Skip to content

yixuan/RSpectra

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
man
 
 
src
 
 
 
 
 
 
 
 
 
 
 
 

Solvers for Large Scale Eigenvalue and SVD Problems RSpectra

Introduction

RSpectra is an R interface to the Spectra library. It is typically used to compute a few eigenvalues/vectors of an n by n matrix, e.g., the k largest eigen values, which is usually more efficient than eigen() if k << n.

Currently this package provides the function eigs() for eigenvalue/eigenvector problems, and svds() for truncated SVD. Different matrix types in R, including sparse matrices, are supported. Below is a list of implemented ones:

  • matrix (defined in base R)
  • dgeMatrix (defined in Matrix package, for general matrices)
  • dgCMatrix (defined in Matrix package, for column oriented sparse matrices)
  • dgRMatrix (defined in Matrix package, for row oriented sparse matrices)
  • dsyMatrix (defined in Matrix package, for symmetric matrices)
  • dsCMatrix (defined in Matrix package, for symmetric column oriented sparse matrices)
  • dsRMatrix (defined in Matrix package, for symmetric row oriented sparse matrices)
  • function (implicitly specify the matrix by providing a function that calculates matrix product A %*% x)

Examples

We first generate some matrices:

library(Matrix)
n = 20
k = 5

set.seed(111)
A1 = matrix(rnorm(n^2), n)  ## class "matrix"
A2 = Matrix(A1)             ## class "dgeMatrix"

General matrices have complex eigenvalues:

eigs(A1, k)
eigs(A2, k, opts = list(retvec = FALSE))  ## eigenvalues only

RSpectra also works on sparse matrices:

A1[sample(n^2, n^2 / 2)] = 0
A3 = as(A1, "dgCMatrix")
A4 = as(A1, "dgRMatrix")

eigs(A3, k)
eigs(A4, k)

Function interface is also supported:

f = function(x, args)
{
    as.numeric(args %*% x)
}
eigs(f, k, n = n, args = A3)

Symmetric matrices have real eigenvalues.

A5 = crossprod(A1)
eigs_sym(A5, k)

To find the smallest (in absolute value) k eigenvalues of A5, we have two approaches:

eigs_sym(A5, k, which = "SM")
eigs_sym(A5, k, sigma = 0)

The results should be the same, but the latter method is far more stable on large matrices.

For SVD problems, you can specify the number of singular values (k), number of left singular vectors (nu) and number of right singular vectors(nv).

m = 100
n = 20
k = 5
set.seed(111)
A = matrix(rnorm(m * n), m)

svds(A, k)
svds(t(A), k, nu = 0, nv = 3)

Similar to eigs(), svds() supports sparse matrices:

A[sample(m * n, m * n / 2)] = 0
Asp1 = as(A, "dgCMatrix")
Asp2 = as(A, "dgRMatrix")

svds(Asp1, k)
svds(Asp2, k, nu = 0, nv = 0)

and function interface

f = function(x, args)
{
    as.numeric(args %*% x)
}
g = function(x, args)
{
    as.numeric(crossprod(args, x))
}
svds(f, k, Atrans = g, dim = c(m, n), args = Asp1)

About

R Interface to the Spectra Library for Large Scale Eigenvalue and SVD Problems

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published