Namespaces

use the colon (:) as separator character and cannot be further structured. A special namespace called “Tx” is

also used by TxLib formatting methods to define number or time formats, typography like quotation marks

etc. Within a namespace, the normal structuring with points can be used, but namespaces themselves cannot

be structured or even contain a point.

Tx Translation & Localisation for .NET and WPF Text key best practices

 25

5.2. Naming text keys

In general you can use any character you want to when naming text keys. For practical reasons, and by the

structuring conventions described above, you should however comply with some guidelines for text key

names.

Prefer lower case. In some situations, upper-case characters may help to understand text keys, and text keys

are generally case-sensitive. But for the most texts, it should be easiest to just stick to lower-case characters

for the entire text key. It’s also easier to type and remember.

Points and colons have structuring meaning. As described in the previous section, the use of points (.) and

colons (:) adds structuring meaning to the text keys and is used in some methods as well as the TxEditor tool.

Do not use quotation marks. You’ll be using the text keys in different source code languages and contexts

and usually need to specify them as a string. Quotation marks within the text key only make it a lot harder to

use the keys later and reduce code readability. So better don‘t use any kind of single or double quotation

marks or their typographical equivalents.

Do not use certain special characters. In XAML files, the characters ampersand (&), less-than (<) and great-

er-than (>) need to be replaced by an escape sequence. In C# code, the backslash (\) character is an escape

character. In Tx placeholder and reference resolution, the characters hash (#), equals (=) and curly braces ({

and }) have a special meaning and cannot be used. Any type of control character should be avoided as well.

Use spaces. The normal space character (U+0020, or: hit the space bar on your keyboard) is explicitly allowed

and in fact preferred over the common underline (_) when you want to express multiple words in a key. Spac-

es are more natural and can more easily be read. Spaces at the beginning and end of a key will be trimmed

though.

Try to use letters, digits and spaces only. Considering the previous points, try to restrict your key names to

letters, digits and spaces only. Besides the structuring colon and point, of course. If it doesn’t cause problems

with your development team, non-ASCII letters like accented, decorated, Cyrillic, Greek or other characters of

your familiar writing system are just fine. Also think of the translating team who may need to understand the

text keys, as that’s what they are navigating with most of the time.

Use a simplified form of the primary culture text. One of your main tasks using TxLib will be maintaining,

remembering and using text keys. To make it easier, you should use key names that you can easily remember

or from which you can easily infer what they’re supposed to be used for. When you read your application

code, you mostly see text keys instead of translated texts, so you should be able to know what a text key

basically stands for. Try to use a simplified form of the text in the primary culture as the text key, like in the

example above. Using multiple words is fine (use spaces as usual), as long as the key doesn’t get too long.

Try to find an abstract or summarised alternative in this case.

Use the unquantified word form. When defining translations for subject counts, the easiest method is to

define a text for the most general form of all plural counts, and add exceptions for those counts that need

them in your language. Most of the time, you’ll probably only add exceptions for a count of 1 or maybe also

0. Give the text key a name of the general plural form then. Example: time.days is generally translated as

“days”, except for 1 where it’s “day”.

Tx Translation & Localisation for .NET and WPF Text key best practices

 26

5.3. Tx system keys

TxTranslation provides a number of data formatting functions and language-specific typography support.

The text snippets and characters required for this functionality are looked up in the dictionary under well-

defined text keys in the “Tx” namespace. These are called system keys. When you add a new culture to a dic-

tionary file, you have the option to include the system keys for that culture, if they are included in the tem-

plate file.

System keys are handled in a special way regarding validation. Since most of these keys have a built-in de-

fault value, it is normal that no text is provided in most languages for many of the keys. Missing translations

and other inconsistencies are not considered a problem for these keys.

All system keys are defined as constants in the class Tx.SystemKeys. The only exception is “.single” subkeys

for relative time specifications which are looked up dynamically. Some of the keys have a comment in the

template file that further explains the usage of these keys.

If you would like to add the system keys translations for another culture or found any errors in the existing

texts or know how to improve them, please edit the Template.txd file from the TxEditor source code accord-

ingly and send it back to the TxTranslation developer. Your changes may then be incorporated into a newer

version of TxEditor, for easier use by yourself and all other TxTranslation users.

Also, changes and updates to system keys should only be done in the template file and then reimported into

your application dictionary, for better reusability. To do so, simply delete the “Tx” namespace key in your

dictionary and then import the Template.txd file, ignoring all new cultures.

